Processor Data Path and Control

CIT 595
Spring 2007

What Do We Know?

Already discovered:

Gates (AND, OR..)

Combinational logic circuits (decoders, mux)
Memory (latches, flip-flops)

Sequential logic circuits (state machines)
Simple processors (programmable traffic sign)

What's next?

CIT 595

Apply all this to build a working processor

Von Neumann Model

MEMORY
| —| AR [MBR
INPUT l l OUTPUT
Keyboard Monitor
SMouse PROCESSING UNIT Printer
canner LED
Disk ' - Disk

CONTROL UNIT

pc) [R]

CIT 595

CIT 595

LC-3 Processor Von Nuemann Model

-l
-

LC-3 Data Path

-} - -
[Eom——— e

The data path of a were weee o] |
computer is all the 2o/ i,]
logic used to process - -
information :
T ¥
Filled arrow Bl | | ez Tl
= info to be processed. L e . 5 sroam
Unfilled arrow e . Fontro R S
= control signal. 0)
o = T
_ ' '

CIT 595

One More Device

Tri-state buffer
¢ NOT an inverter!

« Device with a special output that can take a third state (i.e.
besides 0 and 1)

E D D Q

E

Z = "high impedance” state

o |k |o
N [N [o0

O O |k |-

Allows wires to be “shared”
¢ Alternative to mux
« Only one source may drive at a time!
» Usually used to control data over a bus

Data Path Components

Global bus
» Set of wires that carry 16-bit signals to many components

* Inputs to bus are controlled by triangle structure called tri-state
devices

» Place signal on bus when enabled

» Only one (16-bit) signal should be enabled at a time

» Control unit decides which signal “drives” the bus
* Any number of components can read bus

» Register only captures bus data if write-enabled by the control
unit

Memory and 1/O
« Control signals and data registers for memory and 1/O devices
* Memory: MAR, MDR (also control signal for read/write)
¢ Input (keyboard): KBSR, KBDR
« Output (text display): DSR, DDR

CIT 595

CIT 595 7-6

LC-3 Data Path

r:-x')
I
_ - UNIT
R — WE[E}— s -
1. [1
= I
T

CIT 595 Filled arrow = info to be processed. Unfilled arrow = control signal. 7-8

Data Path Components (cont.)

ALU
« Input: register file or sign-extended bits from IR (immediate field)
» Output: bus; used by...
» Condition code registers
» Register file
» Memory and /O registers

Register File
» Two read addresses, one write address (3 bits each)
* Input: 16 bits from bus
» Result of ALU operation or memory (or I/O) read
¢ Outputs: two 16-bit
» Used by ALU, PC, memory address
» Data for store instructions passes through ALU

CIT 595

Data Path Components (contd..)

PC and PCMUX
e Three inputs to PC, controlled by PCMUX
1. Current PC plus 1 (normal operation)
2. Adder output (BR, JMP, ...)
3. Bus (TRAP)

MAR and MARMUX
* Some inputs to MAR, controlled by MARMUX
1. Zero-extended IR[7:0] (used for TRAP; more later)
2. Adder output (LD, ST, ...)

CIT 595

-10

Data Path Components (cont..)

Condition Code Logic
» Looks at value (from ALU) on bus and generates N, Z, P signals
* N,Z,P Registers are set only when control unit enables them

Control Unit
¢ For each stage in instruction processing decides:
» Who drives the bus?
» Which registers are write enabled?
» Which operation should ALU perform?

Lets Look at Instruction Processing next..

CIT 595

-11

Instructions

Fundamental unit of work

Constituents
« Opcode: operation to be performed
« Operands: data/locations to be used for operation

Encoded as a sequence of bits (just like data!)
« Sometimes have a fixed length (e.g., 16 or 32 bits)
« Atomic: operation is either executed completely, or not at all

CIT 595

-12

Instruction Processing

[

‘ FETCH instruction from mem. |

!

| DECODE instruction |

!

| EVALUATE ADDRESS |

!

| FETCH OPERANDS |

|

‘ EXECUTE operation |

| STORE result |
|

CIT 595

Instruction Processing: FETCH

Idea
¢ Put next instruction in IR & increment PC

Steps
¢ Load contents of PC into MAR
¢ Increment PC
» Send “read” signal to memory
¢ Read contents of MDR, store in IR

CIT 595

FETCH in LC-3

T

Load PC into MAR (inc PC)

wrwoar ot oumrr

CIT 595

—> Control

— Data

FETCH in LC-3
—> Control
— Data
Read Memory
e |
CIT 595 e - o 7-16

FETCH in LC-3

—> Control

— Data

Copy MDR into IR

CIT 595 7-17

Instruction Processing: DECODE

Identify opcode
¢ In LC-3, always first four bits of instruction
* 4-t0-16 decoder asserts control line corresponding
to desired opcode

Identify operands from the remaining bits

» Depends on opcode
e.g., for LDR, last six bits give offset
e.g., for ADD, last three bits name source operand #2

CIT 595

DECODE in LC-3

Decoding usually
a part of the
Control Unit but
can be seperate

wrwoar ot oumrr

CIT 595 7-19

Instruction Processing: EVALUATE ADDRESS

Compute address
¢ For loads and stores
« For control-flow instructions

Examples
» Add offset to base register (as in LDR)
» Add offset to PC (as in LD and BR)

CIT 595

EVALUATE ADDRESS in LC-3

Load/Store

CIT 595

-21

Instruction Processing: FETCH OPERANDS
Get source operands for operation
Examples

* Read data from register file (ADD)
 Load data from memory (LDR)

CIT 595

FETCH OPERANDS in LC-3

ADD

CIT 595

-23

FETCH OPERANDS in LC-3

LDR

CIT 595 7-24

Instruction Processing: EXECUTE

Actually perform operation

Examples
« Send operands to ALU and assert ADD signal
» Do nothing (e.g., for loads and stores)

CIT 595

EXECUTE in LC-3

ADD

CIT 595

-26

Instruction Processing: STORE

Write results to destination
» Register or memory

Examples
» Result of ADD is placed in destination reg.
» Result of load instruction placed in destination reg.
* For store instruction, place data in memory
»Set MDR
» Assert WRITE signal to memory

CIT 595

STORE in LC-3

ADD

wrwoar P

CIT 595

-28

STORE in LC-3

LDR

CIT 595

-29

STORE in LC-3

STORE
Set MDR

CIT 595

-30

STORE in LC-3

STORE
Set MDR
Assert “write”

CIT 595

-31

Time to Complete One Instruction

« It takes fixed number of clock ticks (repetition of rising
or falling edge) to execute each instruction

» The time interval between ticks is known as clock cycle

» Thus instruction performance is measured in clock cycles

» Hence the clock sequences each phase of an
instruction by raising the right signals as the right time

* So what determines the time between ticks i.e. the
length of the clock cycle?

CIT 595

-32

Clocking Methodology

« Defines when signals can be read and when they can be written

« It is important to specify the timing of reads and writes because, if
a value is written at the same time it is read, the value of read could
be old, new or mix of both

« All values are stored on clock edge (edge-triggered) i.e. within a
defined interval of time (length of the clock cycle)

« In a processor, since only memory elements can store values this
means that
» Any collection of combinational logic must have its inputs coming from
a set of memory elements and its outputs written into a set of memory

Clocking Methodology (contd..)
* The length of the clock cycle is determined as follows:

o -

Memory vi \ Memory
Element | ———»{ Combinational Logic | w Element
1 A e 2

N [

» The time necessary for the signals to reach memory
element 2 defines the length of the clock cycle

» i.e. minimum clock cycle time must be at least as great as the
maximum propagation delay of the circuit

CIT 595 7-34

elements
CIT 595 7-33
How does the control unit work ?
Two approaches:
* Hardwired Control
* Microprogrammed Control
CIT 595 -35

Approach I: Hardwired Control

Hardwired Control
» Directly connects the control lines

Insiruction Register

to actual machine instructions J,
Instruction Decoder
» The instructions are divided into Input from system bus
fields, and bits in the fields are Input from clock R
- - . e
connegted to_lqput Ilngs that drives
the various digital logic components —> [
P :
Control Unit N
. E (Combinational circull) ¢
» The control signals are some <
combination of the instruction bit — :
plus other signals such as)
. P Inpat f status/
interrupts, or condition codes from e ere]
previous instruction
.-
Cantrol Signals

(Thesa signals go 1o registers,
the bus and the ALUL)

CIT 595 7-36

LC3 as Hardwired Control Implementation

Decoder
\ Controllar

0] w0 e
Memaey
ey iene
16|
' .

The Control Signals (red colored lines) are outputs by some
CIT 595 combination of inputs from the instruction bit fields

7-

37

1
0 roe -
Memory
2=y 160a
o] 2sts s

ADD Instruction

CIT 595

Opcode Control

Instr | 1[15:12] | I[5] | @ o o 0606 6 066 o6 o
ADD | 0001 | O |i8.]|I[2:0] | I[11:9] {1 |00 |o0|0 |1 |0 | 1

-38

Sequencing the Stages in Hardwired Implementation

* The combination Control Unit set all the control lines
needed by an instruction

« How do we ensure that we sequence through
Instruction cycle i.e. F->D->EA->OP->EX->S?
* We connect the clock to a synchronous counter and the
counter to the decoder

¢ The decoder output enabled is based on counter outputs (i.e.
which cycle you are in)

* The decoder output is then used as enable signal (gating) to
enable only certain control signals during a particular cycle

» Note: the diagram does not show sequencing logic to avoid
cluttering the diagram

CIT 595

-39

Sequencing Instruction Stages in Hardwired
Implementation (contd..)

Example:

CIT 595

Suppose the max. number of cycles an instruction takes is 8

Then we would have 3-bit counter whose outputs are fed into
3 x 8 decoder

The output of the decoder, T, to T, are enable based on
count i.e.

> T, = 1 when count = 000 (cycle 0), all others are disabled

» T, =1 when count = 111(cycle 7), all others are disabled

The decoder output that is enabled used to define the
behavior in a particular cycle

If < 8 clock cycles are required by another instr., then the
counter is reset back to 0 (so the next instruction can properly
function as well)

-40

10

Hardwire Control with Timing (Sequencing) Control

Instruction register

aal
ke

—T—>
I [
- Timing To—> Control :
> generator i Unit Flags
T — Dm—
do dw C"lm
¥ A4
7-41

CIT 595

JMP Instruction

—0000 O conue @ 6 6 00|

2

o 16
1 EIELE! T |
0 w0 i . | 2q o
== 16 ieDate bad
. Memmary

My
Ty 18R

LDR Instruction

[e -
Memony
3=y 165a

16
Opcode Control
Instr | 1[15:12] | 1[5] | @ | @ ® 00 60 00/ 6 o
LDR 0110 - | 1[8:6] - 11:9] ([1]10|00|{0 |0 | O | 1
CIT 595 -
BaseR DR 743

Opcode Control
Instr | 1[15:12] | I[5] | @ o o 0606 6 066 o6 o
JMP | 1100 | - |186]| - - of10fo0jo|1|x]| o0
CIT 595 7-42
—0000 O comwie @ 6 6 00|

iy 1

[[= P
Memory
7=y 100a
1
] s

16
Opcode Control
Instr 15:12] | 18] | @ o o ® 0| 6 0606 6|0
TRAP 1111 - - - 111 1| xx|01]|0]| O 1 0
CIT 595 7-44

11

Implementation Diagram is not complete

16

What about AND? NOT? BR? What changes would you
make?

CIT 595 7-45

Approach II: Microprogrammed Control

* In microprogrammed control, each machine instruction is in

turn implemented by a series of microinstructions

¢ Machine instructions are the input for a microprogram that
converts the 1s and Os of an instruction into control signals

« The microinstructions are often stored in firmware or read

only memory, which is also called the control store

* Microprogram is also known as Microcode in some literature

* Microprogram Control is essentially a Finite State Machine

CIT 595

Microprogrammed Control is a FSM

State Machine
Inputs | Combinational Outputs
PC,IR, etc.. | | Logic Circuit | | Control signals

2

z o
g o)
5 5}
3 State

CIT 595 7-47

LC3 Microprogrammed Control: State Diagram

Finite state machine
¢ Input: PC, IR, etc..
¢ Output: many control signals

Need to map abstract ops
to control signals
* E.g., MAR <- PC
= GatePC and LD.MAR
e Eg,PC<-PC+1
= PCMUX=2 and LD.PC

If in state 1, then the micro-
Instruction for state 1 will
enocode information for GatePC,
LD.MAR, PCMUX, LD.PC and
next state as state 2

CIT 595

J . Btaio 1
/| wmaepc |
[| eercan
T, Sh At
-
FETEH { |mm‘- ww\nll
|
f] _ Stz d
|
1R = MOR |
i J
t Suid
| |
ADQS———T—— P
-] ;
| Forst state atier First state afer
DECODE for DECODE for
ADO stucson | LOR insarcion
T - T
' '
[Lmtome | [Lostoaio |
weamyoul | *ee | woamyoud |
| ADD instnection | | LOR irstrucsion

To state 1 To staig 1

. | PG < Rogistor |

[First state attor
DECODE for
NP insinuction

I
'
Stalo 63

]
To state 1

12

LC3 Implemented using Microprogram Control

« The behavior of LC-3 during a given clock TR s
cycle is completely described by the 49 bit \ L BEN PSA[15]
microinstruction] /)
» 39 control signals to assert datapath
components Microssquencsr
¢ 10 signals + 9 other to determine the
control signals for the next clock cycle JV
Control Store
¢ Each phase of instruction cycle may Bra
require more than one microinstruction
T«,
* Hence a microinstruction is retrieved
during each clock cycle 10 5

(J, COND, IRD)

Microprogram Control

CIT 595 7-49

LC3 Implemented using Microprogram Control (contd..)

« All possible processor behavior (state) is TRt

stored into memory called Control Store \ L BEN PSAlre]
. . o . 1 '

« j.e. each location stores one microinstruction

¢ There are 52 possible microinstructions
(states) that can describe LC3'’s behavior

* Hence need a 6-bit address to lookup the
Ts

Microsequencer

control store

Control Store

» The microsequencer produces the 6 bit 2xa0
address from combination of 10 bits of
Microinstruction + 9 bit additional info,

49
which will correspond to the next behavior
of the processor 10 %

(J, COND, IRD)

Microprogram Control
CIT 595 7-50

Big Picture: LC3 as Microprogrammed Control

IRNGA 1
BEN
PER[15]

l' i Dt Path e

— 3

—l

Qonircl

i«s

Gomeal €lgmale
L] %

CIT 595 7-

51

Appendix C of Patt
& Patel Fig C.2

as

IR<-MDR

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

T

o

Tot s

DR=—SR1a0P2"

setcC

T ‘DR—NOT(ER)
setcc

To 18 a5

——MAR\'fZExT\IR\‘! oy

28

MDR=—MIMAR]
7<-PC

R
R

DR<-SR1+0P2’
setcC

14

g DR=—PCuoff9
set CC

aws/

.

*OP2 may be SR2 or SEXTlimms]

CIT 595

13

LC3 Microprogram: Control Signals for Current State

CURR
STATE GATE LD MUX MISC

o -

c
MARMX | PC | ALU | MDR [PC | REG | C MAR | MAR PC SR2 SR1 | ALUK DR RW

MEM
EN

0
18 0 1 0 0 1 0 oo 1 X (PC+1) X X X X 0

o
1 0 o | 1 0 0 1 1o o X X IRis) | Ris6) | (app) | IRping) [o

The table above provides the control signal values (some of the 39
signals) for two states (18, 1)

State 18: Is performing part of the FETCH stage
State 1: Is performing stages OP-EX-STORE for ADD inst
Note:

» Assume all Register and Memory Read/Write signal are set 0 unless
in case of write (i.e. set to 1)

« Also there is no need of timing circuit like in hardwired control, as
each signal behavior is defined for every clock cycle

CIT 595 7

-53

LC3 Microprogram: Next State

Depends on:

» 10 bits of current microinstruction

» J (6-bits): encodes the next state (mostly likely states of the
possible next states)

« COND (3-bits): field indicates special tests that must occur to
compute the true next state

» 0 — Unconditional (that next state is the encoded state)
» 1 — Memory Read

» 2 — Branch

» 3 — Addressing Mode (for JSR and JSRR instructions)
»5 — Interrupt Test

* IRD (1-bit) : If set to IRD = 1, ignore J and COND. This only
happens in state 32 and as we want to use the bits from the IR
to select the next state

CIT 595 7-54

LC3 Microprogram: Next State (contd..)

Depends on (contd..):

< INT: To indicate interrupt from another program or
device, Only tested if in state 18 (because that is before
the start of an instruction cycle)

* R: indicate the end of memory operation
« IR[15:11]: current opcode

* PSR[15]: processor executing in supervisor or user
mode

* BEN: indicates whether or not a branch should be
taken

CIT 595 7-

55

LC3 Next State Example

POSSIBLE
NEXT STATE
(depends
CURR also on 9
STATE J COND IRD other Bits)

18 33 5 0 33,49
1 18 0 0 18
32 0 0 1 0-15

« State 18: Most likely next state is 33 but need to
check for INT (COND = 5). If INT = 1, Next State = 49

« State 1: Next State is just 18 (this because you are
done finishing ADD instr and want to start a new instr.
Cycle)

* State 32: J and COND ignored as IRD =1, 0 - 15
are your next possible states

CIT 595 7-56

14

Generic Microprogram Control

Instruction Register

Il‘\p[uf'ff{?m := Microinstruction <J‘|_|‘|_|‘|_ Clock
il —> Address Generation oc

registers

‘f Misrainstrustion
T Buffer
1
Select ‘s _ i Control Store
a specific ™ Microprogram :
instruction Mamary Put micro-

instruction

i
:
d executed for given
in buffer ! Decoder
i

| microinstruction
:

. _ /M ,,,,,,

Control § I
may not be needed i

i
i
Microinstruction }Subroulme that is

CIT 595

LC3 Processor

|
ol O
il
o fi
s i
Implemented as
Microprogram = ot
Control .
b
oy W |

[ram wn |

vt

1|

pre—

CIT 595

-58

Hardwired vs. Microprogrammed

Complexity
» There is an extra level of instruction interpretation in
microprogrammed control, which makes it slower than
hardwired control

Flexibility
« Instruction and Control Logic are tied together in
hardwired control, which makes it difficult to modify

* New instructions can be easily added by only making
changes to the microprogram in microprogrammed
control implementation

CIT 595

15

