

PA200 – Cloud infrastructure Storage and Data repositories

Milan Brož mbroz@redhat.com

Agenda

Storage cost

OpenStack storage types

Software-defined storage concepts

Data persistence and redundancy

Virtualization

Distributed storage

Security

Q&A

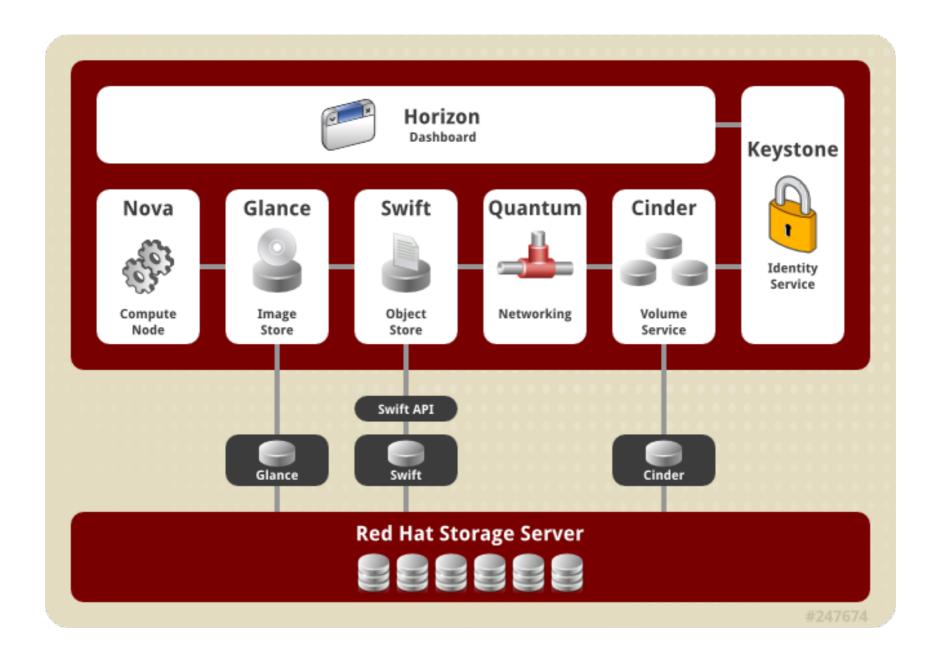
Also see: Information Storage and Management, 2nd Edition EMC Education Services, ISBN: 978-1-118-09483-9

Storage Cost

Storage

- Capacity
- Availability, Reliability
- Data integrity, Redundancy
- Performance
- Scalability
- Security

=> Cost


Manageability

Storage in OpenStack as an example

Persistent Storage – Example

Data persistence

Ephemeral storage

- Disappears when VM is terminated
- Temporary data ~ computing clusters
- Visible locally (to node)

Persistent storage

- Data always available (no dependency on instance)
- Can be shared among resources / instances

Persistent Storage Types

Object store

- Binary objects of various length
- REST API

Block (volume) storage

- Block (sector-level) devices
- Can be backed by a file image

Shared file-system storage

Mounted to a directory

Persistent Storage – OpenStack

Object store = SWIFT

Stateless swift-proxy

Block (volume) storage = CINDER

Backend Cinder drivers (LVM, GPFS, EMC, ...)

Shared File-system = MANILA

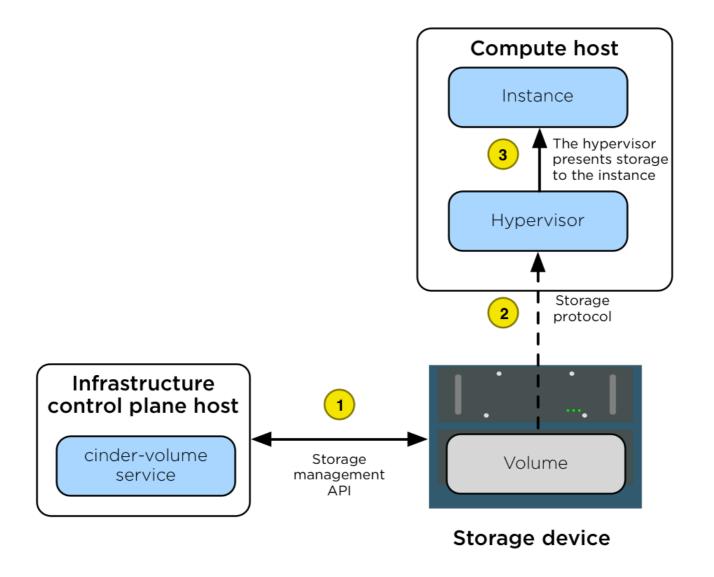
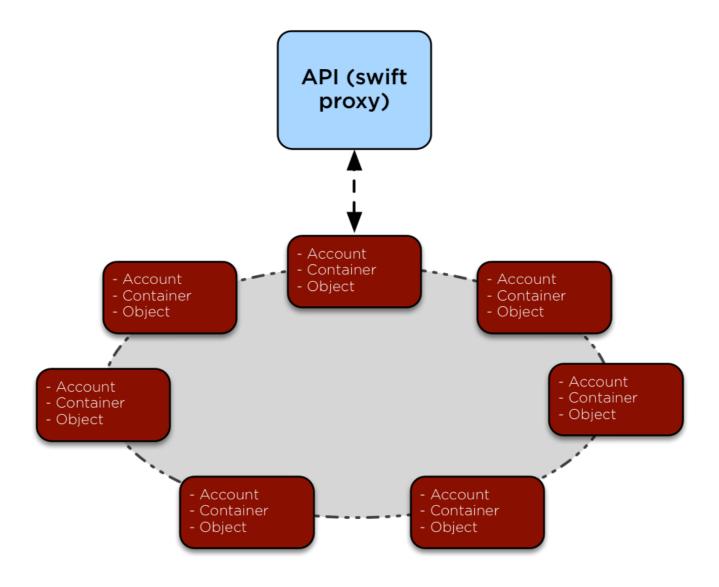

Backend Manila drivers (Ceph, GlusterFS, NFS, ...)

Image service = GLANCE

deduplication, clones, ...

Cinder storage overview



- **---** Storage network
- Management network

https://docs.openstack.org/project-deploy-guide/openstack-ansible/newton/overview-storage-arch.html

Swift storage overview

- **--** Storage network
- --- Replication network

https://docs.openstack.org/project-deploy-guide/openstack-ansible/newton/overview-storage-arch.html

Generic Storage Concepts

Software Defined Storage

Software Defined Storage (SDS)

- "Commodity hardware with abstracted storage logic"
- Policy-based management of storage
- Virtualization
- Resource management
- Similar concept as Software Defined Network (SDN) Note: distributed storage is mostly about networking!
- Thin provisioning, deduplication, replication, snapshots,

. . .

SDS definition differs among vendors!

Storage layers

Hardware and low-level storage protocols

- Physical storage
 - Rotational drives / hard disk drives (HDD)
 - Flash / SSD drives
 - Persistent Memory (byte-addressable!)
 - Tapes, magneto-optical drives, ...

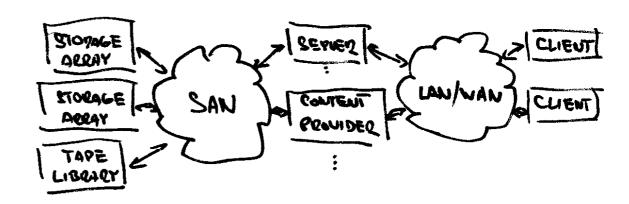
Block-oriented storage access protocols

- "Small Computer System Interface" (SCSI)
- Serial Attached SCSI (SAS)
- Serial ATA (SATA)
- Fibre channel (FC) (not only fiber-optic)
- InfiniBand (IB)

NAS – Storage layers

Storage connectivity through network

- Direct-Attached Storage (DAS)
 - Local, host-attached
- Network-Attached Storage (NAS)
 - Remote storage device
 - Communication protocol
 - Usually over IP-based network
 - High-level: NFS, CIFS, HTTP, ...
 - Low-level: iSCSI (SCSI over IP), FC (point-to-point), Network Block Device (NBD)



SAN – Storage layers

Storage connectivity through network

- Storage Area Network (SAN)
 - Private network
 - Switched fabric
 - Communication protocol
 - Fibre Channel
 - InfiniBand
 - FC over Ethernet (FcoE)
 - Multipath

High Availability

High availability (HA)

- Assuring access to resources
- Service-level agreement (SLA)
- Common 9s levels

Resources access

- On-demand
- Active/Passive
- Active/Active
- ~ Active/Passive Mid-Range
- ~ Active/Active High-End

UPTIME (%)	DOWNTIME (%)	DOWNTIME PER YEAR	DOWNTIME PER WEEK
98	2	7.3 days	3 hr 22 minutes
99	1	3.65 days	1 hr 41 minutes
99.8	0.2	17 hr 31 minutes	20 minutes 10 sec
99.9	0.1	8 hr 45 minutes	10 minutes 5 sec
99.99	0.01	52.5 minutes	1 minute
99.999	0.001	5.25 minutes	6 sec
99.9999	0.0001	31.5 sec	0.6 sec

Generic Storage Concepts Data Protection and Redundancy

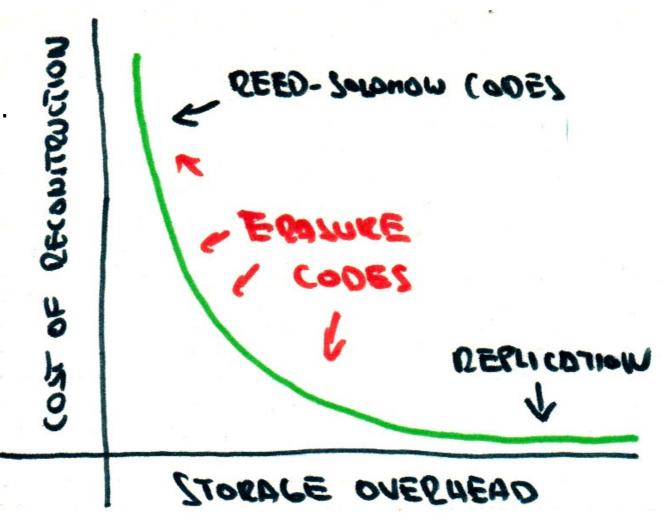
Data protection

- Data integrity protection
 - Random error detection (parity) / correction
- Erasure codes
 - Forward Error Correction (FEC)
 - Redundancy
 - RAID (Redundant Array of Independent Disks)
 - Erasure coding in distributed storage
- Backup and disaster recovery
 - "RAID is not a backup!"
 - File corruption, bugs (disk, controller, OS, application, ...)
 - Admin error, malware
 - Catastrophic failure (datacentre fire)
 - Offline and off-site backup replica

RAID – Data protection

Common non-RAID and RAID disk configurations

- **JBOD** "Just a Bunch of Disks" (collection of disks, no redundacy)
- RAID-0 striping (for performance, no redundancy, no parity)
- RAID-1 mirroring (no parity)
- RAID-5 block-level striping + distributed parity (XOR)
- RAID-6 block-level striping + double distributed parity
- RAID-10 nested RAID example (1+0: striping over mirrored drives)
- RAIDZ (in ZFS) similar to RAID-5, dynamic stripes, self-healing
- MAID (Massive Array of Idle Disks) "Write once, read occasionally"


. . .

- Degraded mode
 - RAID-5 (RAID-6 soon): large reconstruction time, fail during rebuild
- Hardware RAID vs software RAID vs "fake RAID" (in fw/driver)

Erasure coding – Data protection

- Data protection is trade-off
 - Storage overhead
 - Reconstruction cost
 - Reliability
 - Still active research ...

Generic Storage Concepts Virtualization

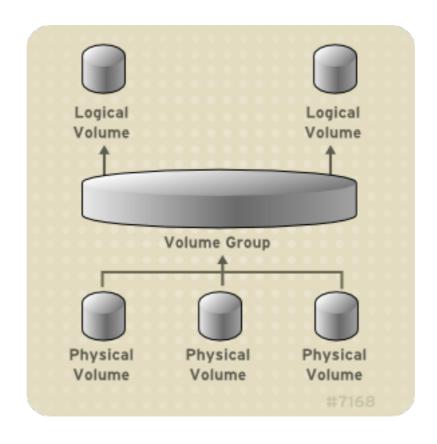
Storage Pool

Storage pool

Set of disks, blocks, ... allocatable area for data

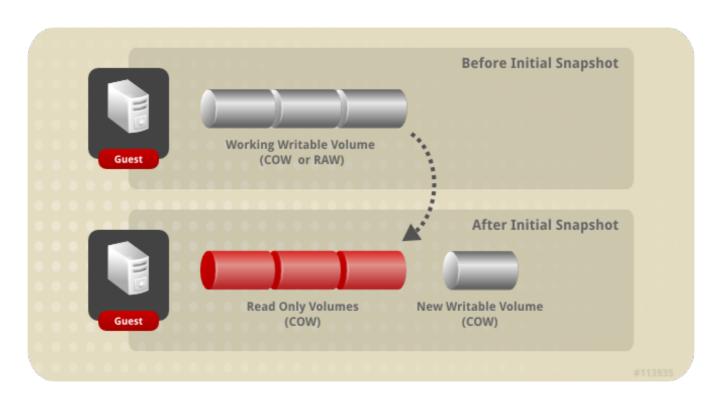
Pre-allocated

Partition table, logical volume in Logical Volume Manager


On-demand allocated

- Thin provisioning (only blocks in use are allocated)
- Flexible allocation
- Used in snapshots
- Possible over-allocation (sharing "unallocated" space)

Storage Pool Example


Volume Group Logical Volume Manager (LVM)

Snapshots

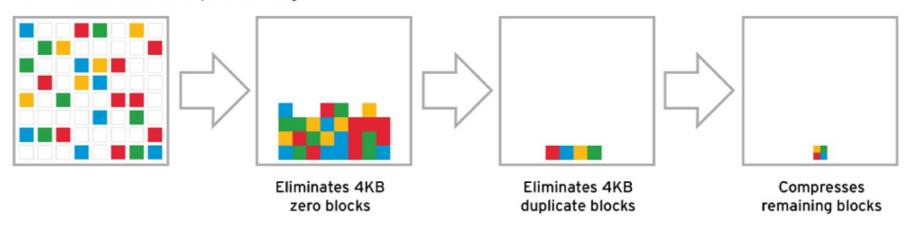
- Snapshot of storage in specific time
 - Allows quick revert to older state (recovery)
- Copy on (first) Write (COW/COFW) principle
 - Delayed copy to snapshot (before origin write)
 - Write to origin => need to copy the changed block first

Templates

Template

- Application of deduplication + snapshots (+ thin provisioning)
- Virtual machine template
 - Base operating system
 - Common configuration (networking, firewall, ...)
 - Common applications (webservers, user packages, ...)
- One base image, only changes are stored
- Application containers + template
 - Used in Docker

Deduplication / Compression


Deduplication

- Avoid to store repeated data
- File or block level
- Space-efficient, stateless mode
- Deduplication performance
- Data corruption amplification

Compression

- More generic algorithms
- Special case: zeroed blocks

VDO data reduction processing

Performance

Tiered storage

- Several layers of storage in one chain
- Different performace, availability, recovery requirements
- Cache (REST API)

Virtualization of drivers

• virtio, pass-through device

Generic Storage Concepts Distributed Storage

Distributed storage

Clustered

Cooperating nodes

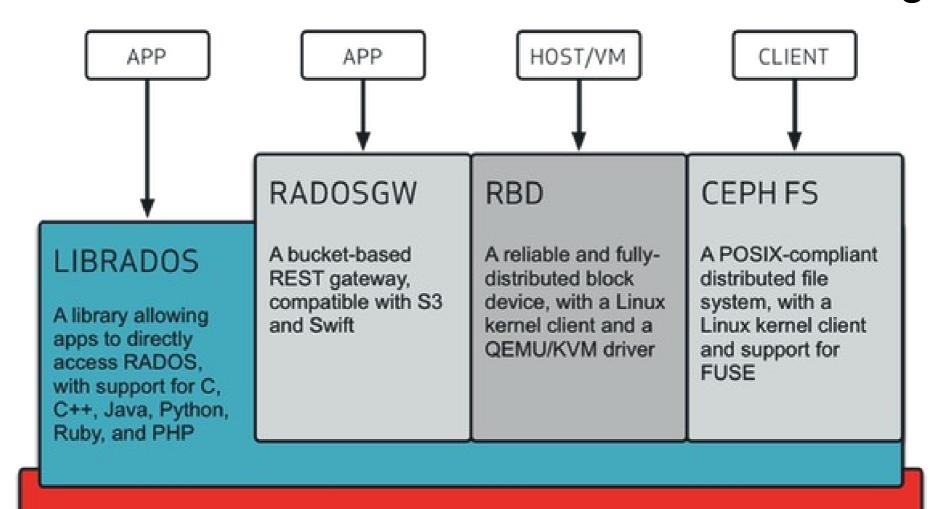
Distributed

Storage + network

Distributed storage transparency

- Access (same as local)
- Location (any node)
- Failure (self-healing)

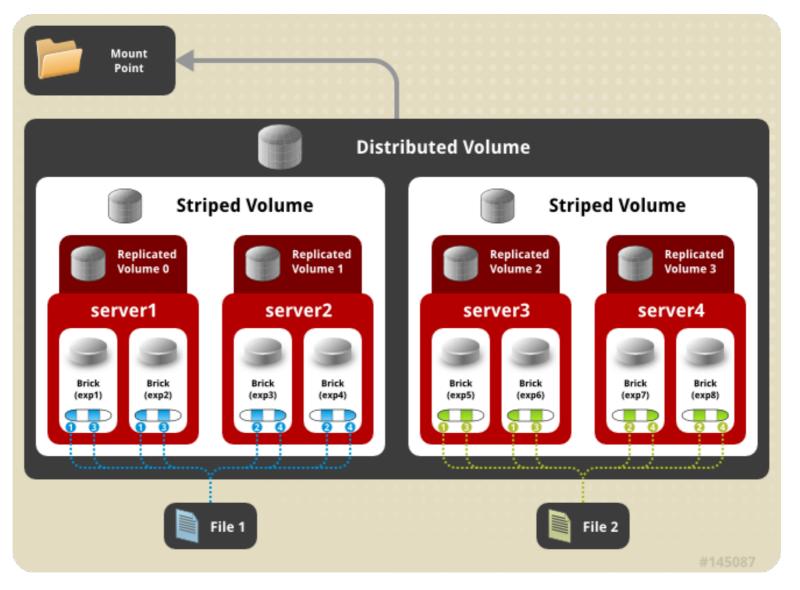
Distributed storage


Distributed storage examples

- Ceph, GlusterFS (Red Hat)
- General Parallel File System GPFS (IBM)
- Hadoop File-System HDFS (Apache)
- Windows Distributed File-System (Microsoft)
- GoogleFS / GFS (Google)
- Isilon (EMC²)

. . .

CEPH – Distributed storage


RADOS

A reliable, autonomic, distributed object store comprised of self-healing, self-managing, intelligent storage nodes

GlusterFS – Distributed storage

Example of access of **GlusterFS** resources

Generic Storage Concepts Security

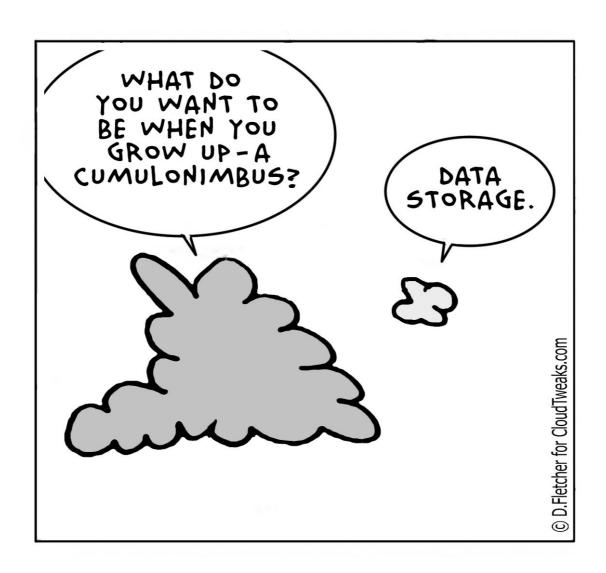
Security

- Security policies
- Confidentiality
 - Storage encryption (at-rest)
 - Data connection encryption (in-transit)
 - Key management
- Authentication
- **Integrity** (authenticated encryption)
- Access control, permissions
- Secure data disposal / destruction
- Audit

Cloud Storage Encryption

Encryption on client side

- "End-to-End" encryption
- Lost Efficiency for deduplication/compression


Encryption on server side

 Partially lost confidentiality for clients (server has access to decrypted data)

Data at-rest - combination of ...

- Full disk encryption
- Filesystem encryption
- Object store encryption

Questions?

