
Operating Systems

Petr Ročkai

OperaƟng Systems 2/746 Preliminaries

Organisation

• lectures only, no seminar

• written exam at the end

− multiple choice

− free-form questions

• 1 online test mid-term, 1 before exam

− mainly training for the exam proper

OperaƟng Systems 3/746 Preliminaries

Mid-Term and End-Term Tests

• 24 hours to complete, 2 attempts possible

• 10 questions, picked from review questions

− mid-term ϐirst 24, end-term second 24

• you need to pass either mid-term or end-term

• 7 out of 10 required for mid-term, 8 of 10 for end-term

• preliminary mid-term date: 18th of April, 4pm

OperaƟng Systems 4/746 Preliminaries

Study Materials

• this course is undergoing a major update

• lecture slides will be in the IS

− they will be added as we go

• you can also use slides from previous years

− they are already in study materials

− but: not everything is covered in those

OperaƟng Systems 5/746 Preliminaries

Books

• there are a few good OS books

• you are encouraged to get and read them

• A. Tanenbaum: Modern Operating Systems

• A. Silberschatz et al.: Operating System Concepts

• L. Skočovský: Principy a problémy OS UNIX

• W. Stallings: Operating Systems, Internals and Design

• many others, feel free to explore

OperaƟng Systems 6/746 Preliminaries

Topics

1. Anatomy of an OS

2. System Libraries and APIs

3. The Kernel

4. File Systems

5. Basic Resources and Multiplexing

6. Concurrency and Locking

OperaƟng Systems 7/746 Preliminaries

Topics (cont’d)

7. Device Drivers

8. Network Stack

9. Command Interpreters & User Interfaces

10. Users and Permissions

11. Virtualisation & Containers

12. Special-Purpose Operating Systems

OperaƟng Systems 8/746 Preliminaries

Related Courses

• PB150/PB151 Computer Systems

• PB153 Operating Systems and their Interfaces

• PA150 Advanced OS Concepts

• PV062 File Structures

• PB071 Principles of Low-level programming

• PB173 Domain-speciϐic Development in C/C++

OperaƟng Systems 9/746 Preliminaries

Organisation of the Semester

• generally, one lecture = one topic

• 30th of March is a state holiday

• a 50-minute review in the last lecture

• online mid-term ϐirst week in April

Part 1: Semester Overview

OperaƟng Systems 11/746 Semester Overview

2. System Libraries and APIs

• POSIX: Portable Operating System Interface

• UNIX: (almost) everything is a ϐile

• the least common denominator of programs: C

• user view: objects, archives, shared libraries

• compiler, linker

OperaƟng Systems 12/746 Semester Overview

3. The Kernel

• privileged CPU mode

• the boot process

• boundary enforcement

• kernel designs: micro, mono, exo,…

• system calls

OperaƟng Systems 13/746 Semester Overview

4. File Systems

• why and how

• abstraction over shared block storage

• directory hierarchy

• everything is a ϐile revisited

• i-nodes, directories, hard & soft links

OperaƟng Systems 14/746 Semester Overview

5. Basic Resources and Multiplexing

• virtual memory, processes

• sharing CPUs & scheduling

• processes vs threads

• interrupts, clocks

OperaƟng Systems 15/746 Semester Overview

6. Concurrency and Locking

• inter-process communication

• accessing shared resources

• mutual exclusion

• deadlocks and deadlock prevention

OperaƟng Systems 16/746 Semester Overview

7. Device Drivers

• user vs kernel drivers

• interrupts &c.

• GPU

• PCI &c.

• block storage

• network devices, wiϐi

• USB

• bluetooth

OperaƟng Systems 17/746 Semester Overview

8. Network Stack

• TCP/IP

• name resolution

• socket APIs

• ϐirewalls and packet ϐilters

• network ϐile systems

OperaƟng Systems 18/746 Semester Overview

9. Command Interpreters & User Interfaces

• interactive systems

• history: consoles and terminals

• text-based terminals, RS-232

• bash and other Bourne-style shells, POSIX

• graphical: X11, Wayland, OS X, Windows, Android, iOS

OperaƟng Systems 19/746 Semester Overview

10. Users and Permissions

• multi-user systems

• isolation, ownership

• ϐile system permissions

• capabilities

OperaƟng Systems 20/746 Semester Overview

11. Virtualisation & Containers

• resource multiplexing redux

• isolation redux

• multiple kernels on a single system

• type 1 and type 2 hypervisors

• virtio

OperaƟng Systems 21/746 Semester Overview

12. Special-Purpose Operating Systems

• general-purpose vs special-purpose

• embedded systems

• real-time systems

• high-assurance systems (seL4)

Part 2: Anatomy of an OS

OperaƟng Systems 23/746 Anatomy of an OS

What is an OS?

• the software that makes the hardware tick

• and makes other software easier to write

Also

• catch-all phrase for low-level software

• an abstraction layer over the machine

• but the boundaries are not always clear

OperaƟng Systems 24/746 Anatomy of an OS

What is not (part of) an OS?

• ϐirmware: (very) low level software

− much more hardware-speciϐic than an OS

− often executes on auxiliary processors

• application software

− runs on top of an operating system

− this is what you got the computer for

− eg. games, spreadsheets, photo editing,…

OperaƟng Systems 25/746 Anatomy of an OS

Operating Systems: Examples

• Microsoft Windows

• Apple macOS & iOS

• Google Android

• Linux

• FreeBSD, OpenBSD

• MINIX

• many, many others

OperaƟng Systems 26/746 Anatomy of an OS

What does an OS do?

• interact with the user

• manage and multiplex hardware

• manage other software

• organises and manages data

• provides services for other programs

• enforces security

OperaƟng Systems 27/746 Anatomy of an OS

What is an OS made of?

• the kernel

• system libraries

• system daemons / services

• user interface

• system utilities

Basically every OS has those.

OperaƟng Systems 28/746 Anatomy of an OS

The Kernel

• lowest level of an operating system

• executes in privileged mode

• manages all the other software

− including other OS components

• enforces isolation and security

• provides low-level services to programs

OperaƟng Systems 29/746 Anatomy of an OS

System Libraries

• form a layer above the OS kernel

• provide higher-level services

− use kernel services behind the scenes

− easier to use than the kernel interface

• typical example: libc

− provides C functions like printf

− also known as msvcrt on Windows

OperaƟng Systems 30/746 Anatomy of an OS

System Daemons

• programs that run in the background

• they either directly provide services

− but daemons are different from libraries

− we will learn more in later lectures

• or perform maintenance or periodic tasks

• or perform tasks requested by the kernel

OperaƟng Systems 31/746 Anatomy of an OS

User Interface

• mediates user-computer interaction

• the main shell is typically part of the OS

− command line on UNIX or DOS

− graphical interfaces with a desktop and windows

− but also buttons on your microwave oven

• also building blocks for application UI

− buttons, tabs, text rendering, OpenGL…

− provided by system libraries and/or daemons

OperaƟng Systems 32/746 Anatomy of an OS

System Utilities

• small programs required for OS-related tasks

• e.g. system conϐiguration

− things like the registry editor on Windows

− or simple text editors

• ϐilesystemmaintenance, daemon management,…

− programs like ls/dir or newfs or fdisk

• also bigger programs, like ϐile managers

OperaƟng Systems 33/746 Anatomy of an OS

Optional Components

• bundled application software

− web browser, media player,…

• (3rd-party) software management

• a programming environment

− eg. a C compiler & linker

− C header ϐiles &c.

• source code

OperaƟng Systems 34/746 Anatomy of an OS

Programming Interface

• kernel provides system calls

− ABI: Application Binary Interface

− deϐined in terms of machine instructions

• system libraries provide APIs

− Application Programming Interface

− symbolic / high-level interfaces

− typically deϐined in terms of C functions

− system calls also available as an API

OperaƟng Systems 35/746 Anatomy of an OS

Message Passing

• APIs do not always come as C functions

• message-passing interfaces are possible

− based on inter-process communication

− possible even across networks

• form of API often provided by system daemons

− may be also wrapped by C APIs

OperaƟng Systems 36/746 Anatomy of an OS

General-Purpose Operating Systems

• suitable for use in most situations

• ϐlexible but complex and big

• run on both servers and clients

• cut down versions run on smartphones

• support variety of hardware

OperaƟng Systems 37/746 Anatomy of an OS

Special-Purpose Operating Systems

• embedded devices

− limited budget

− small, slow, power-constrained

− hard or impossible to update

• real-time systems

− must react to real-world events

− often safety-critical

− robots, autonomous cars, space probes,…

OperaƟng Systems 38/746 Anatomy of an OS

Size and Complexity

• operating systems are usually large and complex

• typically 100K and more lines of code

• 10+ million is quite possible

• many thousand man-years of work

• special-purpose systems are much smaller

OperaƟng Systems 39/746 Anatomy of an OS

Portability

• some OS tasks require close HW cooperation

− virtual memory and CPU setup

− platform-speciϐic device drivers

• but many do not

− scheduling algorithms

− memory allocation

− all sorts of management

• porting: changing aprogram to run in anewenvironment

− for an OS, typically new hardware

OperaƟng Systems 40/746 Anatomy of an OS

Hardware Platform

• CPU instruction set (ISA)

• busses, IO controllers

− PCI, USB, Ethernet,…

• ϐirmware, power management

Examples

• x86 (ISA) – PC (platform)

• ARM – Snapdragon, i.MX 6,…

• m68k – Amiga, Atari,…

OperaƟng Systems 41/746 Anatomy of an OS

Platform & Architecture Portability

• an OS typically supports many platforms

− Android on many different ARM SoC’s

• quite often also different CPU ISAs

− long tradition in UNIX-style systems

− NetBSD runs on 15 different ISAs

− many of them comprise 6+ different platforms

• special-purpose systems are usually less portable

OperaƟng Systems 42/746 Anatomy of an OS

Code Re-Use

• it makes a lot of sense to re-use code

• majority of OS code is HW-independent

• this was not always the case

− pioneered by UNIX, which was written in C

− typical OS of the time was in machine language

− porting was basically “writing again”

OperaƟng Systems 43/746 Anatomy of an OS

Application Portability

• applications care more about the OS than about HW

− apps are written in high-level languages

− and use system libraries extensively

• it is enough to port the OS to new/different HW

− most applications can be simply recompiled

• still a major hurdle (cf. Itanium)

OperaƟng Systems 44/746 Anatomy of an OS

Application Portability (2)

• same application can often run on many OSes

• especially within the POSIX family

• but same app can run onWindows, macOS, UNIX,…

− Java, Qt (C++)

− web applications (HTML, JavaScript)

• many systems provide the same set of services

− differences are mostly in programming interfaces

− high-level libraries and languages can hide those

OperaƟng Systems 45/746 Anatomy of an OS

Abstraction

• instruction sets abstract over CPU details

• compilers abstract over instruction sets

• operating systems abstract over hardware

• portable runtimes abstract over operating systems

• applications sit on top of the abstractions

OperaƟng Systems 46/746 Anatomy of an OS

Abstraction Costs

• more complexity

• less efϐiciency

• leaky abstractions

Abstraction Beneϐits

• easier to write and port software

• fewer constraints on HW evolution

OperaƟng Systems 47/746 Anatomy of an OS

Abstraction Trade-Offs

• powerful hardware allows more abstraction

• embedded or real-time systems not so much

− the OS is smaller & less portable

− same for applications

− more efϐicient use of resources

OperaƟng Systems 48/746 Anatomy of an OS

Kernel Revisited

• bugs in the kernel are very bad

− system crashes, data loss

− critical security problems

• bigger kernel means more bugs

• third-party drivers inside the kernel?

OperaƟng Systems 49/746 Anatomy of an OS

Monolithic Kernels

• lot of code in the kernel

• less abstraction, less isolation

• faster and more efϐicient

Microkernels

• move as much as possible out of kernel

• more abstraction, more isolation

• slower and less efϐicient

OperaƟng Systems 50/746 Anatomy of an OS

Paradox?

• real-time & embedded systems often use microkernels

• isolation is good for reliability

• efϐiciency also depends on the workload

− throughput vs latency

• real-time does not necessarily mean fast

OperaƟng Systems 51/746 Anatomy of an OS

Review Questions

1. What are the roles of an operating system?

2. What are the basic components of an OS?

3. What is an operating system kernel?

4. What is an Application Programming Interface?

Part 3: System Libraries and APIs

OperaƟng Systems 53/746 System Libraries and APIs

Programming Interfaces

• kernel system call interface

• system libraries / APIs

• inter-process protocols

• command-line utilities (scripting)

OperaƟng Systems 54/746 System Libraries and APIs

Lecture Overview

1. The C Programming Language

2. System Libraries

− what is a library?

− header ϐiles & libraries

3. Compiler & Linker

− object ϐiles, executables

4. File-based APIs

OperaƟng Systems 55/746 System Libraries and APIs

Sidenote: UNIX and POSIX

• we will mostly use those terms interchangeably

• it is a family of operating systems

− started in late 60s / early 70s

• POSIX is a speciϐication

− a document describing what the OS should provide

− including programming interfaces

Wewill assume POSIX unless noted otherwise

Part 3.1: The C Programming Language

OperaƟng Systems 57/746 System Libraries and APIs

Programming Languages

• there are many different languages

− C, C++, Java, C#,…

− Python, Perl, Ruby,…

− ML, Haskell, Agda,…

• but C has a special place in most OSes

OperaƟng Systems 58/746 System Libraries and APIs

C: The Least Common Denominator

• except for assembly, C is the “bare minimum”

• you can almost think of C as portable assembly

• it is very easy to call C functions

• and to use C data structures

You can use C libraries in almost every language

OperaƟng Systems 59/746 System Libraries and APIs

The Language of Operating Systems

• many (most) kernels are written in C

• this usually extends to system libraries

• and sometimes to almost the entire OS

• non-C operating systems provide C APIs

Part 3.2: System Libraries

OperaƟng Systems 61/746 System Libraries and APIs

(System) Libraries

• mainly C functions and data types

• interfaces deϐined in header ϐiles

• deϐinitions provided in libraries

− static libraries (archives): libc.a

− shared (dynamic) libraries: libc.so

• on Windows: msvcrt.lib and msvcrt.dll

• there are (many) more besides libc / msvcrt

OperaƟng Systems 62/746 System Libraries and APIs

Declaration: what but not how

int sum(int a, int b);

Deϐinition: how is the operation done?

int sum(int a, int b)

{

return a + b;

}

OperaƟng Systems 63/746 System Libraries and APIs

Library Files

• /usr/lib on most Unices

− may be mixed with application libraries

− especially on Linux-derived systems

− also /usr/local/lib for user/app libraries

• on Windows: C:\Windows\System32

− user libraries often bundled with programs

OperaƟng Systems 64/746 System Libraries and APIs

Static Libraries

• stored in libfile.a, or file.lib (Windows)

• only needed for compiling (linking) programs

• the code is copied into the executable

• the resulting executable is also called static

− and is easier to work with for the OS

− but also more wasteful

OperaƟng Systems 65/746 System Libraries and APIs

Shared (Dynamic) Libraries

• required for running programs

• linking is done at execution time

• less code duplication

• can be upgraded separately

• but: dependency problems

OperaƟng Systems 66/746 System Libraries and APIs

Header Files

• on UNIX: /usr/include

• contains prototypes of C functions

• and deϐinitions of C data structures

• required to compile C and C++ programs

OperaƟng Systems 67/746 System Libraries and APIs

Header Example 1 (from unistd.h)

int execv(char *, char **);

pid_t fork(void);

int pipe(int *);

ssize_t read(int, void *, size_t);

(and many more prototypes)

OperaƟng Systems 68/746 System Libraries and APIs

Header Example 2 (from sys/time.h)

struct timeval

{

time_t tv_sec;

long tv_usec;

};

/* ... */

int gettimeofday(timeval *, timezone *);

int settimeofday(timeval *, timezone *);

OperaƟng Systems 69/746 System Libraries and APIs

The POSIX C Library

• libc – the C runtime library

• contains ISO C functions

− printf, fopen, fread

• and a number of POSIX functions

− open, read, gethostbyname,…

− C wrappers for system calls

OperaƟng Systems 70/746 System Libraries and APIs

System Calls: Numbers

• system calls are performed at machine level

• which syscall to perform is decided by a number

− e.g. SYS_write is 4 on OpenBSD

− numbers deϐined by sys/syscall.h

− different for each OS

OperaƟng Systems 71/746 System Libraries and APIs

System Calls: the syscall function

• there is a C function called syscall

− prototype: int syscall(int number, ...)

• this implements the low-level syscall sequence

• it takes a syscall number and syscall parameters

− this is a bit like printf

− ϐirst parameter decides what other parameters there

are

• (more about how syscall()works next week)

OperaƟng Systems 72/746 System Libraries and APIs

System Calls: Wrappers

• using syscall() directly is inconvenient

• libc has a function for each system call

− SYS_write int write(int, char *, size_t)

− SYS_open int open(char *, int)

− and so on and so forth

• those wrappers use syscall() internally

OperaƟng Systems 73/746 System Libraries and APIs

Portability

• libraries provide an abstraction layer over OS internals

• they are responsible for application portability

− along with standardised ϐilesystem locations

− and user-space utilities to some degree

• higher-level languages rely on system libraries

OperaƟng Systems 74/746 System Libraries and APIs

NeXT and Objective C

• the NeXT OS was built around Objective C

• system libraries had ObjC APIs

• in API terms, ObjC is very different from C

− also very different from C++

− traditional OOP features (like Smalltalk)

• this has been partly inherited into macOS

− evolving into Swift

OperaƟng Systems 75/746 System Libraries and APIs

System Libraries: UNIX

• the math library libm

− implements math functions like sin and exp

• thread library libpthread

• terminal access: libcurses

• cryptography: libcrypto (OpenSSL)

• the C++ standard library libstdc++ or libc++

OperaƟng Systems 76/746 System Libraries and APIs

System Libraries: Windows

• msvcrt.dll – the ISO C functions

• kernel32.dll – basic OS APIs

• gdi32.dll – Graphics Device Interface

• user32.dll – standard GUI elements

OperaƟng Systems 77/746 System Libraries and APIs

Documentation

• manual pages on UNIX

− try e.g. man 2 write on aisa.fi.muni.cz

− section 2: system calls

− section 3: library functions (man 3 printf)

• MSDN for Windows

− https://msdn.microsoft.com

• you can learn a lot from those sources

Part 3.3: Compiler & Linker

OperaƟng Systems 79/746 System Libraries and APIs

C Compiler

• many POSIX systems ship with a C compiler

• the compiler takes a C source ϐile as input

− a text ϐile with a .c sufϐix

• and produces an object ϐile as its output

− binary ϐile with machine code in it

− but cannot be directly executed

OperaƟng Systems 80/746 System Libraries and APIs

Object Files

• contain native machine (executable) code

• along with static data

− e.g. string literals used in the program

• possibly split into a number of sections

− .text, .rodata, .data and so on

• and metadata

− list of symbols (function names) and their addresses

OperaƟng Systems 81/746 System Libraries and APIs

Object File Formats

• a.out – earliest UNIX object format

• COFF – Common Object File Format

− adds support for sections over a.out

• PE – Portable Executable (MSWindows)

• Mach-O – Mach Microkernel Executable (macOS)

• ELF–Executable andLinkableFormat (allmodernUnices)

OperaƟng Systems 82/746 System Libraries and APIs

Archives (Static Libraries)

• static libraries on UNIX are called archives

• this is why they get the .a sufϐix

• they are like a zip ϐile full of object ϐiles

• plus a table of symbols (function names)

OperaƟng Systems 83/746 System Libraries and APIs

Linker

• object ϐiles are incomplete

• they can refer to symbols that they do not deϐine

− the deϐinitions can be in libraries

− or in other object ϐiles

• a linker puts multiple object ϐiles together

− to produce a single executable

− or maybe a shared library

OperaƟng Systems 84/746 System Libraries and APIs

Symbols vs Addresses

• we use symbolic names to call functions &c.

• but the callmachine instruction needs an address

• the executable will eventually live in memory

• data and instructions need to be given addresses

• what a linker does is assign those addresses

OperaƟng Systems 85/746 System Libraries and APIs

Resolving Symbols

• the linker processes one object ϐile at a time

• it maintains a symbol table

− mapping symbols (names) to addresses

− dynamically updated as more objects are processed

• objects can only use symbols already in the table

• resolving symbols = ϐinding their addresses

OperaƟng Systems 86/746 System Libraries and APIs

Executable

• ϐinished image of a program to be executed

• usually in the same format as object ϐiles

• but already complete, with symbols resolved

− but: may use shared libraries

− in that case, some symbols remain unresolved

OperaƟng Systems 87/746 System Libraries and APIs

Shared Libraries

• each shared library only needs to be in memory once

• shared libraries use symbolic names (like object ϐiles)

• there is a “mini linker” in the OS to resolve those names

− usually known as a runtime linker

− resolving = ϐinding the addresses

• shared libraries can use other shared libraries

− they can form a DAG (Directed Acyclic Graph)

OperaƟng Systems 88/746 System Libraries and APIs

Addresses Revisited

• when you run a program, it is loaded into memory

• parts of the program refer to other parts of the program

− this means they need to know where it will be loaded

− this is a responsibility of the linker

• shared libraries use position-independent code

− works regardless of the base address it is loaded at

− we won’t go into detail on how this is achieved

OperaƟng Systems 89/746 System Libraries and APIs

Compiler, Linker &c.

• the C compiler is usually called cc

• the linker is known as ld

• the archive (static library) manager is ar

• the runtime linker is often known as ld.so

Part 3.4: File-Based APIs

OperaƟng Systems 91/746 System Libraries and APIs

Everything is a File

• part of the UNIX design philosophy

• directories are ϐiles

• devices are ϐiles

• pipes are ϐiles

• network connections are (almost) ϐiles

OperaƟng Systems 92/746 System Libraries and APIs

Why is Everything a File

• re-use the comprehensive ϐile system API

• re-use existing ϐile-based command-line tools

• bugs are bad simplicity is good

• want to print? cat file.txt > /dev/ulpt0

− (reality is a little more complex)

OperaƟng Systems 93/746 System Libraries and APIs

What is a Filesystem?

• a set of ϐiles and directories

• usually lives on a single block device

− but may also be virtual

• directories and ϐiles form a tree

− directories are internal nodes

− ϐiles are leaf nodes

OperaƟng Systems 94/746 System Libraries and APIs

File Paths

• ϐilesystems use paths to point at ϐiles

• a string with / as a directory delimiter

− the delimiter is \ on Windows

• a leading / indicates the ϐilesystem root

• e.g. /usr/include

OperaƟng Systems 95/746 System Libraries and APIs

The File Hierarchy

/

usrvarhome

include lib

unistd.hstdio.h libc.a libm.a

xrockai

OperaƟng Systems 96/746 System Libraries and APIs

The Role of Files and Filesystems

• very central in Plan9

• central in most UNIX systems

− cf. Linux pseudo-ϐilesystems

− /proc provides info about all processes

− /sys gives info about the kernel and devices

• somewhat reduced in Windows

• quite suppressed in Android (and more on iOS)

OperaƟng Systems 97/746 System Libraries and APIs

The Filesystem API

• you open a ϐile (using the open() syscall)

• you can read() and write() data

• you close() the ϐile when you are done

• you can rename() and unlink() ϐiles

• you can use mkdir() to create directories

OperaƟng Systems 98/746 System Libraries and APIs

File Descriptors

• the kernel keeps a table of open ϐiles

• the ϐile descriptor is an index into this table

• you do everything using ϐile descriptors

• non-Unix systems have similar concepts

− descriptors are called handles on Windows

OperaƟng Systems 99/746 System Libraries and APIs

Regular ϐiles

• these contain sequential data (bytes)

• may have inner structure but the OS does not care

• there is metadata attached to ϐiles

− like when were they last modiϐied

− who can and who cannot access the ϐile

• you read() and write() ϐiles

OperaƟng Systems 100/746 System Libraries and APIs

Directories

• a list of ϐiles and other directories

− internal nodes of the ϐilesystem tree

− directories give names to ϐiles

• can be opened just like ϐiles

− but read() and write() is not allowed

− ϐiles are created with open() or creat()

− directories with mkdir()

− directory listing with opendir() and readdir()

OperaƟng Systems 101/746 System Libraries and APIs

Mounts

• UNIX joins all ϐile systems into a single hierarchy

• the root of one ϐilesystem becomes a directory in another

− this is called a mount point

• Windows uses drive letters instead (C:, D: &c.)

OperaƟng Systems 102/746 System Libraries and APIs

Devices

• block and character devices are (special) ϐiles

• block devices are accessed one block at a time

− a typical block device would be a disk

− includes USB mass storage, ϐlash storage, etc

− you can create a ϐile system on a block device

• character devices are more like normal ϐiles

− terminals, tapes, serial ports, audio devices

OperaƟng Systems 103/746 System Libraries and APIs

Pipes

• pipes are a simple communication device

• one program can write() data to the pipe

• another program can read() that same data

• each end of the pipe gets a ϐile descriptor

• a pipe can live in the ϐilesystem (named pipe)

OperaƟng Systems 104/746 System Libraries and APIs

Sockets

• the socket API comes from early BSD Unix

• socket represents a (possible) network connection

• sockets are more complicated than normal ϐiles

− establishing connections is hard

− messages get lost much more often than ϐile data

• you get a ϐile descriptor for an open socket

• you can read() and write() to sockets

OperaƟng Systems 105/746 System Libraries and APIs

Socket Types

• sockets can be internet or unix domain

− internet sockets connect to other computers

− Unix sockets live in the ϐilesystem

• sockets can be stream or datagram

− stream sockets are like ϐiles

− you can write a continuous stream of data

− datagram sockets can send individual messages

OperaƟng Systems 106/746 System Libraries and APIs

Review Questions

5. What is a shared (dynamic) library?

6. What does a linker do?

7. What is a symbol in an object ϐile?

8. What is a ϐile descriptor?

Part 4: The Kernel

OperaƟng Systems 108/746 The Kernel

Lecture Overview

1. privileged mode

2. booting

3. kernel architecture

4. system calls

5. kernel-provided services

OperaƟng Systems 109/746 The Kernel

Reminder: Software Layering

• the kernel

• system libraries

• system services / daemons

• utilities

• application software

Part 4.1: Privileged Mode

OperaƟng Systems 111/746 The Kernel

CPU Modes

• CPUs provide a privileged (supervisor) and a user mode

• this is the case with all modern general-purpose CPUs

− not necessarily with micro-controllers

• x86 provides 4 distinct privilege levels

− most systems only use ring 0 and ring 3

− Xen paravirtualisation uses ring 1 for hosted kernels

OperaƟng Systems 112/746 The Kernel

Privileged Mode

• many operations are restricted in user mode

− this is how user programs are executed

− also most of the operating system

• software running in privileged mode can do ~anything

− most importantly it can program the MMU

− the kernel runs in this mode

OperaƟng Systems 113/746 The Kernel

Memory Management Unit

• is a subsystem of the processor

• takes care of address translation

− user software uses virtual addresses

− the MMU translates them to physical addresses

• the mappings can be managed by the OS kernel

OperaƟng Systems 114/746 The Kernel

Paging

• physical memory is split into frames

• virtual memory is split into pages

• pages and frames have the same size (usually 4KiB)

• frames are places, pages are the content

• page tables map between pages and frames

OperaƟng Systems 115/746 The Kernel

Swapping Pages

• RAM used to be a scarce resource

• paging allows the OS to move pages out of RAM

− a page (content) can be written to disk

− and the frame can be used for another page

• not as important with contemporary hardware

• useful for memory mapping ϐiles (cf. next lecture)

OperaƟng Systems 116/746 The Kernel

Look Ahead: Processes

• process is primarily deϐined by its address space

− address space meaning the valid virtual addresses

• this is implemented via the MMU

• when changing processes, a different page table is loaded

− this is called a context switch

• the page table deϐines what the process can see

OperaƟng Systems 117/746 The Kernel

Memory Maps

• different view of the same principles

• the OS maps physical memory into the process

• multiple processes can have the same RAM area mapped

− this is called shared memory

• often, a piece of RAM is only mapped in a single process

OperaƟng Systems 118/746 The Kernel

Page Tables

• the MMU is programmed using translation tables

− those tables are stored in RAM

− they are usually called page tables

• and they are fully in the management of the kernel

• the kernel can ask the MMU to replace the page table

− this is how processes are isolated from each other

OperaƟng Systems 119/746 The Kernel

Kernel Protection

• kernel memory is usually mapped into all processes

− this substantially improvesperformanceonmanyCPUs

− well, until Meltdown hit us, anyway

• kernel pages have a special ‘supervisor’ ϐlag set

− code executing in user mode cannot touch them

− else, user code could tamper with kernel memory

Part 4.2: Booting

OperaƟng Systems 121/746 The Kernel

Starting the OS

• upon power on the system is in a default state

− mainly because RAM is volatile

• the entire platform needs to be initialised

− this is ϐirst and foremost the CPU

− and the console hardware (keyboard, monitor,…)

− then the rest of the devices

OperaƟng Systems 122/746 The Kernel

Boot Process

• the process starts with a built-in hardware init

• when ready, the hardware hands off to the ϐirmware

− this was BIOS on 16 and 32 bit systems

− replaced with EFI on current amd64 platforms

• the ϐirmware then loads a bootloader

• the bootloader loads the kernel

OperaƟng Systems 123/746 The Kernel

Boot Process (cont’d)

• the kernel then initialises device drivers

• and the root ϐilesystem

• then it hands off to the init process

• at this point, the user space takes over

OperaƟng Systems 124/746 The Kernel

User-mode Initialisation

• initmounts the remaining ϐile systems

• the init process starts up user-mode system services

• then it starts application services

• and ϐinally the login process

OperaƟng Systems 125/746 The Kernel

After Log-In

• the login process initiates the user session

• loads desktop modules and application software

• drops the user in a (text or graphical) shell

• now you can start using the computer

OperaƟng Systems 126/746 The Kernel

CPU Init

• this depends on both architecture and platform

• on x86, the CPU starts in 16-bit mode

• on legacy systems, BIOS & bootloader stay in this mode

• thekernel then switches toprotectedmodeduring its boot

OperaƟng Systems 127/746 The Kernel

Bootloader

• historically limited to tens of kilobytes of code

• the bootloader locates the kernel on disk

− it often allows the operator to choose different kernels

− limited understanding of ϐile systems

• then it loads the kernel image into RAM

• and hands off control to the kernel

OperaƟng Systems 128/746 The Kernel

Modern Booting on x86

• onmodern system, thebootloader runs inprotectedmode

− or even the long mode on 64-bit CPUs

• the ϐirmware understands the FAT ϐilesystem

− it can load ϐiles from there into memory

− this vastly simpliϐies the boot process

OperaƟng Systems 129/746 The Kernel

Booting ARM

• on ARM boards, there is no uniϐied ϐirmware interface

• U-boot is as close as one gets to uniϐication

• the bootloader needs low-level hardware knowledge

• this makes writing bootloaders for ARM quite tedious

• current U-boot can use the EFI protocol from PCs

Part 4.3: Kernel Architecture

OperaƟng Systems 131/746 The Kernel

Architecture Types

• monolithic kernels (Linux, *BSD)

• microkernels (Mach, L4, QNX, NT,…)

• hybrid kernels (macOS)

• type 1 hypervisors (Xen)

• exokernels, rump kernels

OperaƟng Systems 132/746 The Kernel

Microkernel

• handles memory protection

• (hardware) interrupts

• task / process scheduling

• message passing

• everything else is separate

OperaƟng Systems 133/746 The Kernel

Monolithic kernels

• all that a microkernel does

• plus device drivers

• ϐile systems, volume management

• a network stack

• data encryption,…

OperaƟng Systems 134/746 The Kernel

Microkernel Redux

• we need a lot more than a microkernel provides

• in a “true” microkernel OS, there are many modules

• each device driver runs in a separate process

• the same for ϐile systems and networking

• those modules / processes are called servers

OperaƟng Systems 135/746 The Kernel

Hybrid Kernels

• based around a microkernel

• and a gutted monolithic kernel

• the monolithic kernel is a big server

− takes care of stuff not handled by the microkernel

− easier to implement than true microkernel OS

− strikes middle ground on performance

OperaƟng Systems 136/746 The Kernel

Micro vs Mono

• microkernels are more robust

• monolithic kernels are more efϐicient

− less context switching

• what is easier to implement is debatable

− in the short view, monolithic wins

• hybrid kernels are a compromise

OperaƟng Systems 137/746 The Kernel

Exokernels

• smaller than a microkernel

• much fewer abstractions

− applications only get block storage

− networking is much reduced

• only research systems exist

OperaƟng Systems 138/746 The Kernel

Type 1 Hypervisors

• also known as bare metal or native hypervisors

• they resemble microkernel operating systems

− or exokernels, depending on the viewpoint

• the “applications” for a hypervisor are operating systems

− hypervisor can use coarser abstractions than an OS

− entire storage devices instead of a ϐilesystem

OperaƟng Systems 139/746 The Kernel

Unikernels

• kernels for running a single application

− makes little sense on real hardware

− but can be very useful on a hypervisor

• bundle applications as virtual machines

− without the overhead of a general-purpose OS

OperaƟng Systems 140/746 The Kernel

Exo vs Uni

• an exokernel runs multiple applications

− includes process-based isolation

− but abstractions are very bare-bones

• unikernel only runs a single application

− provides more-or-less standard services

− e.g. standard hierarchical ϐile system

− socket-based network stack / API

Part 4.4: System Calls

OperaƟng Systems 142/746 The Kernel

Reminder: Kernel Protection

• kernel executes in privileged mode of the CPU

• kernel memory is protected from user code

But: Kernel Services

• user code needs to ask kernel for services

• how do we switch the CPU into privileged mode?

• cannot be done arbitrarily (security)

OperaƟng Systems 143/746 The Kernel

System Calls

• hand off execution to a kernel routine

• pass arguments into the kernel

• obtain return value from the kernel

• all of this must be done safely

OperaƟng Systems 144/746 The Kernel

Trapping into the Kernel

• there are a few possible mechanisms

• details are very architecture-speciϐic

• in general, the kernels sets a ϐixed entry address

− an instruction can change theCPU intoprivilegedmode

− while at the same time jumping to this address

OperaƟng Systems 145/746 The Kernel

Trap Example: x86

• there is an int instruction on those CPUs

• this is called a software interrupt

− interrupts are normally a hardware thing

− interrupt handlers run in privileged mode

• it is also synchronous

• the handler is set in IDT (interrupt descriptor table)

OperaƟng Systems 146/746 The Kernel

Software Interrupts

• those are available on a range of CPUs

• generally not very efϐicient for system calls

• extra level of indirection

− the handler address is retrieved frommemory

− a lot of CPU state needs to be saved

OperaƟng Systems 147/746 The Kernel

Aside: SW Interrupts on PCs

• those are used even in real mode

− legacy 16-bit mode of 80x86 CPUs

− BIOS (ϐirmware) routines via int 0x10 & 0x13

− MS-DOS API via int 0x21

• and on older CPUs in 32-bit protected mode

− Windows NT uses int 0x2e

− Linux uses int 0x80

OperaƟng Systems 148/746 The Kernel

Trap Example: amd64 / x86_64

• sysenter and syscall instructions

− and corresponding sysexit / sysret

• the entry point is stored in a machine state register

• there is only one entry point

− unlike with software interrupts

• quite a bit faster than interrupts

OperaƟng Systems 149/746 The Kernel

Which System Call?

• often there are many system calls

− there are more than 300 on 64-bit Linux

− about 400 on 32-bit Windows NT

• but there is only a handful of interrupts

− and only one sysenter address

OperaƟng Systems 150/746 The Kernel

Reminder: System Call Numbers

• each system call is assigned a number

• available as SYS_write &c. on POSIX systems

• for the “universal” int syscall(int sys, ...)

• this number is passed in a CPU register

OperaƟng Systems 151/746 The Kernel

System Call Sequence

• ϐirst, libc prepares the system call arguments

• and puts the system call number in the correct register

• then the CPU is switched into privileged mode

• this also transfers control to the syscall handler

OperaƟng Systems 152/746 The Kernel

System Call Handler

• the handler ϐirst picks up the system call number

• and decides where to continue

• you can imagine this as a giant switch statement

switch (sysnum)

{

case SYS_write: return syscall_write();

case SYS_read: return syscall_read();

/* many more */

}

OperaƟng Systems 153/746 The Kernel

System Call Arguments

• each system call has different arguments

• how they are passed to the kernel is CPU-dependent

• on 32-bit x86, most of them are passed in memory

• on amd64 Linux, all arguments go into registers

− 6 registers available for arguments

Part 4.5: Kernel Services

OperaƟng Systems 155/746 The Kernel

What does a Kernel Do?

• memory & process management

• task (thread) scheduling

• device drivers

− SSDs, GPUs, USB, bluetooth, HID, audio,…

• ϐile systems

• networking

OperaƟng Systems 156/746 The Kernel

Additional Services

• inter-process communication

• timers and time keeping

• process tracing, proϐiling

• security, sandboxing

• cryptography

OperaƟng Systems 157/746 The Kernel

Reminder: Microkernel Systems

• the kernel proper is very small

• it is accompanied by servers

• in “true” microkernel systems, there are many servers

− each device, ϐilesystem, etc. is separate

• in hybrid systems, there is one, or a few

− a “superserver” that resembles a monolithic kernel

OperaƟng Systems 158/746 The Kernel

Kernel Services

• we usually don’t care which server provides what

− each system is different

− for services, we take a monolithic view

• the services are used through system librares

− they abstract away many of the details

− e.g. whether a service is a system call or an IPC call

OperaƟng Systems 159/746 The Kernel

User-Space Drivers in Monolithic Systems

• not all device drivers are part of the kernel

• case in point: printer drivers

• also some USB devices (not the USB bus though)

• part of the GPU/graphics stack

− memory and output management in kernel

− most of OpenGL in user space

OperaƟng Systems 160/746 The Kernel

Review Questions

9. What CPU modes are there and how are they used?

10. What is the memory management unit?

11. What is a microkernel?

12. What is a system call?

Part 5: File Systems

OperaƟng Systems 162/746 File Systems

Lecture Overview

1. Filesystem Basics

2. The Block Layer

3. Virtual Filesystem Switch

4. The UNIX Filesystem

5. Advanced Features

Part 5.1: Filesystem Basics

OperaƟng Systems 164/746 File Systems

What is a File System?

• a collection of ϐiles and directories

• (mostly) hierarchical

• usually exposed to the user

• usually persistent (across reboots)

• ϐile managers, command line, etc.

OperaƟng Systems 165/746 File Systems

What is a (Regular) File?

• a sequence of bytes

• and some basic metadata

• owner, group, timestamp

• the OS does not care about the content

• text, images, video, source code are all the same

• executables are somewhat special

OperaƟng Systems 166/746 File Systems

What is a Directory?

• a list of name ϐile mappings

• an associative container if you will

− semantically, the value types are not homogeneous

− syntactically, they are just i-nodes

• one directory = one component of a path

− /usr/local/bin

OperaƟng Systems 167/746 File Systems

What is an i-node?

• an anonymous, ϐile-like object

• could be a regular ϐile

− or a directory

− or a special ϐile

− or a symlink

OperaƟng Systems 168/746 File Systems

Files are Anonymous

• this is the case with UNIX

− not all ϐile systems work like this

• there are pros and cons to this approach

− e.g. open ϐiles can be unlinked

• names are assigned via directory entries

OperaƟng Systems 169/746 File Systems

What Else is a Byte Sequence?

• characters coming from a keyboard

• bytes stored on a magnetic tape

• audio data coming from a microphone

• pixels coming from a webcam

• data coming on a TCP connection

OperaƟng Systems 170/746 File Systems

Writing Byte Sequences

• sending data to a printer

• playing back audio

• writing text to a terminal (emulator)

• sending data over a TCP stream

OperaƟng Systems 171/746 File Systems

Special Files

• many things look somewhat like ϐiles

• let’s exploit that and unify them with ϐiles

• recall part 2 on APIs: “everything is a ϐile”

− the API is the same for special and regular ϐiles

− not the implementation though

OperaƟng Systems 172/746 File Systems

File System Types

• fat16, fat32, vfat, exfat (DOS, ϐlash media)

• ISO 9660 (CD-ROMs)

• UDF (DVD-ROM)

• NTFS (Windows NT)

• HFS+ (macOS)

• ext2, ext3, ext4 (Linux)

• ufs, ffs (BSD)

OperaƟng Systems 173/746 File Systems

Multi-User Systems

• ϐile ownership

• ϐile permissions

• disk quotas

OperaƟng Systems 174/746 File Systems

Ownership & Permissions

• we assume a discretionary model

• whoever creates a ϐile is its owner

• ownership can be transferred

• the owner decides about permissions

− basically read, write, execute

OperaƟng Systems 175/746 File Systems

Disk Quotas

• disks are big but not inϐinite

• bad things happen when the ϐile system ϐills up

− denial of service

− programs may fail and even corrupt data

• quotas limits the amount of space per user

Part 5.2: The Block Layer

OperaƟng Systems 177/746 File Systems

Disk-Like Devices

• disk drives provide block-level access

• read and write data in 512-byte chunks

− or also 4K on big modern drives

• a big numbered array of blocks

OperaƟng Systems 178/746 File Systems

Aside: Disk Addressing Schemes

• CHS: Cylinder, Head, Sector

− structured adressing used in (very) old drives

− exposes information about relative seek times

− useless with variable-length cylinders

− 10:4:6 CHS = 1024 cylinders, 16 heads, 63 sectors

• LBA: Logical Block Addessing

− linear, unstructured address space

− started as 22, later 28,… now 48 bit

OperaƟng Systems 179/746 File Systems

Block-Level Access

• disk drivers only expose linear addressing

• one block (sector) is the minimum read/write size

• many sectors can be written “at once”

− sequential access is faster than random

− maximum throughput vs IOPS

OperaƟng Systems 180/746 File Systems

Aside: Access Times

• block devices are slow (compared to RAM)

− RAM is slow (compared to CPU)

• we cannot treat drives as an extension of RAM

− not even fastest modern ϐlash storage

− latency: HDD 3–12 ms, SSD 0.1 ms, RAM 70 ns

OperaƟng Systems 181/746 File Systems

Block Access Cache

• caching is used to hide latency

− same principle between CPU and RAM

• ϐiles recently accessed are kept in RAM

− many cache management policies exist

• implemented entirely in the OS

− many devices implement their own caching

− but the amount of fast memory is usually limited

OperaƟng Systems 182/746 File Systems

Write Buffers

• the write equivalent of the block cache

• data is kept in RAM until it can be processed

• must synchronise with caching

− other users may be reading the ϐile

OperaƟng Systems 183/746 File Systems

I/O Scheduler (Elevator)

• reads and writes are requested by users

• access ordering is crucial on a mechanical drive

− not as important on an SSD

− but sequential access is still much preferred

• requests are queued (recall, disks are slow)

− but they are not processed in FIFO order

OperaƟng Systems 184/746 File Systems

RAID

• hard drives are also unreliable

− backups help, but take a long time to restore

• RAID = Redundant Array of Inexpensive Disks

− live-replicate same data across multiple drives

− many different conϐigurations

• the system stays online despite disk failures

OperaƟng Systems 185/746 File Systems

RAID Performance

• RAID affects the performance of the block layer

• often improved reading throughput

− data is recombined frommultiple channels

• write performance is more mixed

− may require a fair amount of computation

− more data needs to be written for redundancy

OperaƟng Systems 186/746 File Systems

Block-Level Encryption

• symmetric & length-preserving

• encryption key is derived from a passphrase

• also known as “full disk encryption”

• incurs a small performance penalty

• very important for security / privacy

OperaƟng Systems 187/746 File Systems

Storing Data in Blocks

• splitting data into ϐixed-size chunks is unnatural

• there is no permission system for individual blocks

− this is unlike virtual (paged) memory

− it’d be really inconvenient for users

• processes are not persistent, but block storage is

OperaƟng Systems 188/746 File Systems

Filesystem as Resource Sharing

• usually only 1 or few disks per computer

• many programs want to store persistent data

• ϐile system allocates space for the data

− which blocks belong to which ϐile

• different programs can write to different ϐiles

− no risk of trying to use the same block

OperaƟng Systems 189/746 File Systems

Filesystem as Abstraction

• allows the data to be organised into ϐiles

• enables the user to manage and review data

• ϐiles have arbitrary & dynamic size

− blocks are transparently allocated & recycled

• structured data instead of a ϐlat block array

Part 5.3: Virtual Filesystem Switch

OperaƟng Systems 191/746 File Systems

Virtual File System Layer

• many different ϐilesystems

• the OS wants to treat them all alike

• VFS provides an internal, in-kernel API

• ϐilesystem syscalls are hooked up to VFS

OperaƟng Systems 192/746 File Systems

VFS in OOP terms

• VFS provides an abstract class, filesystem

• each ϐilesystem implementation derives filesystem

− e.g. class iso9660 : public filesystem

• each actual ϐile system gets an instance

− /home, /usr, /mnt/usbflash each one

− the kernel uses the abstract interface to talk to them

OperaƟng Systems 193/746 File Systems

The filesystem Class

struct handle { /* ... */ };

struct filesystem

{

virtual int open(const char * path) = 0;

virtual int read(handle file, ...) = 0;

/* ... */

}

OperaƟng Systems 194/746 File Systems

Filesystem-Speciϐic Operations

• open: look up the ϐile for access

• read, write – self-explanatory

• seek: move the read/write pointer

• sync: ϐlush data to disk

• mmap: memory-mapped IO

• select: IO readiness notiϐication

OperaƟng Systems 195/746 File Systems

Standard IO

• the usual way to use ϐiles

• open the ϐile

− operations to read and write bytes

• data has to be buffered in user space

− and then copied to/from kernel space

• not very efϐicient

OperaƟng Systems 196/746 File Systems

Memory-mapped IO

• uses virtual memory (cf. last lecture)

• treat a ϐile as if it was swap space

• the ϐile is mapped into process memory

− page faults indicate that data needs to be read

− dirty pages cause writes

• available as the mmap system call

OperaƟng Systems 197/746 File Systems

Sync-ing Data

• recall that the disk is very slow

• waiting for each write to hit disk is inefϐicient

• but if data is held in RAM, what if power is cut?

− the sync operation ensures the data has hit disk

− often used in database implementations

OperaƟng Systems 198/746 File Systems

Filesystem-Agnostic Operations

• handling executables

• fcntl handling

• special ϐiles

• management of ϐile descriptors

• ϐile locks

OperaƟng Systems 199/746 File Systems

Executables

• memory mapped (like mmap)

• may be paged in lazily

• executables must be immutable while running

• but can be still unlinked from the directory

OperaƟng Systems 200/746 File Systems

The fcntl Syscall

• mostly operations relating to ϐile descriptors

− synchronous vs asynchronous access

− blocking vs non-blocking

− close on exec: more on this in a later lecture

• also one of the several locking APIs

OperaƟng Systems 201/746 File Systems

Special Files

• device nodes, pipes, sockets,…

• only metadata for special ϐiles lives on disk

− this includes permissions & ownership

− type and properties of the special ϐile

• they are just different kind of an i-node

• open, read, write, etc. bypass the ϐilesystem

OperaƟng Systems 202/746 File Systems

File Locking

• multiple programs writing the same ϐile is bad

− operations will come in randomly

− the resulting ϐile will be a mess

• ϐile locks ϐix this problem

− multiple APIs: fcntl vs flock

− differences on networked ϐilesystems

OperaƟng Systems 203/746 File Systems

Mount Points

• recall that there is only a single directory tree

• but there are multiple disks and ϐilesystems

• ϐile systems can be joined at directories

• root of one becomes a subdirectory of another

Part 5.4: The UNIX Filesystem

OperaƟng Systems 205/746 File Systems

Superblock

• holds toplevel information about the ϐilesystem

• locations of i-node tables

• locations of i-node and free space bitmaps

• block size, ϐilesystem size

OperaƟng Systems 206/746 File Systems

I-Nodes

• recall that i-node is an anonymous ϐile

− or a directory, or a special

• i-nodes only have numbers

• directories tie names to i-nodes

OperaƟng Systems 207/746 File Systems

I-Node Allocation

• often a ϐixed number of i-nodes

• i-nodes are either used or free

• free i-nodes may be stored in a bitmap

• alternatives: B-trees

OperaƟng Systems 208/746 File Systems

I-Node Content

• exact content of an i-node depends on its type

• regular ϐile i-nodes contain a list of data blocks

− both direct and indirect (via a data block)

• symbolic links contain the target path

• special devices describe what device they represent

OperaƟng Systems 209/746 File Systems

Attaching Data to I-Nodes

• a few direct block addresses in the i-node

− eg. 10 refs, 4K blocks, max. 40 kilobytes

• indirect data blocks

− a block full of addresses of other blocks

− one indirect block approx. 2 MiB of data

• extents: a contiguous range of blocks

OperaƟng Systems 210/746 File Systems

Fragmentation

• internal – not all blocks are fully used

− ϐiles are of variable size, blocks are ϐixed

− a 4100 byte ϐile needs 2 4 KiB blocks

• external – free space is non-contiguous

− happens when many ϐiles try to grow at once

− this means new ϐiles are also fragmented

OperaƟng Systems 211/746 File Systems

Fragmentation Problems

• performance: can’t use fast sequential IO

− programs often read ϐiles sequentially

− fragmention random IO on the device

• metadata size: can’t use long extents

• internal: waste of disk space

OperaƟng Systems 212/746 File Systems

Directories

• uses data blocks (like regular ϐiles)

• but the blocks hold name i-node maps

• modern ϐile systems use hashes or trees

• the format of directory data is ϐilesystem-speciϐic

OperaƟng Systems 213/746 File Systems

File Name Lookup

• we often need to ϐind a ϐile based on a path

• each component means a directory search

• directories can have many thousands entries

OperaƟng Systems 214/746 File Systems

Old-Style Directories

• unsorted sequential list of entries

• new entries are simply appended at the end

• unlinking can create holes

• lookup in large directories is very inefϐicient

OperaƟng Systems 215/746 File Systems

Hash-Based Directories

• only need one block read on average

• often the most efϐicient option

• extendible hashing

− directories can grow over time

− gradually allocates more blocks

OperaƟng Systems 216/746 File Systems

Tree-Based Directories

• self-balancing search trees

• optimised for block-level access

• B trees, B+ trees, B* trees

• logarithmic number of reads

− this is worst case, unlike hashing

OperaƟng Systems 217/746 File Systems

Hard Links

• multiple names can refer to the same i-node

− names are given by directory entries

− we call such multiple-named ϐiles hard links

− it’s usually forbidden to hard-link directories

• hard links cannot cross device boundaries

− i-node numbers are only unique within a ϐilesystem

OperaƟng Systems 218/746 File Systems

Soft Links (Symlinks)

• they exist to lift the one-device limitation

• soft links to directories are OK

− this can cause loops in the ϐilesystem

• the soft link i-node contains a path

− the meaning can change when paths change

• dangling link: points to a non-existent path

OperaƟng Systems 219/746 File Systems

Free Space

• similar problem to i-node allocation

− but regards data blocks

• goal: quickly locate data blocks to use

− also: keep data of a single ϐile close together

− also: minimise external fragmentation

• usually bitmaps or B-trees

OperaƟng Systems 220/746 File Systems

File System Consistency

• what happens if power is cut?

• data buffered in RAM is lost

• the IO scheduler can re-order disk writes

• the ϐile system can become corrupt

OperaƟng Systems 221/746 File Systems

Journalling

• also known as an intent log

• write down what was going to happen synchronously

• ϐix the actual metadata based on the journal

• has a performance penalty at run-time

− reduces downtime by making consistency checks fast

− may also prevent data loss

Part 5.5: Advanced Features

OperaƟng Systems 223/746 File Systems

What Else Can Filesystems Do?

• transparent ϐile compression

• ϐile encryption

• block de-duplication

• snapshots

• checksums

• redundant storage

OperaƟng Systems 224/746 File Systems

File Compression

• use one of the standard compression algorithms

− must be fairly general-purpose (i.e. not JPEG)

− and of course lossless

− e.g. LZ77, LZW, Huffman Coding,…

• quite challenging to implement

− the length of the ϐile changes (unpredictably)

− efϐicient random access inside the ϐile

OperaƟng Systems 225/746 File Systems

File Encryption

• use symmetric encryption for individual ϐiles

− must be transparent to upper layers (applications)

− symmetric crypto is length-preserving

− encrypted directories, inheritance, &c.

• a new set of challenges

− key and passphrase management

OperaƟng Systems 226/746 File Systems

Block De-duplication

• sometimes the same data block appears many times

− virtual machine images are a common example

− also containers and so on

• some ϐilesystems will identify those cases

− internally point many ϐiles to the same block

− copy on write to preserve illusion of separate ϐiles

OperaƟng Systems 227/746 File Systems

Snapshots

• it is convenient to be able to copy entire ϐilesystems

− but this is also expensive

− snapshots provide an efϐicient means for this

• snapshot is a frozen image of the ϐilesystem

− cheap, because snapshots share storage

− easier than de-duplication

− again implemented as copy-on-write

OperaƟng Systems 228/746 File Systems

Checksums

• hardware is unreliable

− individual bytes or sectors may get corrupted

− this may happen without the hardware noticing

• the ϐilesystemmay store checksums alongwithmetadata

− and possibly also ϐile content

− this protects the integrity of the ϐilesystem

• beware: not cryptographically secure

OperaƟng Systems 229/746 File Systems

Redundant Storage

• like ϐilesystem-level RAID

• data and metadata blocks are replicated

− may be between multiple local block devices

− but also across a cluster / many computers

• drastically improves fault tolerance

OperaƟng Systems 230/746 File Systems

Review Questions

13. What is a block device?

14. What is an IO scheduler?

15. What does memory-mapped IO mean?

16. What is an i-node?

Part 6: Basic Resources & Multiplexing

OperaƟng Systems 232/746 Basic Resources & MulƟplexing

Lecture Overview

1. processes and virtual memory

2. thread scheduling

3. interrupts and clocks

Part 6.1: Processes and Virtual Memory

OperaƟng Systems 234/746 Basic Resources & MulƟplexing

Prehistory: Batch Systems

• ϐirst computers ran one program at a time

• programs were scheduled ahead of time

• we are talking punch cards &c.

• and computers that took an entire room

OperaƟng Systems 235/746 Basic Resources & MulƟplexing

History: Time Sharing

• “mini” computers could run programs interactively

• teletype terminals, screens, keyboards

• multiple users at the same time

• hence, multiple programs at the same time

OperaƟng Systems 236/746 Basic Resources & MulƟplexing

Processes: Early View

• process is an executing program

• there can be multiple processes

• various resources belong to a process

• each process belongs to a particular user

OperaƟng Systems 237/746 Basic Resources & MulƟplexing

Process Resources

• memory (address space)

• processor time

• open ϐiles (descriptors)

− also working directory

− also network connections

OperaƟng Systems 238/746 Basic Resources & MulƟplexing

Process Memory Segments

• program text: contains instructions

• data: static and dynamic data

− with a separate read-only section

• stack memory: execution stack

− return addresses

− automatic variables

OperaƟng Systems 239/746 Basic Resources & MulƟplexing

Process Memory

• each process has its own address space

• this means processes are isolated from each other

• requires that the CPU has an MMU

• implemented via paging (page tables)

OperaƟng Systems 240/746 Basic Resources & MulƟplexing

Process Switching

• switching processes means switching page tables

• physical addresses do not change

• but the mapping of virtual addresses does

• large part of physical memory is not mapped

− could be completely unallocated (unused)

− or belong to other processes

OperaƟng Systems 241/746 Basic Resources & MulƟplexing

Paging and TLB

• address translation is slow

• recently-used pages are stored in a TLB

− short for Translation Look-aside Buffer

− very fast hardware cache

• the TLB needs to be ϐlushed on process switch

− this is fairly expensive (microseconds)

OperaƟng Systems 242/746 Basic Resources & MulƟplexing

Processor Time Sharing

• CPU time is sliced into time shares

• time shares (slices) are like memory frames

• process computation is like memory pages

• processes are allocated into time shares

OperaƟng Systems 243/746 Basic Resources & MulƟplexing

Multiple CPUs

• execution of a program is sequential

• instructions depend on results of previous instructions

• one CPU = one instruction sequence

• physical limits on CPU speed multiple cores

OperaƟng Systems 244/746 Basic Resources & MulƟplexing

Threads

• how to use multiple cores in one process?

• threads: a new unit of CPU scheduling

• each thread runs sequentially

• one process can have multiple threads

OperaƟng Systems 245/746 Basic Resources & MulƟplexing

What is a Thread?

• thread is a sequence of instructions

• different threads run different instructions

− as opposed to SIMD or many-core units (GPUs)

• each thread has its own stack

• multiple threads can share an address space

OperaƟng Systems 246/746 Basic Resources & MulƟplexing

Modern View of a Process

• in a modern view, process is an address space

• threads are the right scheduling abstraction

• process is a unit of memory management

• thread is a unit of computation

• old view: one process = one thread

OperaƟng Systems 247/746 Basic Resources & MulƟplexing

Memory Segment Redux

• one (shared) text segment

• a shared read-write data segment

• a read-only data segment

• one stack for each thread

OperaƟng Systems 248/746 Basic Resources & MulƟplexing

Fork

• how do we create new processes?

• by fork-ing existing processes

• fork creates an identical copy of a process

• execution continues in both processes

− each of them gets a different return value

OperaƟng Systems 249/746 Basic Resources & MulƟplexing

Lazy Fork

• paging can make fork quite efϐicient

• we start by copying the page tables

• initially, all pages are marked read-only

• the processes start out sharing memory

OperaƟng Systems 250/746 Basic Resources & MulƟplexing

Lazy Fork: Faults

• the shared memory becomes copy on write

• fault when either process tries to write

− remember the memory is marked as read-only

• the OS checks if the memory is supposed to be writable

− if yes, it makes a copy and allows the write

OperaƟng Systems 251/746 Basic Resources & MulƟplexing

Init

• on UNIX, fork is the only way to make a process

• but fork splits existing processes into 2

• the ϐirst process is special

• it is directly spawned by the kernel on boot

OperaƟng Systems 252/746 Basic Resources & MulƟplexing

Process Identiϐier

• processes are assigned numeric identiϐiers

• also known as PID (Process ID)

• those are used in process management

• used calls like kill or setpriority

OperaƟng Systems 253/746 Basic Resources & MulƟplexing

Process vs Executable

• process is a dynamic entity

• executable is a static ϐile

• an executable contains an initial memory image

− this sets up memory layout

− and content of the text and data segments

OperaƟng Systems 254/746 Basic Resources & MulƟplexing

Exec

• on UNIX, processes are created via fork

• how do we run programs though?

• exec: load a new executable into a process

− this completely overwrites process memory

− execution starts from the entry point

• running programs: fork + exec

Part 6.2: Thread Scheduling

OperaƟng Systems 256/746 Basic Resources & MulƟplexing

What is a Scheduler?

• scheduler has two related tasks

− plan when to run which thread

− actually switch threads and processes

• usually part of the kernel

− even in micro-kernel operating systems

OperaƟng Systems 257/746 Basic Resources & MulƟplexing

Switching Threads

• threads of the same process share an address space

− a partial context switch is needed

− only register state has to be saved and restored

• no TLB ϐlushing – lower overhead

OperaƟng Systems 258/746 Basic Resources & MulƟplexing

Fixed vs Dynamic Schedule

• ϐixed schedule = all processes known in advance

− only useful in special / embedded systems

− can conserve resources

− planning is not part of the OS

• most systems use dynamic scheduling

− what to run next is decided periodically

OperaƟng Systems 259/746 Basic Resources & MulƟplexing

Preemptive Scheduling

• tasks (threads) just run as if they owned the CPU

• the OS forcibly takes the CPU away from them

− this is called preemption

• pro: a faulty program cannot block the system

• somewhat less efϐicient than cooperative

OperaƟng Systems 260/746 Basic Resources & MulƟplexing

Cooperative Scheduling

• threads (tasks) cooperate to share the CPU

• each thread has to explicitly yield

• this can be very efϐicient if designed well

• but a bad program can easily block the system

OperaƟng Systems 261/746 Basic Resources & MulƟplexing

Scheduling in Practice

• cooperative on Windows 3.x for everything

• cooperative for threads on classic Mac OS

− but preemptive for processes

• preemptive on pretty much every modern OS

− including real-time and embedded systems

OperaƟng Systems 262/746 Basic Resources & MulƟplexing

Waiting and Yielding

• threads often need to wait for resources or events

− they could also use software timers

• a waiting thread should not consume CPU time

• such a thread will yield the CPU

• it is put on a list and later woken up by the kernel

OperaƟng Systems 263/746 Basic Resources & MulƟplexing

Run Queues

• runnable (not waiting) threads are queued

• could be priority, round-robin or other queue types

• scheduler picks threads from the run queue

• preempted threads are put back

OperaƟng Systems 264/746 Basic Resources & MulƟplexing

Priorities

• what share of the CPU should a thread get?

• priorities are static and dynamic

• dynamic priority is adjusted as the thread runs

− this is done by the system / scheduler

• a static priority is assigned by the user

OperaƟng Systems 265/746 Basic Resources & MulƟplexing

Fairness

• equal (or priority-based) share per thread

• what if one process has many more threads?

• what if one user has many more processes?

• what if one user group has many more active users?

OperaƟng Systems 266/746 Basic Resources & MulƟplexing

Fair Share Scheduling

• we can use a multi-level scheduling scheme

• CPU is sliced fairly ϐirst among user groups

• then among users

• then among processes

• and ϐinally among threads

OperaƟng Systems 267/746 Basic Resources & MulƟplexing

Scheduling Strategies

• ϐirst in, ϐirst served (batch systems)

• earliest deadline ϐirst (realtime)

• round robin

• ϐixed priority preemptive

• fair share scheduling (multi-user)

OperaƟng Systems 268/746 Basic Resources & MulƟplexing

Interactivity

• throughput vs latency

• latency is more important for interactive workloads

− think phone or desktop systems

− but also web servers

• throughput is more important for batch systems

− think render farms, compute grids, simulation

OperaƟng Systems 269/746 Basic Resources & MulƟplexing

Reducing Latency

• shorter time slices

• more willingness to switch tasks (more preemption)

• dynamic priorities

• priority boost for foreground processes

OperaƟng Systems 270/746 Basic Resources & MulƟplexing

Maximising Throughput

• longer time slices

• reduce context switches to minimum

• cooperative multitasking

OperaƟng Systems 271/746 Basic Resources & MulƟplexing

Multi-Core Schedulers

• traditionally one CPU, many threads

• nowadays: many threads, many CPUs (cores)

• more complicated algorithms

• more complicated & concurrent-safe data structures

OperaƟng Systems 272/746 Basic Resources & MulƟplexing

Scheduling and Caches

• threads can move between CPU cores

− important when a different core is idle

− and a runnable thread is waiting for CPU

• but there is a price to pay

− thread / process data is extensively cached

− caches are typically not shared by all cores

OperaƟng Systems 273/746 Basic Resources & MulƟplexing

Core Afϐinity

• modern schedulers try to avoid moving threads

• threads are said to have an afϐinity to a core

• an extreme case is pinning

− this altogether prevents the thread to be migrated

• practically, this practice improves throughput

− even if nominal core utilisation may be lower

OperaƟng Systems 274/746 Basic Resources & MulƟplexing

NUMA Systems

• non-uniform memory architecture

− different memory is attached to different CPUs

− each symmetric block within a NUMA is called a node

• migrating a process to a different node is expensive

− thread vs node ping-pong can kill performance

− threads of one process should live on one node

Part 6.3: Interrupts and Clocks

OperaƟng Systems 276/746 Basic Resources & MulƟplexing

Interrupt

• a way for hardware to request attention

• CPU mechanism to divert execution

• partial (CPU state only) context switch

• switch to privileged (kernel) CPU mode

OperaƟng Systems 277/746 Basic Resources & MulƟplexing

Hardware Interrupts

• asynchronous, unlike software interrupts

• triggered via bus signals to the CPU

• IRQ = interrupt request

− just a different name for hardware interrupts

• PIC = programmable interrupt controller

OperaƟng Systems 278/746 Basic Resources & MulƟplexing

Interrupt Controllers

• PIC: simple circuit, typically with 8 input lines

− peripherals connect to the PIC with wires

− PIC delivers prioritised signals to the CPU

• APIC: advanced programmable interrupt controller

− split into a shared IO APIC and per-core local APIC

− typically 24 incoming IRQ lines

• OpenPIC, MPIC: similar to APIC, used by e.g. Freescale

OperaƟng Systems 279/746 Basic Resources & MulƟplexing

Timekeeping

• PIT: programmable interval timer

− crystal oscillator + divider

− IRQ line to the CPU

• local APIC timer: built-in, per-core clock

• HPET: high-precision event timer

• RTC: real-time clock

OperaƟng Systems 280/746 Basic Resources & MulƟplexing

Timer Interrupt

• generated by the PIT or the local APIC

• the OS can set the frequency

• a hardware interrupt happens on each tick

• this creates an opportunity for bookkeeping

• and for preemptive scheduling

OperaƟng Systems 281/746 Basic Resources & MulƟplexing

Timer Interrupt and Scheduling

• measure howmuch time the current thread took

• if it ran out of its slice, preempt it

− pick a new thread to execute

− perform a context switch

• those checks are done on each tick

− rescheduling is usually less frequent

OperaƟng Systems 282/746 Basic Resources & MulƟplexing

Timer Interrupt Frequency

• typical is 100 Hz

• this means a 10 ms scheduling slice (quantum)

• 1 kHz is also possible

− harms throughput but improves latency

OperaƟng Systems 283/746 Basic Resources & MulƟplexing

Tickless Kernels

• the timer interrupt wakes up the CPU

• this can be inefϐicient if the system is idle

• alternative: use one-off timers

− allows the CPU to sleep longer

− this improves power efϐiciency on light loads

OperaƟng Systems 284/746 Basic Resources & MulƟplexing

Tickless Scheduling

• slice length (quantum) becomes part of the planning

• if a core is idle, wake up on next software timer

− synchronisation of software timers

• other interrupts are delivered as normal

− network or disk activity

− keyboard, mice,…

OperaƟng Systems 285/746 Basic Resources & MulƟplexing

Other Interrupts

• serial port

− data is available on the port

• network hardware

− data is available in a packet queue

• keyboards, mice

− user pressed a key, moved the mouse

• USB devices in general

OperaƟng Systems 286/746 Basic Resources & MulƟplexing

Interrupt Routing

• not all CPU cores need to see all interrupts

• APIC can be told how to deliver IRQs

− the OS can route IRQs to CPU cores

• multi-core systems: IRQ load balancing

− useful to spread out IRQ overhead

− especially useful with high-speed networks

OperaƟng Systems 287/746 Basic Resources & MulƟplexing

Review Questions

17. What is a thread and a process?

18. What is a (thread, process) scheduler?

19. What do fork and exec do?

20. What is an interrupt?

Part 7: Concurrency and Locking

OperaƟng Systems 289/746 Concurrency and Locking

Lecture Overview

1. Inter-Process Communication

2. Synchronisation

3. Deadlocks

OperaƟng Systems 290/746 Concurrency and Locking

What is Concurrency?

• events that can happen at the same time

• it is not important if it does, only that it can

• events can be given a happens-before partial order

• they are concurrent if unordered by happens-before

OperaƟng Systems 291/746 Concurrency and Locking

Why Concurrency?

• problem decomposition

− different tasks can be largely independent

• reϐlecting external concurrency

− serving multiple clients at once

• performance and hardware limitations

− higher throughput on multicore computers

OperaƟng Systems 292/746 Concurrency and Locking

Parallel Hardware

• hardware is inherently parallel

• software is inherently sequential

• something has to give

− hint: it’s not going to be hardware

Part 7.1: Inter-Process Communication

OperaƟng Systems 294/746 Concurrency and Locking

Reminder: What is a Thread

• thread is a sequence of instructions

• each instruction happens-before the next

− or: happens-before is a total order on the thread

• basic unit of scheduling

OperaƟng Systems 295/746 Concurrency and Locking

Reminder: What is a Process

• the basic unit of resource ownership

− primarily memory, but also open ϐiles &c.

• may contain one or more threads

• processes are isolated from each other

− IPC creates gaps in that isolation

OperaƟng Systems 296/746 Concurrency and Locking

I/O vs Communication

• take standard input and output

− imagine process A writes a ϐile

− later, process B reads that ϐile

• communication happens in real time

− between two running threads / processes

− automatic: without user intervention

OperaƟng Systems 297/746 Concurrency and Locking

Direction

• bidirectional communication is typical

− this is analogous to a conversation

• but unidirectional communication also makes sense

− e.g. sending commands to a child process

− do acknowledgments count as communication?

OperaƟng Systems 298/746 Concurrency and Locking

Communication Example

• network services are a typical example

• take a web server and a web browser

• the browser sends a request for a web page

• the server responds by sending data

OperaƟng Systems 299/746 Concurrency and Locking

Files

• it is possible to communicate through ϐiles

• multiple processes can open the same ϐile

• one can write data and another can process it

− the original program picks up the results

− typical when using programs as modules

OperaƟng Systems 300/746 Concurrency and Locking

A File-Based IPC Example

• ϐiles are used e.g. when you run cc file.c

− it ϐirst runs a preprocessor: cpp -o file.i file.c

− then the compiler proper: cc1 -o file.o file.i

− and ϐinally a linker: ld file.o crt.o -lc

• the intermediate ϐiles may be hidden in /tmp

− and deleted when the task is completed

OperaƟng Systems 301/746 Concurrency and Locking

Directories

• communication by placing ϐiles or links

• typical use: a spool directory

− clients drop ϐiles into the directory for processing

− a server periodically picks up ϐiles in there

• used for e.g. printing and email

OperaƟng Systems 302/746 Concurrency and Locking

Pipes

• a device for moving bytes in a stream

− note the difference frommessages

• one process writes, the other reads

• the reader blocks if the pipe is empty

• the writer blocks if the pipe buffer is full

OperaƟng Systems 303/746 Concurrency and Locking

UNIX and Pipes

• pipes are used extensively in UNIX

• pipelines built via the shell’s | operator

• e.g. ls | grep hello.c

• most useful for processing data in stages

OperaƟng Systems 304/746 Concurrency and Locking

Sockets

• similar to, but more capable than pipes

• allows one server to talk to many clients

• each connection acts like a bidirectional pipe

• could be local but also connected via a network

OperaƟng Systems 305/746 Concurrency and Locking

Shared Memory

• memory is shared when multiple threads can access it

− happens naturally for threads of a single process

− the primary means of inter-thread communication

• many processes can map same piece of physical memory

− this is the more traditional setting

− hence also allows inter-process communication

OperaƟng Systems 306/746 Concurrency and Locking

Message Passing

• communication using discrete messages

• wemay or may not care about delivery order

• we can decide to tolerate message loss

• often used across a network

Part 7.2: Synchronisation

OperaƟng Systems 308/746 Concurrency and Locking

Shared Variables

• structured view of shared memory

• typical in multi-threaded programs

• e.g. any global variable in a program

• but may also live in memory from malloc

OperaƟng Systems 309/746 Concurrency and Locking

Shared Heap Variable

void *thread(int *x) { *x = 7; }

int main()

{

pthread_t id;

int *x = malloc(sizeof(int));

pthread_create(&id, NULL, thread, x);

}

OperaƟng Systems 310/746 Concurrency and Locking

Race Condition: Example

• consider a shared counter, i

• and the following two threads

int i = 0;

void thread1() { i = i + 1; }

void thread2() { i = i - 1; }

What is the value of i after both ϐinish?

OperaƟng Systems 311/746 Concurrency and Locking

Race on a Variable

• memory access is not atomic

• take x = x + 1

a₀ ← load x | b₀ ← load x

a₁ ← a₀ + 1 | b₁ ← b₀ + 1

store a₁ x | store b₁ x

OperaƟng Systems 312/746 Concurrency and Locking

Critical Section

• any section of code that must not be interrupted

• the statement x = x + 1 could be a critical section

• what is a critical section is domain-dependent

− another example could be a bank transaction

− or an insertion of an element into a linked list

OperaƟng Systems 313/746 Concurrency and Locking

Race Condition: Deϐinition

• (anomalous) behaviour that depends on timing

• typically among multiple threads or processes

• an unexpected sequence of events happens

• recall that ordering is not guaranteed

OperaƟng Systems 314/746 Concurrency and Locking

Races in a Filesystem

• the ϐile system is also a shared resource

• and as such, prone to race conditions

• e.g. two threads both try to create the same ϐile

− what happens if they both succeed?

− if both write data, the result will be garbled

OperaƟng Systems 315/746 Concurrency and Locking

Mutual Exclusion

• only one thread can access a resource at once

• ensured by a mutual exclusion device (a.k.a mutex)

• a mutex has 2 operations: lock and unlock

• lockmay need to wait until another thread unlocks

OperaƟng Systems 316/746 Concurrency and Locking

Semaphore

• somewhat more general than a mutex

• allows multiple interchangeable instances of a resource

− that many threads can enter the critical section

• basically an atomic counter

OperaƟng Systems 317/746 Concurrency and Locking

Monitors

• a programming language device (not OS-provided)

• internally uses standard mutual exclusion

• data of the monitor is only accessible to its methods

• only one thread can enter the monitor at any given time

OperaƟng Systems 318/746 Concurrency and Locking

Condition Variables

• what if the monitor needs to wait for something?

• imagine a bounded queue implemented as a monitor

− what happens if it becomes full?

− the writer must be suspended

• condition variables have wait and signal operations

OperaƟng Systems 319/746 Concurrency and Locking

Spinlocks

• a spinlock is the simplest form of a mutex

• the lockmethod repeatedly tries to acquire the lock

− this means it is taking up processor time

− also known as busy waiting

• spinlocks between threads on the same CPU are very bad

− but can be very efϐicient between CPUs

OperaƟng Systems 320/746 Concurrency and Locking

Suspending Mutexes

• these need cooperation from the OS scheduler

• when lock acquisition fails, the thread sleeps

− it is put on a waiting queue in the scheduler

• unlocking the mutex will wake up the waiting thread

• needs a system call slow compared to a spinlock

OperaƟng Systems 321/746 Concurrency and Locking

Condition Variables Revisited

• same principle as a suspending mutex

• the waiting thread goes into a wait queue

• the signalmethodmoves the thread back to a run queue

• the busy-wait version is known as polling

OperaƟng Systems 322/746 Concurrency and Locking

Barrier

• sometimes, parallel computation proceeds in phases

− all threads must ϐinish phase 1

− before any can start phase 2

• this is achieved with a barrier

− blocks all threads until the last one arrives

− waiting threads are usually suspended

OperaƟng Systems 323/746 Concurrency and Locking

Dining Philosophers

Readers and Writers

• imagine a shared database

• many threads can read the database at once

• but if one is writing, no other can read nor write

• what if there are always some readers?

OperaƟng Systems 324/746 Concurrency and Locking

Read-Copy-Update

• the fastest lock is no lock

• RCU allows readers to work while updates are done

− make a copy and update the copy

− point new readers to the updated copy

• when is it safe to reclaim memory?

Part 7.3: Deadlocks

OperaƟng Systems 326/746 Concurrency and Locking

Shared Resources

• hardware comes in a limited number of instances

• many devices can only do one thing at a time

• think printers, DVD writers, tape drives,…

• we want to use the devices efϐiciently sharing

OperaƟng Systems 327/746 Concurrency and Locking

Network-based Sharing

• sharing is not limited to processes on one computer

• printers and scanners can be network-attached

• all computers on network may need to coordinate access

− this could lead to multi-computer deadlocks

OperaƟng Systems 328/746 Concurrency and Locking

Locks as Resources

• we explored locks in the previous section

• locks (mutexes) are also a form of resource

− a mutex can be acquired (locked) and released

− a locked mutex belongs to a particular thread

• locks are proxy (stand-in) resources

OperaƟng Systems 329/746 Concurrency and Locking

Preemptable Resources

• sometimes, held resources can be taken away

• this is the case with e.g. physical memory

− a process can be swapped to disk if need be

• preemtability may also depend on context

− maybe paging is not available

OperaƟng Systems 330/746 Concurrency and Locking

Non-preemptable Resources

• those resources cannot be (easily) taken away

• think photo printer in the middle of a page

• or a DVD burner in the middle of writing

• non-preemptable resources can cause deadlocks

OperaƟng Systems 331/746 Concurrency and Locking

Resource Acquisition

• a process needs to request access to a resource

• this is called an acquisition

• when the request is granted, it can use the device

• after it is done, it must release the device

− this makes it available for other processes

OperaƟng Systems 332/746 Concurrency and Locking

Waiting

• what to do if we wish to acquire a busy resource?

• unless we don’t really need it, we have to wait

• this is the same as waiting for a mutex

• the thread is moved to a wait queue

OperaƟng Systems 333/746 Concurrency and Locking

Resource Deadlock

• two resources, A and B

• two processes, P and Q

• P acquires A, Q acquires B

• P tries to acquire B but has to wait for Q

• Q tries to acquire A but has to wait for P

OperaƟng Systems 334/746 Concurrency and Locking

Deadlock Conditions

1. mutual exclusion

2. hold and wait condition

3. non-preemtability

4. circular wait

Deadlock is only possible if all 4 are present.

OperaƟng Systems 335/746 Concurrency and Locking

Non-Resource Deadlocks

• not all deadlocks are due to resource contention

• imagine a message-passing system

• process A is waiting for a message

• process B sends a message to A and waits for reply

• the message is lost in transit

OperaƟng Systems 336/746 Concurrency and Locking

Example: Pipe Deadlock

• recall that both the reader and writer can block

• what if we create a pipe in each direction?

• process A writes data and tries to read a reply

− it blocks because the opposite pipe is empty

• process B reads the data but waits for more deadlock

OperaƟng Systems 337/746 Concurrency and Locking

Deadlocks: Do We Care?

• deadlocks can be very hard to debug

• they can also be exceedingly rare

• wemay ϐind the risk of a deadlock acceptable

• just reboot everything if we hit a deadlock

− also known as the ostrich algorithm

OperaƟng Systems 338/746 Concurrency and Locking

Deadlock Detection

• we can at least try to detect deadlocks

• usually by checking the circular wait condition

• keep a graph of who owns what and who waits for what

• if there is a loop in the graph deadlock

OperaƟng Systems 339/746 Concurrency and Locking

Deadlock Recovery

• if a preemptable resource is involved, reassign it

• otherwise, it may be possible to do a rollback

− this needs elaborate checkpointing mechanisms

• all else failing, kill some of the processes

− the devices may need to be re-initialised

OperaƟng Systems 340/746 Concurrency and Locking

Deadlock Avoidance

• we can possibly deny acquisitions to avoid deadlocks

• weneed toknowthemaximumresources for eachprocess

• avoidance relies on safe states

− worst case all processes ask for maximum resources

− safe means we can avoid a deadlock in the worst case

OperaƟng Systems 341/746 Concurrency and Locking

Deadlock Prevention

• deadlock avoidance is typically impractical

• there are 4 conditions for deadlocks to exist

• we can try attacking those conditions

• if we can remove one of them, deadlocks are prevented

OperaƟng Systems 342/746 Concurrency and Locking

Prevention via Spooling

• this attacks the mutual exclusion property

• multiple programs could write to a printer

• the data is collected by a spooling daemon

• which then sends the jobs to the printer in sequence

OperaƟng Systems 343/746 Concurrency and Locking

Prevention via Reservation

• we can also try removing hold-and-wait

• for instance, we can only allow batch acquisition

− the process must request everything at once

− this is usually impractical

• alternative: release and re-acquire

OperaƟng Systems 344/746 Concurrency and Locking

Prevention via Ordering

• this approach eliminates circular waits

• we impose a global order on resources

• a process can only acquire resources in this order

− must release + re-acquire if the order is wrong

• it is impossible to form a cycle this way

OperaƟng Systems 345/746 Concurrency and Locking

Livelock

• in a deadlock, no progress can be made

• but it’s not much better if processes go back and forth

− for instance releasing and re-acquiring resources

− they make no useful progress

− they additionally consume resources

• this is as livelock and is just as bad as a deadlock

OperaƟng Systems 346/746 Concurrency and Locking

Starvation

• starvation happens when a process can’t make progress

• generalisation of both deadlock and livelock

• for instance, unfair scheduling on a busy system

• also recall the readers and writers problem

OperaƟng Systems 347/746 Concurrency and Locking

Review Questions

21. What is a mutex?

22. What is a deadlock?

23. What are the conditions for a deadlock to form?

24. What is a race condition?

Part 8: Device Drivers

OperaƟng Systems 349/746 Device Drivers

Lecture Overview

1. Drivers, IO and Interrupts

2. System and Expansion Busses

3. Graphics

4. Persistent Storage

5. Networking and Wireless

Part 8.1: Drivers, IO and Interrupts

OperaƟng Systems 351/746 Device Drivers

Input and Output

• we will mostly think in terms of IO

• peripherals produce and consume data

• input – reading data produced by a device

• output – sending data to a device

OperaƟng Systems 352/746 Device Drivers

What is a Driver?

• piece of software that talks to a device

• usually quite speciϐic / unportable

− tied to the particular device

− and also to the operating system

• often part of the kernel

OperaƟng Systems 353/746 Device Drivers

Kernel-mode Drivers

• they are part of the kernel

• running with full kernel privileges

− including unrestricted hardware access

• no or minimal context switching overhead

− fast but dangerous

OperaƟng Systems 354/746 Device Drivers

Microkernels

• drivers are excluded frommicrokernels

• but the driver still needs hardware access

− this could be a special memory region

− it may need to react to interrupts

• in principle, everything can be done indirectly

− but this may be quite expensive, too

OperaƟng Systems 355/746 Device Drivers

User-mode Drivers

• many drivers can run completely in user space

• this improves robustness and security

− driver bugs can’t bring the entire system down

− nor can they compromise system security

• possibly at some cost to performance

OperaƟng Systems 356/746 Device Drivers

Drivers in Processes

• user-mode drivers typically run in their own process

• this means context switches

− every time the device demands attention (interrupt)

− every time another process wants to use the device

• the driver needs system calls to talk to the device

− this incurs even more overhead

OperaƟng Systems 357/746 Device Drivers

In-Process Drivers

• what if a (large portion of) a driver could be a library

• best of both worlds

− no context switch overhead for requests

− bugs and security problems remain isolated

• often used for GPU-accelerated 3D graphics

OperaƟng Systems 358/746 Device Drivers

Port-Mapped IO

• early CPUs had very limited address space

− 16-bit addresses mean 64KB of memory

• peripherals got a separate address space

• special instructions for using those addresses

− e.g. in and out on x86 processors

OperaƟng Systems 359/746 Device Drivers

Memory-mapped IO

• devices share address space with memory

• more common in contemporary systems

• IO uses the same instructions as memory access

− load and store on RISC, mov on x86

• allows selective user-level access (via the MMU)

OperaƟng Systems 360/746 Device Drivers

Programmed IO

• input or output is driven by the CPU

• the CPU must wait until the device is ready

• would usually run at bus speed

− 8 MHz for ISA (and hence ATA-1)

• PIO would talk to a buffer on the device

OperaƟng Systems 361/746 Device Drivers

Interrupt-driven IO

• peripherals are much slower than the CPU

− polling the device is expensive

• the peripheral can signal data availability

− and also readiness to accept more data

• this frees up CPU to do other work in the meantime

OperaƟng Systems 362/746 Device Drivers

Interrupt Handlers

• also known as ϐirst-level interrupt handler

• they must run in privileged mode

− they are part of the kernel by deϐinition

• the low-level interrupt handler must ϐinish quickly

− it will mask its own interrupt to avoid re-entering

− and schedule any long-running jobs for later (SLIH)

OperaƟng Systems 363/746 Device Drivers

Second-level Handler

• does any expensive interrupt-related processing

• can be executed by a kernel thread

− but also by a user-mode driver

• usually not time critical (unlike ϐirst-level handler)

− can use standard locking mechanisms

OperaƟng Systems 364/746 Device Drivers

Direct Memory Access

• allows the device to directly read/write memory

• this is a huge improvement over programmed IO

• interrupts only indicate buffer full/empty

• the device can read and write arbitrary physical memory

− opens up security / reliability problems

OperaƟng Systems 365/746 Device Drivers

IO-MMU

• like the MMU, but for DMA transfers

• allows the OS to limit memory access per device

• very useful in virtualisation

• only recently found its way into consumer computers

Part 8.2: System and Expansion Busses

OperaƟng Systems 367/746 Device Drivers

History: ISA (Industry Standard Architecture)

• 16-bit system expansion bus on IBM PC/AT

• programmed IO and interrupts (but no DMA)

• a ϐixed number of hardware-conϐigured interrupt lines

− likewise for I/O port ranges

− the HW settings then need to be typed back for SW

• parallel data and address transmission

OperaƟng Systems 368/746 Device Drivers

MCA, EISA

• MCA: Micro Channel Architecture

− proprietary to IBM, patent-encumbered

− 32-bit, software-driven device conϐiguration

− expensive and ultimately a market failure

• EISA: Enhanced ISA

− a 32-bit extension of ISA

− mostly created to avoid MCA licensing costs

− short-lived and replaced by PCI

OperaƟng Systems 369/746 Device Drivers

VESA Local Bus

• memory mapped IO & DMA on otherwise ISA systems

• tied to the 80486 line of Intel CPUs (and AMD clones)

• primarily for graphics cards

− but also used with hard drives

• quickly fell out of use with the arrival of PCI

OperaƟng Systems 370/746 Device Drivers

PCI: Peripheral Component Interconnect

• a 32-bit successor to ISA

− 33 MHz (compared to 8 MHz for ISA)

− later revisions at 66 MHz, PCI-X at 133 MHz

− added support for bus-mastering and DMA

• still a shared, parallel bus

− all devices share the same set of wires

OperaƟng Systems 371/746 Device Drivers

Bus Mastering

• normally, the CPU is the bus master

− which means it initiates communication

• it’s possible to have multiple masters

− they need to agree on a conϐlict resolution protocol

• usually used for accessing the memory

OperaƟng Systems 372/746 Device Drivers

DMA (Direct Memory Access)

• the most common form of bus mastering

• the CPU tells the device what and where to write

• the device then sends data directly to RAM

− the CPU can work on other things in the meantime

− completion is signaled via an interrupt

OperaƟng Systems 373/746 Device Drivers

Plug and Play

• the ISA system for IRQ conϐiguration was messy

• MCA pioneered software-conϐigured devices

• PCI further improved on MCA with “Plug and Play”

− each PCI device has an ID it can tell the system

− allows for enumeration and automatic conϐiguration

OperaƟng Systems 374/746 Device Drivers

PCI IDs and Drivers

• PCI allows for device enumeration

• device identiϐiers can be paired to device drivers

• this allows the OS to load and conϐigure its drivers

− or even download / install drivers from a vendor

OperaƟng Systems 375/746 Device Drivers

AGP: Accelerated Graphics Port

• PCI eventually became too slow for GPUs

− AGP is based on PCI and only improves performance

− enumeration and conϐiguration stays the same

• adds a dedicated point-to-point connection

• multiple transfers per clock (up to 8, for 2 GB/s)

OperaƟng Systems 376/746 Device Drivers

PCI Express

• the current high-speed peripheral bus for PC

• builds on / extends conventional PCI

• point-to-point, serial data interconnect

• much improved throughput (up to ~30GB/s)

OperaƟng Systems 377/746 Device Drivers

USB: Universal Serial Bus

• primarily for external peripherals

− keyboards, mice, printers,…

− replaced a host of legacy ports

• later revisions allow high-speed transfers

− suitable for storage devices, cameras &c.

• device enumeration, capability negotiation

OperaƟng Systems 378/746 Device Drivers

USB Classes

• a set of vendor-neutral protocols

• HID = human-interface device

• mass storage = disk-like devices

• audio equipment

• printing

OperaƟng Systems 379/746 Device Drivers

Other USB Uses

• ethernet adapters

• usb-serial adapters

• wiϐi adapters (dongles)

− there isn’t a universal protocol

− each USBWiFi adapter needs

• bluetooth

OperaƟng Systems 380/746 Device Drivers

ARM Busses

• ARM is typically used in System-on-a-Chip designs

• those use a proprietary bus to connect peripherals

• there is less need for enumeration

− the entire system is baked into a single chip

• the peripherals can be pre-conϐigured

OperaƟng Systems 381/746 Device Drivers

USB and PCIe on ARM

• USB nor PCIe are exclusive to the PC platform

• most ARM SoC’s support USB devices

− for slow and medium-speed off-SoC devices

− e.g. used for ethernet on RPi 1

• some ARM SoC’s support PCI Express

− this allows for high-speed off-SoC peripherals

OperaƟng Systems 382/746 Device Drivers

PCMCIA & PC Card

• People Can’t Memorize Computer Industry Acronyms

− PC = Personal Computer, MC = Memory Card

• hotplug-capable notebook expansion bus

• used for memory cards, network adapters, modems

• comes with its own set of drivers (cardbus)

OperaƟng Systems 383/746 Device Drivers

ExpressCard

• an expansion card standard like PCMCIA / PC Card

• based on PCIe and USB

− can mostly re-use drivers for those standards

• not in wide use anymore

− last update was in 2009, introducing USB 3 support

− the industry association disbanded the same year

OperaƟng Systems 384/746 Device Drivers

miniPCIe, mSATA, M.2

• those are physical interfaces, not special busses

• they provide some mix of PCIe, SATA and USB

− also other protocols like I²C, SMBus,…

• used mainly for compact SSDs and wireless

− also GPS, NFC, bluetooth,…

Part 8.3: Graphics and GPUs

OperaƟng Systems 386/746 Device Drivers

Graphics Cards

• initially just a device to drive displays

• reads pixels frommemory and provides display signal

− basically a DAC with a clock

− the memory can be part of the graphics card

• evolved acceleration capabilities

OperaƟng Systems 387/746 Device Drivers

Graphics Accelerator

• allows common operations to be done in hardware

• like drawing lines or ϐilled polygons

• the pixels are computed directly in video RAM

• this can save considerable CPU time

OperaƟng Systems 388/746 Device Drivers

3D Graphics

• rendering 3D scenes is computationally intensive

• CPU-based, software-only rendering is possible

− texture-less in early ϐlight simulators

− bitmap textures since ’95 / ’96 (Descent, Quake)

• CAD workstation had 3D accelerators (OpenGL ’92)

OperaƟng Systems 389/746 Device Drivers

GPU (Graphical Processing Unit)

• a term coined by nVidia near the end of ’90s

• originally a purpose-built hardware renderer

− based on polygonal meshes and Z buffering

• increasingly more ϐlexible and programmable

• on-board RAM, high-speed connection to system RAM

OperaƟng Systems 390/746 Device Drivers

GPU Drivers

• split into a number of components

• graphics output / frame buffer access

• memory management is often done in kernel

• geometry, textures &c. are prepared in-process

• front end API: OpenGL, Direct3D, Vulkan,…

OperaƟng Systems 391/746 Device Drivers

Shaders

• current GPUs are computation devices

• the GPU has its own machine code for shaders

• the GPU driver contains a shader compiler

− either all the way from a high level language (HLSL)

− or starting with an intermediate code (SPIR)

OperaƟng Systems 392/746 Device Drivers

Mode Setting

• this part deals with screen conϐiguration and resolution

• including support for e.g. multiple displays

• usually also supports primitive (SW-only) framebuffer

• often done by a kernel with minimum user-level support

OperaƟng Systems 393/746 Device Drivers

Graphics Servers

• multiple apps cannot all drive the graphics card

− the graphics hardware needs to be shared

− one option is a graphics server

• provides an IPC-based drawing and/or windowing API

• performs painting on behalf of the applications

OperaƟng Systems 394/746 Device Drivers

Compositors

• a more direct way to share graphics cards

• each application gets its own buffer to paint into

• painting is mostly done by a (context-switched) GPU

• the individual buffers are then composed onto screen

− composition is also hardware-accelerated

OperaƟng Systems 395/746 Device Drivers

GP-GPU

• general-purpose GPU (CUDA, OpenCL,…)

• used for computation instead of just graphics

• basically a return of vector processors

• close to CPUs but not part of normal OS scheduling

Part 8.4: Persistent Storage

OperaƟng Systems 397/746 Device Drivers

Drivers

• split into adapter, bus and device drivers

• often a single driver per device type

− at least for disk drives and CD-ROMs

• bus enumeration and conϐiguration

• data addressing and data transfers

OperaƟng Systems 398/746 Device Drivers

IDE / ATA

• Integrated Drive Electronics

− disk controller becomes part of the disk

− standardised as ATA-1 (AT Attachment…)

• based on the ISA bus, but with cables

• later adapted for non-disk use via ATAPI

OperaƟng Systems 399/746 Device Drivers

ATA Enumeration

• each ATA interface can attach only 2 drives

− the drives are HW-conϐigured as master/slave

− this makes enumeration quite simple

• multiple ATA interfaces were standard

• no need for speciϐic HDD drivers

OperaƟng Systems 400/746 Device Drivers

PIO vs DMA

• original IDE could only use programmed IO

• this eventually became a serious bottleneck

• later ATA revisions include DMAmodes

− up to 160MB/s with highest DMAmodes

− compare 1900MB/s for SATA 3.2

OperaƟng Systems 401/746 Device Drivers

SATA

• serial, point-to-point replacement for ATA

• hardware-level incompatible to (parallel) ATA

− but SATA inherited the ATA command set

− legacymode allowsPATAdrivers to talk to SATAdrives

• hot-swap capable – replace drives in a running system

OperaƟng Systems 402/746 Device Drivers

AHCI (Advanced Host Controller Interface)

• vendor-neutral interface to SATA controllers

− in theory only a single ‘AHCI’ driver is needed

• an alternative to ‘legacy mode’

• NCQ = Native Command Queuing

− allows the drive to re-order requests

− another layer of IO scheduling

OperaƟng Systems 403/746 Device Drivers

ATA and SATA Drivers

• the host controller (adapter) is mostly vendor-neutral

• the bus driver will expose the ATA command set

− including support for command queuing

• device driver uses the bus driver to talk to devices

• partially re-uses SCSI drivers for ATAPI &c.

OperaƟng Systems 404/746 Device Drivers

SCSI (Small Computer System Interface)

• originated with minicomputers in the 80’s

• more complicated and capable than ATA

− ATAPI basically encapsulates SCSI over ATA

• device enumeration, including aggregates

− e.g. entire enclosures with many drives

• also allows CD-ROM, tapes, scanners (!)

OperaƟng Systems 405/746 Device Drivers

SCSI Drivers

• split into a host bus adapter (HBA) driver

• a generic SCSI bus and command component

− often re-used in both ATAPI and USB storage

• and per-device or per-class drivers

− optical drives, tapes, CD/DVD-ROM

− standard disk and SSD drives

OperaƟng Systems 406/746 Device Drivers

iSCSI

• basically SCSI over TCP/IP

• entirely software-based

• allows standard computers to serve as block storage

• takes advantage of fast cheap ethernet

• re-uses most of the SCSI driver stack

OperaƟng Systems 407/746 Device Drivers

NVMe: Non-Volatile Memory Express

• a fairly simple protocol for PCIe-attached storage

• optimised for SSD-based devices

− much bigger and more command queues than AHCI

− better / faster interrupt handling

• stresses concurrency in the kernel block layer

OperaƟng Systems 408/746 Device Drivers

USB Mass Storage

• an USB device class (vendor-neutral protocol)

− one driver for the entire class

• typically USB ϐlash drives, but also external disks

• USB 2 is not suitable for high-speed storage

− USB 3 introduced UAS = USB-Attached SCSI

OperaƟng Systems 409/746 Device Drivers

Tape Drives

• unlike disk drives, only allow sequential access

• needs support for media ejection, rewinding

• can be attached with SCSI, SATA, USB

• parts of the driver will be bus-neutral

• mainly for data backup, capacities 6-15TB

OperaƟng Systems 410/746 Device Drivers

Optical Drives

• mainly used as a read-only distribution medium

• laser-facilitated reading of a rotating disc

• can be again attached to SCSI, SATA or USB

• conceived for audio playback very slow seek

OperaƟng Systems 411/746 Device Drivers

Optical Disk Writers (Burners)

• behaves more like a printer for optical disks

• drivers are often done in user space

• attached by one of the standard disk busses

• special programs required to burn disks

− alternative: packet-writing drivers

Part 8.5: Networking and Wireless

OperaƟng Systems 413/746 Device Drivers

Networking

• networks allow multiple computers to exchange data

− this could be ϐiles, streams or messages

• there are wired and wireless networks

• we will only deal with the lowest layers for now

• NIC = Network Interface Card

OperaƟng Systems 414/746 Device Drivers

Ethernet

• speciϐies the physical media

• on-wire format and collision resolution

• in modern setups, mostly point-to-point links

− using active packet switching devices

• transmits data in frames (low-level packets)

OperaƟng Systems 415/746 Device Drivers

Addressing

• at this level, only local addressing

− at most a single LAN segment

• uses baked-in MAC addresses

− MAC = Media Access Control

• addresses belong to interfaces, not computers

OperaƟng Systems 416/746 Device Drivers

Transmit Queue

• packets are picked up frommemory

• the OS prepares packets into the transmit queue

• the device picks them up asynchronously

• similar to how SATA queues commands and data

OperaƟng Systems 417/746 Device Drivers

Receive Queue

• data is also queued in the other direction

• the NIC copies packets into a receive queue

• it invokes an interrupt to tell the OS about new items

− the NIC may batch multiple packets per interrupt

• if the queue is not cleared quickly packet loss

OperaƟng Systems 418/746 Device Drivers

Multi-Queue Adapters

• fast adapters can saturate a CPU

− e.g. 10GbE cards, or multi-port GbE

• these NICs can manage multiple RX and TX queues

− each queue gets its own interrupt

− different queues canbehandledbydifferentCPUcores

OperaƟng Systems 419/746 Device Drivers

Checksum and TCP Ofϐloading

• more advanced adapters can ofϐload certain features

• commonly computation of mandatory packet checksums

• but also TCP-related features

• this needs both driver support and TCP/IP stack support

OperaƟng Systems 420/746 Device Drivers

WiFi

• wireless network interface – “wireless ethernet”

• shared medium – electromagnetic waves in air

• (almost) mandatory encryption

− otherwise easy to eavesdrop or even actively attack

• a very complex protocol (relative to hardware standards)

− assisted by ϐirmware running on the adapter

OperaƟng Systems 421/746 Device Drivers

Bluetooth

• a wireless alternative to USB

• allows short-distance radio links with peripherals

− input (keyboard, mice, game controllers)

− audio (headsets, speakers)

− data transmission (e.g. smartphone sync)

− gadgets (watches, heartrate monitoring, GPS,…)

OperaƟng Systems 422/746 Device Drivers

Review Questions

25. What is memory-mapped IO and DMA?

26. What is a system bus?

27. What is a graphics accelerator?

28. What is a NIC receive queue?

Part 9: Network Stack

OperaƟng Systems 424/746 Network Stack

Lecture Overview

1. Networking Intro

2. The TCP/IP Stack

3. Using Networks

4. Network File Systems

Part 9.1: Networking Intro

OperaƟng Systems 426/746 Network Stack

Host and Domain Names

• hostname = human readable computer name

• hierarchical system, big-endian: www.fi.muni.cz

• FQDN = fully-qualiϐied domain name

• the local sufϐix may be omitted (ping aisa)

OperaƟng Systems 427/746 Network Stack

Network Addresses

• address = machine-friendly and numeric

• IPv4 address: 4 octets (bytes): 192.168.1.1

• IPv6 address: 16 octets

• Ethernet (MAC): 6 octets, c8:5b:76:bd:6e:0b

OperaƟng Systems 428/746 Network Stack

Network Types

• LAN = Local Area Network

− Ethernet: wired, up to 10Gb/s

− WiFi (802.11): wireless, up to 1Gb/s

• WAN =Wide Area Network (the Internet)

− PSTN, xDSL, PPPoE

− GSM, 2G (GPRS, EDGE), 3G (UMTS), 4G (LTE)

− also LAN technologies – Ethernet, WiFi

OperaƟng Systems 429/746 Network Stack

Networking Layers

2. Link (Ethernet, WiFi)

3. Network (IP)

4. Transport (TCP, UDP,…)

7. Application (HTTP, SMTP,…)

OperaƟng Systems 430/746 Network Stack

Networking and Operating Systems

• a network stack is a standard part of an OS

• large part of the stack lives in the kernel

− although this only applies to monolithic kernels

− microkernels use user-space networking

• another chunk is in system libraries & utilities

OperaƟng Systems 431/746 Network Stack

Kernel-Side Networking

• device drivers for networking hardware

• network and transport protocol layers

• routing and packet ϐiltering (ϐirewalls)

• networking-related system calls (sockets)

• network ϐile systems (SMB, NFS)

OperaƟng Systems 432/746 Network Stack

System Libraries

• the socket and related APIs

• host name resolution (a DNS client)

• encryption and data authentication (SSL, TLS)

• certiϐicate handling and validation

OperaƟng Systems 433/746 Network Stack

System Utilities

• network conϐiguration (ifconfig)

• diagnostics (ping, traceroute)

• packet logging and inspection (tcpdump)

• route management (route, bgpd)

OperaƟng Systems 434/746 Network Stack

Networking Aspects

• packet format

− what are the units of communication

• addressing

− how are the sender and recipient named

• packet delivery

− how a message is delivered

OperaƟng Systems 435/746 Network Stack

Protocol Nesting

• protocols run on top of each other

• this is why it is called a network stack

• higher levels make use of the lower levels

− HTTP uses abstractions provided by TCP

− TCP uses abstractions provided by IP

OperaƟng Systems 436/746 Network Stack

Packet Nesting

• higher-level packets are just data to the lower level

• an Ethernet frame can carry an IP packet in it

• the IP packet can carry a TCP packet

• the TCP packet can carry an HTTP request

OperaƟng Systems 437/746 Network Stack

Stacked Delivery

• delivery is, in the abstract, point-to-point

− routing is mostly hidden from upper layers

− the upper layer requests delivery to an address

• lower-layer protocols are usually packet-oriented

− packet size mismatches can cause fragmentation

• a packet can pass through different low-level domains

OperaƟng Systems 438/746 Network Stack

Layers vs Addressing

• not as straightforward as packet nesting

− address relationships are tricky

• special protocols exist to translate addresses

− DNS for hostname vs IP address mapping

− ARP for IP vs MAC address mapping

OperaƟng Systems 439/746 Network Stack

ARP (Address Resolution Protocol)

• ϐinds the MAC that corresponds to an IP

• required to allow packet delivery

− IP uses the link layer to deliver its packets

− the link layer must be given a MAC address

• the OS builds a map of IP MAC translations

OperaƟng Systems 440/746 Network Stack

Ethernet

• link-level communication protocol

• largely implemented in hardware

• the OS uses a well-deϐined interface

− packed receive and submit

− using MAC addresses (ARP is part of the OS)

OperaƟng Systems 441/746 Network Stack

Packet Switching

• shared media are inefϐicient due to collisions

• ethernet is typically packet switched

− a switch is usually a hardware device

− but also in software (usually for virtualisation)

− physical connections form a star topology

OperaƟng Systems 442/746 Network Stack

Bridging

• bridges operate at the link layer (layer 2)

• a bridge is a two-port device

− each port is connected to a different LAN

− the bridge joins the LANs by forwarding frames

• can be done in hardware or software

− brctl on Linux, ifconfig on OpenBSD

OperaƟng Systems 443/746 Network Stack

Tunneling

• tunnels are virtual layer 2 or 3 devices

• they encapsulate trafϐic using a higher-level protocol

• tunneling is used to implement Virtual Private Networks

− a software bridge can operate over an UDP tunnel

− the tunnel is usually encrypted

OperaƟng Systems 444/746 Network Stack

PPP (Point-to-Point Protocol)

• a link-layer protocol for 2-node networks

• available over many physical connections

− phone lines, cellular connections, DSL, Ethernet

− often used to connect endpoints to the ISP

• supported by most operating systems

− split between the kernel and system utilities

OperaƟng Systems 445/746 Network Stack

Wireless

• WiFi is mostly like (slow, unreliable) Ethernet

• needs encryption since anyone can listen

• also authentication to prevent rogue connections

− PSK (pre-shared key), EAP / 802.11x

• encryption needs key management

Part 9.2: The TCP/IP Stack

OperaƟng Systems 447/746 Network Stack

IP (Internet Protocol)

• uses 4 byte (v4) or 16 byte (v6) addresses

− split into network and host parts

• it is a packet-based protocol

• is a best-effort protocol

− packets may get lost, reordered or corrupted

OperaƟng Systems 448/746 Network Stack

IP Networks

• IP networks roughly correspond to LANs

− hosts on the same network are located with ARP

− remote networks are reached via routers

• a netmask splits the address into network/host parts

• IP typically runs on top of Ethernet or PPP

OperaƟng Systems 449/746 Network Stack

Routing

• routers forward packets between networks

• somewhat like bridges but layer 3

• routers act as normal LAN endpoints

− but represent entire remote IP networks

− or even the entire Internet

OperaƟng Systems 450/746 Network Stack

Services and TCP/UDP Port Numbers

• networks are generally used to provide services

− each computer can host multiple

• different services can run on different ports

• port is a 16-bit number and some ar given names

− port 25 is SMTP, port 80 is HTTP,…

OperaƟng Systems 451/746 Network Stack

ICMP: Internet Control Message Protocol

• control messages (packets)

− destination host/network unreachable

− time to live exceeded

− fragmentation required

• diagnostic packets, e.g. the ping command

− echo request and echo reply

− combine with TTL for traceroute

OperaƟng Systems 452/746 Network Stack

TCP: Transmission Control Protocol

• a stream-oriented protocol on top of IP

• works like a pipe (transfers a byte sequence)

− must respect delivery order

− and also re-transmit lost packets

• must establish connections

OperaƟng Systems 453/746 Network Stack

TCP Connections

• the endpoints must establish a connection ϐirst

• each connection serves as a separate data stream

• a connection is bidirectional

• TCP uses a 3-way handshake: SYN, SYN/ACK, ACK

OperaƟng Systems 454/746 Network Stack

Sequence Numbers

• TCP packets carry sequence numbers

• these numbers are used to re-assemble the stream

− IP packets can arrive out of order

• they are also used to acknowledge reception

− and subsequently to manage re-transmission

OperaƟng Systems 455/746 Network Stack

Packet Loss and Re-transmission

• packets can get lost for a variety of reasons

− a link goes down for an extended period of time

− buffer overruns on routing equipment

• TCP sends acknowledgments for received packets

− the ACKs use sequence numbers to identify packets

OperaƟng Systems 456/746 Network Stack

UDP: User (Unreliable) Datagram Protocol

• TCP comes with non-trivial overhead

− and its guarantees are not always required

• UDP is a much simpler protocol

− a very thin wrapper around IP

− with minimal overhead on top of IP

OperaƟng Systems 457/746 Network Stack

Name Resolution

• users do not want to remember numeric addresses

− phone numbers are bad enough

• host names are used instead

• can be stored in a ϐile, e.g. /etc/hosts

− not very practical for more than 3 computers

− but there are millions of computers on the Internet

OperaƟng Systems 458/746 Network Stack

DNS: Domain Name Service

• hierarchical protocol for name resolution

− runs on top of TCP or UDP

• domain names are split into parts using dots

− each domain knows whom to ask for the next bit

− the name database is effectively distributed

OperaƟng Systems 459/746 Network Stack

DNS Recursion

• take www.fi.muni.cz. as an example domain

• resolution starts from the right at root servers

− the root servers refer us to the cz. servers

− the cz. servers refer us to muni.cz

− ϐinally muni.cz. tells us about fi.muni.cz

OperaƟng Systems 460/746 Network Stack

DNS Recursion Example

$ dig www.fi.muni.cz. A +trace

. IN NS j.root-servers.net.

cz. IN NS b.ns.nic.cz.

muni.cz. IN NS ns.muni.cz.

fi.muni.cz. IN NS aisa.fi.muni.cz.

www.fi.muni.cz. IN A 147.251.48.1

OperaƟng Systems 461/746 Network Stack

DNS Record Types

• A is for (IP) Address

• AAAA is for an IPv6 Address

• CNAME is for an alias

• MX is for mail servers

• and many more

OperaƟng Systems 462/746 Network Stack

Firewalls

• the name comes from building construction

− a ϐire-proof barrier between parts of a building

• the idea is to separate networks from each other

− making attacks harder from the outside

− limiting damage in case of compromise

OperaƟng Systems 463/746 Network Stack

Packet Filtering

• packet ϐiltering is how ϐirewalls are usually implemented

• can be done on a router or at an endpoint

• dedicated routers + packet ϐilters are more secure

− a single such ϐirewall protects the entire network

− less opportunity for mis-conϐiguration

OperaƟng Systems 464/746 Network Stack

Packet Filter Operation

• packet ϐilters operate on a set of rules

− the rules are generally operator-provided

• each incoming packet is classiϐied using the rules

• and then dispatched accordingly

− may be forwarded, dropped, rejected or edited

OperaƟng Systems 465/746 Network Stack

Packet Flter Examples

• packet ϐilters are often part of the kernel

• the rule parser is a system utility

− it loads rules from a conϐiguration ϐile

− and sets up the kernel-side ϐilter

• there are multiple implementations

− iptables, nftables in Linux

− pf in OpenBSD, ipfw in FreeBSD

Part 9.3: Using Networks

OperaƟng Systems 467/746 Network Stack

Sockets Reminder

• the socket API comes from early BSD Unix

• socket represents a (possible) network connection

• you get a ϐile descriptor for an open socket

• you can read() and write() to sockets

− but also sendmsg() and recvmsg()

OperaƟng Systems 468/746 Network Stack

Socket Types

• sockets can be internet or unix domain

− internet sockets work across networks

• stream sockets are like ϐiles

− you can write a continuous stream of data

− usually implemented using TCP

• datagram sockets send individual messages

− usually implemented using UDP

OperaƟng Systems 469/746 Network Stack

Creating Sockets

• a socket is created using the socket() function

• it can be turned into a server using listen()

− individual connections are establishedwith accept()

• or into a client using connect()

OperaƟng Systems 470/746 Network Stack

Resolver API

• libc contains a resolver

− available as gethostbyname (and gethostbyname2)

− also gethostbyaddr for reverse lookups

• can look in many different places

− most systems support at least /etc/hosts

− and DNS-based lookups

OperaƟng Systems 471/746 Network Stack

Network Services

• servers listen on a socket for incoming connections

− a client actively establishes a connection to a server

• the network simply transfers data between them

• interpretation of the data is a layer 7 issue

− could be commands, ϐile transfers,…

OperaƟng Systems 472/746 Network Stack

Network Service Examples

• (secure) remote shell – sshd

• the internet email suite

− MTA = Mail Transfer Agent, speaks SMTP

− SMTP = Simple Mail-Transfer Protocol

• the world wide web

− web servers provide content (ϐiles)

− clients and servers speak HTTP and HTTPS

OperaƟng Systems 473/746 Network Stack

Client Software

• the ssh command talks uses the SSH protocol

− a very useful system utility on virtually all UNIXes

• web browser is the client for world wide web

− browsers are complex application programs

− some of them bigger than even operating systems

• email client is also known as a MUA (Mail User Agent)

Part 9.4: Network File Systems

OperaƟng Systems 475/746 Network Stack

Why Network Filesystems?

• copying ϐiles back and forth is impractical

− and also error-prone (which is the latest version?)

• how about storing data in a central location

• and sharing it with all the computers on the LAN

OperaƟng Systems 476/746 Network Stack

NAS (Network-Attached Storage)

• a (small) computer dedicated to storing ϐiles

• usually running a cut down operating system

− often based on Linux or FreeBSD

• provides ϐile access to the network

• sometimes additional app-level services

− e.g. photo management, media streaming,…

OperaƟng Systems 477/746 Network Stack

NFS (Network File System)

• the traditional UNIX networked ϐilesystem

• hooked quite deep into the kernel

− assumes generally reliable network (LAN)

• ϐilesystems are exported for use over NFS

• the client side mounts the NFS-exported volume

OperaƟng Systems 478/746 Network Stack

NFS History

• originated in Sun Microsystems in the 80s

• v2 implemented in System V, DOS,…

• v3 appeared in ’95 and is still in use

• v4 arrives in 2000, improving security

OperaƟng Systems 479/746 Network Stack

VFS Reminder

• implementation mechanism for multiple FS types

• an object-oriented approach

− open: look up the ϐile for access

− read, write – self-explanatory

− rename: rename a ϐile or directory

OperaƟng Systems 480/746 Network Stack

RPC (Remote Procedure Call)

• any protocol for calling functions on remote hosts

− ONC-RPC = Open Network Computing RPC

− NFS is based on ONC-RPC (also known as Sun RPC)

• NFS basically runs VFS operations using RPC

− this makes it easy to implement on UNIX-like systems

OperaƟng Systems 481/746 Network Stack

Port Mapper

• ONC-RPC is executed over TCP or UDP

− but it is more dynamic wrt. available services

• TCP/UDP port numbers are assigned on demand

• portmap translates from RPC services to port numbers

− the port mapper itself listens on port 111

OperaƟng Systems 482/746 Network Stack

The NFS Daemon

• also known as nfsd

• provides NFS access to a local ϐile system

• can run as a system service

• or it can be part of the kernel

− this is more typical for performance reasons

OperaƟng Systems 483/746 Network Stack

SMB (Server Message Block)

• a network ϐile system fromMicrosoft

• available in Windows since version 3.1 (1992)

− originally ran on top of NetBIOS

− later versions used TCP/IP

• SMB1 accumulated a lot of cruft and complexity

OperaƟng Systems 484/746 Network Stack

SMB 2.0

• simpler than SMB1 due to fewer retroϐits and compat

• better performance and security

• support for symbolic links

• available since Windows Vista (2006)

OperaƟng Systems 485/746 Network Stack

Review Questions

29. What is ARP (Address Resolution Protocol)?

30. What is IP (Internet Protocol)?

31. What is TCP (Transmission Control Protocol)?

32. What is DNS (Domain Name Service)?

Part 10: Shells & User Interfaces

OperaƟng Systems 487/746 Shells & User Interfaces

Lecture Overview

1. Command Interpreters

2. The Command Line

3. Graphical Interfaces

Part 10.1: Command Interpreters

OperaƟng Systems 489/746 Shells & User Interfaces

Shell

• programming language centered on OS interaction

• rudimentary control ϐlow

• untyped, text-centered variables

• dubious error handling

OperaƟng Systems 490/746 Shells & User Interfaces

Interactive Shells

• almost all shells have an interactive mode

• the user inputs a single statement on keyboard

• when conϐirmed, it is immediately executed

• this forms the basis of command-line interfaces

OperaƟng Systems 491/746 Shells & User Interfaces

Shell Scripts

• a shell script is an (executable) ϐile

• in simplest form, it is a sequence of commands

− each command goes on a separate line

− executing a script is about the same as typing it

• but can use structured programming constructs

OperaƟng Systems 492/746 Shells & User Interfaces

Shell Upsides

• very easy to write simple scripts

• ϐirst choice for simple automation

• often useful to save repetitive typing

• deϐinitely not good for big programs

OperaƟng Systems 493/746 Shells & User Interfaces

Bourne Shell

• a speciϐic language in the “shell” family

• the ϐirst shell with consistent programming support

− available since 1976

• still widely used today

− best known implementation is bash

− /bin/sh is mandated by POSIX

OperaƟng Systems 494/746 Shells & User Interfaces

C Shell

• also known as csh, ϐirst released in 1978

• more C-like syntax than sh (Bourne Shell)

− but not really very C-like at all

• improved interactive mode (over sh from ’76)

• also still used today (tcsh)

OperaƟng Systems 495/746 Shells & User Interfaces

Korn Shell

• also known as ksh, released in 1983

• middle ground between sh and csh

• basis of the POSIX.2 requirements

• a number of implementations exists

OperaƟng Systems 496/746 Shells & User Interfaces

Commands

• typically a name of an executable

− may also be control ϐlow or a built-in

• the executable is looked up in the ϐilesystem

• the shell doas a fork + exec

− this means new process for each command

− process creation is fairly expensive

OperaƟng Systems 497/746 Shells & User Interfaces

Built-in Commands

• cd change the working directory

• export for setting up environment

• echo print a message

• exec replace the shell process (no fork)

OperaƟng Systems 498/746 Shells & User Interfaces

Variables

• variable names are made of letters and digits

• using variables is indicated with $

• setting variables does not use the $

• all variables are global (except subshells)

VARIABLE="some text"

echo $VARIABLE

OperaƟng Systems 499/746 Shells & User Interfaces

Variable Substitution

• variables are substituted as text

• $foo is simply replaced with the content of foo

• arithmetic is not well supported in most shells

− or any expression syntax, e.g. relational operators

− consider z=$(($x + $y)) for addition in bash

OperaƟng Systems 500/746 Shells & User Interfaces

Command Substitution

• basically like variable substitution

• written as `command`or $(command)

− ϐirst executes the command

− and captures its standard output

− then replaces $(command)with the output

OperaƟng Systems 501/746 Shells & User Interfaces

Quoting

• whitespace is an argument separator in shell

• multi-word arguments must be quoted

• quotes can be double quotes "" or single ''

− double quotes allow variable substitution

OperaƟng Systems 502/746 Shells & User Interfaces

Quoting and Substitution

• whitespace from variable substitution must be quoted

− `foo=“hello world”``

− ls $foo is different than ls "$foo"

• bad quoting is a very common source of bugs

• consider also ϐilenames with spaces in them

OperaƟng Systems 503/746 Shells & User Interfaces

Special Variables

• $? is the result of last command

• $$ is the PID of the current shell

• $1 through $9 are positional parameters

− $# is the number of parameters

• $0 is the name of the shell (argv[0])

OperaƟng Systems 504/746 Shells & User Interfaces

Environment

• is like shell variables but not the same

• the environment is passed to all executed programs

− but a child cannot modify environment of its parent

• variables are moved into the environment by export

• environment variables often act as settings

OperaƟng Systems 505/746 Shells & User Interfaces

Important Environment Variables

• $PATH tells the system where to ϐind programs

• $HOME is the home directory of the current user

• $EDITOR and $VISUAL set which text editor to use

• $EMAIL is the email address of the current user

• $PWD is the current working directory

OperaƟng Systems 506/746 Shells & User Interfaces

Globbing

• patterns for quickly listing multiple ϐiles

• e.g. ls *.c shows all ϐiles ending in .c

• *matches any number of characters

• ? matches one arbitrary character

• works on entire paths (ls src/*/*.c)

OperaƟng Systems 507/746 Shells & User Interfaces

Conditionals

• allows conditional execution of commands

• if cond; then cmd1; else cmd2; fi

• also elif cond2; then cmd3; fi

• cond is also a command (the exit code is used)

OperaƟng Systems 508/746 Shells & User Interfaces

test (evaluating boolean expressions)

• originally an external program, also known as [

− nowadays built-in in most shells

− works around lack of expressions in shell

• evaluates its arguments and returns true or false

− can be used with if and while constructs

OperaƟng Systems 509/746 Shells & User Interfaces

test Examples

• test file1 -nt file2 ‘nt’ = newer than

• test 32 -gt 14 ‘gt’ = greater than

• test foo = bar string equality

• combines with variable substitution (test $y = x)

OperaƟng Systems 510/746 Shells & User Interfaces

Loops

• while cond; do cmd; done

− cond is a command, like in if

• for i in 1 2 3 4; do cmd; done

− allows globs: for f in *.c; do cmd; done

− also command substitution

− for f in `seq 1 10`; do cmd; done

OperaƟng Systems 511/746 Shells & User Interfaces

Case Analysis

• selects a command based on pattern matching

• case $x in *.c) cc $x;; *) ls $x;; esac

− yes, case really uses unbalanced parens

− the ;; indicates end of a case

OperaƟng Systems 512/746 Shells & User Interfaces

Command Chaining

• ; (semicolon): run two commands in sequence

• && run the second command if the ϐirst succeeded

• || run the second command if the ϐirst failed

• e.g. compile and run: cc file.c && ./a.out

OperaƟng Systems 513/746 Shells & User Interfaces

Pipes

• shells can run pipelines of commands

• cmd1 | cmd2 | cmd3

− all commands are run in parallel

− output of cmd1 becomes input of cmd2

− output of cmd2 is processed by cmd3

echo hello world | sed -e s,hello,goodbye,

OperaƟng Systems 514/746 Shells & User Interfaces

Functions

• you can also deϐine functions in shell

• mostly a light-weight alternative to scripts

− no need to export variables

− but cannot be invoked by non-shell programs

• functions can also set variables

Part 10.2: The Command Line

OperaƟng Systems 516/746 Shells & User Interfaces

Interactive Shell

• the shell displays a prompt and waits

• the user types in a command and hits enter

• the command is executed immediately

• output is printed to the terminal

OperaƟng Systems 517/746 Shells & User Interfaces

Command Completion

• most shells let you use TAB to auto-complete

− works at least for command names and ϐile names

− but “smart completion” is common

• interactive history: hit “up” to recall a command

− also interactive history search, e.g. C-r in bash

OperaƟng Systems 518/746 Shells & User Interfaces

Prompt

• the string printed when shell expects a command

• controlled by the PS1 environment variable

• usually shows at least your username and the hostname

• also: working directory, battery status, time, weather,…

OperaƟng Systems 519/746 Shells & User Interfaces

Job Control

• only one program can run in the foreground (terminal)

• but a running program can be suspended (C-z)

• and resumed in background (bg) or in foreground (fg)

• use & to run a command in background: ./spambot &

OperaƟng Systems 520/746 Shells & User Interfaces

Terminal

• can print text and read text from a keyboard

• normally everything is printed on the last line

• the text could contain escape (control) sequences

− for printing colourful text or clearing the screen

− also for printing text at a speciϐic coordinate

OperaƟng Systems 521/746 Shells & User Interfaces

Full-Screen Terminal Apps

• applications can use the entire terminal screen

• a library abstracts away the low-level control sequences

− the library is called ncurses for new curses

− different terminals use different control sequences

• special characters exist to draw frames and separators

OperaƟng Systems 522/746 Shells & User Interfaces

UNIX Text Editors

• sed – stream editor, non-interactive

• ed – line oriented, interactive

• vi – visual, screen oriented

• ex – line-oriented mode of vi

OperaƟng Systems 523/746 Shells & User Interfaces

TUI: Text User Interface

• the program draws a 2D interface on a terminal

• these types of interfaces can be quite comfortable

• they are often easier to program than GUIs

• very low bandwidth requirements for remote use

Part 10.3: Graphical Interfaces

OperaƟng Systems 525/746 Shells & User Interfaces

Windowing Systems

• each application runs in its own window

− or possibly multiple windows

• multiple applications can be shown on screen

• windows can be moved around, resized &c.

− facilitated by frames around window content

− generally known as windowmanagement

OperaƟng Systems 526/746 Shells & User Interfaces

Window-less Systems

• especially popular on smaller screens

• applications take the entire screen

− give or take status or control widgets

• task switching via a dedicated screen

OperaƟng Systems 527/746 Shells & User Interfaces

A GUI Stack

• graphics card driver, mode setting

• drawing/painting (usually hardware-accelerated)

• multiplexing (e.g. using windows)

• widgets: buttons, labels, lists,…

• layout: what goes where on the screen

OperaƟng Systems 528/746 Shells & User Interfaces

Well-known GUI Stacks

• Windows

• macOS, iOS

• X11

• Wayland

• Android

OperaƟng Systems 529/746 Shells & User Interfaces

Portability

• GUI “toolkits” make portability easy

− Qt, GTK, Swing, HTML5+CSS,…

− many of them run on all major platforms

• code portability is not the only issue

− GUIs come with look and feel guidelines

− portable applications may fail to ϐit

OperaƟng Systems 530/746 Shells & User Interfaces

Text Rendering

• a surprisingly complex task

• unlike terminals, GUIs use variable pitch fonts

− brings up issues like kerning

− hard to predict pixel width of a line

• bad interaction with printing (cf. WYSIWIG)

OperaƟng Systems 531/746 Shells & User Interfaces

Bitmap Fonts

• characters are represented as pixel arrays

− usually just black and white

• traditionally pixel-drawn by hand

− very time consuming (many letters, sizes, variants)

• the result is sharp but jagged (not smooth)

OperaƟng Systems 532/746 Shells & User Interfaces

Outline Fonts

• Type1, TrueType – based on splines

• they can be scaled to arbitrary pixel sizes

• same font can be used for screen and for print

• rasterisation is usually done in software

OperaƟng Systems 533/746 Shells & User Interfaces

Hinting, Anti-Aliasing

• screens are low resolution devices

− typical HD displays have DPI around 100

− laser printers have DPI of 300 or more

• hinting: deform outlines to better ϐit a pixel grid

• anti-aliasing: smooth outlines using grayscale

OperaƟng Systems 534/746 Shells & User Interfaces

X11 (X Window System)

• a traditional UNIX windowing system

• provides a C API (xlib)

• built-in network transparency (socket-based)

• core protocol version 11 from 1987

OperaƟng Systems 535/746 Shells & User Interfaces

X11 Architecture

• X server provides graphics and input

• X client is an application that uses X

• a windowmanager is a (special) client

• a compositor is another special client

OperaƟng Systems 536/746 Shells & User Interfaces

Remote Displays

• application is running on computer A

• the display is not the console of A

− could be a dedicated graphical terminal

− could be another computer on a LAN

− or even across the internet

OperaƟng Systems 537/746 Shells & User Interfaces

Remote Display Protocols

• one approach is pushing pixels

− VNC (Virtual Network Computing)

• X11 uses a custom drawing protocol

• others use high-level abstractions

− NeWS (PostScript-based)

− HTML5 + JavaScript

OperaƟng Systems 538/746 Shells & User Interfaces

VNC (Virtual Network Computing)

• sends compressed pixel data over the wire

− can leverage regularities in pixel data

− can send incremental updates

• and input events in the other direction

• no support for peripherals or ϐile sync

OperaƟng Systems 539/746 Shells & User Interfaces

RDP (Remote Desktop Protocol)

• more sophisticated than VNC (but proprietary)

• can also send drawing commands over the wire

− like X11, but using DirectX drawing

− also allows remote OpenGL

• support for audio, remote USB &c.

OperaƟng Systems 540/746 Shells & User Interfaces

SPICE (SimpleProtocol for Indep. ComputingEnv.)

• open protocol somewhere between VNC and RDP

• can send OpenGL (but only over a local socket)

• two-way audio, USB, clipboard integration

• still mainly based on pushing (compressed) pixels

OperaƟng Systems 541/746 Shells & User Interfaces

Remote Desktop Security

• the user needs to be authenticated over network

− passwords are easy, biometric data less so

• the data stream should be encrypted

− not part of the X11 or NeWS protocols

− or even HTTP by default (used for HTML5/JS)

OperaƟng Systems 542/746 Shells & User Interfaces

Review Questions

33. What is a shell?

34. What does variable substitution mean?

35. What is an environment variable?

36. What belongs into the GUI stack?

Part 11: Access Control

OperaƟng Systems 544/746 Access Control

Lecture Overview

1. Multi-User Systems

2. File Systems

3. Sub-user Granularity

Part 11.1: Multi-User Systems

OperaƟng Systems 546/746 Access Control

Users

• originally a proxy for people

• currently a more general abstraction

• user is the unit of ownership

• many permissions are user-centered

OperaƟng Systems 547/746 Access Control

Computer Sharing

• computer is a (often costly) resource

• efϐiciency of use is a concern

− a single user rarely exploits a computer fully

• data sharing makes access control a necessity

OperaƟng Systems 548/746 Access Control

Ownership

• various objects in an OS can be owned

− primarily ϐiles and processes

• the owner is typically whoever created the object

− ownership can be transferred

− usually at the impetus of the original owner

OperaƟng Systems 549/746 Access Control

Process Ownership

• each process belongs to some user

• the process acts on behalf of the user

− the process gets the same privilege as its owner

− this both constrains and empowers the process

• processes are active participants

OperaƟng Systems 550/746 Access Control

File Ownership

• each ϐile also belongs to some user

• this gives rights to the user (or rather their processes)

− they can read and write the ϐile

− they can change permissions or ownership

• ϐiles are passive participants

OperaƟng Systems 551/746 Access Control

Access Control Models

• owners usually decide who can access their objects

− this is known as discretionary access control

• in high-security environments, this is not allowed

− known as mandatory access control

− a central authority decides the policy

OperaƟng Systems 552/746 Access Control

(Virtual) System Users

• users are an useful ownership abstraction

• various system services get their own “fake” users

• this allows them to own ϐiles and processes

• and also limit their access to the rest of the OS

OperaƟng Systems 553/746 Access Control

Principle of Least Privilege

• entities should have minimum privilege required

− applies to software components

− but also to human users of the system

• this limits the scope of mistakes

− and also of security compromises

OperaƟng Systems 554/746 Access Control

Privilege Separation

• different parts of a system need different privilege

• least privilege dictates splitting the system

− components are isolated from each other

− they are given only the rights they need

• components communicate using the simplest feasible IPC

OperaƟng Systems 555/746 Access Control

Process Separation

• recall that each process runs in its own address space

− but shared memory can be requested

• each user has a view of the ϐilesystem

− a lot more is shared by default in the ϐilesystem

− especially the namespace (directory hierarchy)

OperaƟng Systems 556/746 Access Control

Access Control Policy

• there are 3 pieces of information

− the subject (user)

− the verb (what is to be done)

− the object (the ϐile or other resource)

• there are many ways to encode this information

OperaƟng Systems 557/746 Access Control

Access Rights Subjects

• in a typical OS those are (possibly virtual) users

− sub-user units are possible (e.g. programs)

− roles and groups could also be subjects

• the subject must be named (names, identiϐiers)

− easy on a single system, hard in a network

OperaƟng Systems 558/746 Access Control

Access Rights Verbs

• the available “verbs” (actions) depend on object type

• a typical object would be a ϐile

− ϐiles can be read, written, executed

− directories can be searched or listed or changed

• network connections can be established &c.

OperaƟng Systems 559/746 Access Control

Access Rights Objects

• anything that can be manipulated by programs

− although not everything is subject to access control

• could be ϐiles, directories, sockets, shared memory,…

• object names depend on their type

− ϐile paths, i-node numbers, IP addresses,…

OperaƟng Systems 560/746 Access Control

Subjects in POSIX

• there are 2 types of subjects: users and groups

• each user can belong to multiple groups

• users are split into normal users and root

− root is also known as the super-user

OperaƟng Systems 561/746 Access Control

User Management

• the system needs a database of users

• in a network, user identities often need to be shared

• could be as simple as a text ϐile

− /etc/passwd and /etc/group on UNIX systems

• or as complex as a distributed database

OperaƟng Systems 562/746 Access Control

User and Group Identiϐiers

• users and groups are represented as numbers

− this improves efϐiciency of many operations

− the numbers are called uid and gid

• those numbers are valid on a single computer

− or at most, a local network

OperaƟng Systems 563/746 Access Control

Changing Identities

• each process belongs to a particular user

• ownership is inherited across fork()

• super-user processes can use setuid()

• exec() can sometimes change a process owner

OperaƟng Systems 564/746 Access Control

Login

• a super-user process manages user logins

• the user types their name and provides credentials

− upon successful authentication, login calls fork()

− the child calls setuid() to the user

− and uses exec() to start a shell for the user

OperaƟng Systems 565/746 Access Control

User Authentication

• the user needs to authenticate themselves

• passwords are the most commonly used method

− the system needs to know the right password

− user should be able to change their password

• biometric methods are also quite popular

OperaƟng Systems 566/746 Access Control

Remote Login

• authentication over network is more complicated

• passwords are easiest, but not easy

− encryption is needed to safely transmit passwords

− along with computer authentication

• 2-factor authentication is a popular improvement

OperaƟng Systems 567/746 Access Control

Computer Authentication

• how to ensure we send the password to the right party?

− an attacker could impersonate our remote computer

• usually via asymmetric cryptography

− a private key can be used to sign messages

− the server will sign amessage establishing its identity

OperaƟng Systems 568/746 Access Control

2-factor Authentication

• 2 different types of authentication

− harder to spoof both at the same time

• there are a few factors to pick from

− something the user knows (password)

− something the user has (keys)

− what the user is (biometric)

OperaƟng Systems 569/746 Access Control

Enforcement: Hardware

• all enforcement begins with the hardware

− the CPU provides a privileged mode for the kernel

− DMAmemory and IO instructions are protected

• the MMU allows the kernel to isolate processes

− and protect its own integrity

OperaƟng Systems 570/746 Access Control

Enforcement: Kernel

• kernel uses hardware facilities to implement security

− it stands between resources and processes

− access is mediated through system calls

• ϐile systems are part of the kernel

• user and group abstractions are part of the kernel

OperaƟng Systems 571/746 Access Control

Enforcement: System Calls

• the kernel acts as an arbitrator

• a process is trapped in its own address space

• processes use system calls to access resources

− kernel can decide what to allow

− based on its access control model and policy

OperaƟng Systems 572/746 Access Control

Enforcement: Service APIs

• userland processes can enforce access control

− usually system services which provide IPC API

• e.g. via the getpeereid() system call

− tells the caller which user is connected to a socket

− user-level access control is rooted in kernel facilities

Part 11.2: File Systems

OperaƟng Systems 574/746 Access Control

File Access Rights

• ϐile systems are a case study in access control

• all modern ϐile systems maintain permissions

− the only extant exception is FAT (USB sticks)

• different systems adopt different representation

OperaƟng Systems 575/746 Access Control

Representation

• ϐile systems are usually object-centric

− permissions are attached to individual objects

− easily answers “who can access this ϐile”?

• there is a ϐixed set of verbs

− those may be different for ϐiles and directories

− different systems allow different verbs

OperaƟng Systems 576/746 Access Control

The UNIX Model

• each ϐile and directory has a single owner

• plus a single owning group

− not limited to those the owner belongs to

• ownership and permissions are attached to i-nodes

OperaƟng Systems 577/746 Access Control

Access vs Ownership

• POSIX ties ownership and access rights

• only 3 subjects can be named on a ϐile

− the owner (user)

− the owning group

− anyone else

OperaƟng Systems 578/746 Access Control

Access Verbs in POSIX File Systems

• read: read a ϐile, list a directory

• write: write a ϐile, link/unlink i-nodes to a directory

• execute: exec a program, enter the directory

• execute as owner (group): setuid/setgid

OperaƟng Systems 579/746 Access Control

Permission Bits

• basic UNIX permissions can be encoded in 9 bits

• 3 bits per 3 subject designations

− ϐirst comes the owner, then group, then others

− written as e.g. rwxr-x--- or 0750

• plus two numbers for the owner/group identiϐiers

OperaƟng Systems 580/746 Access Control

Changing File Ownership

• the owner and root can change ϐile owners

• chown and chgrp system utilities

• or via the C API

− chown(), fchown(), fchownat(), lchown()

− same set for chgrp

OperaƟng Systems 581/746 Access Control

Changing File Permissions

• again available to the owner and to root

• chmod is the user space utility

− either numeric argument: chmod 644 file.txt

− or symbolic: chmod +x script.sh

• and the corresponding system call (numeric-only)

OperaƟng Systems 582/746 Access Control

setuid and setgid

• special permissions on executable ϐiles

• they allow exec to also change the process owner

• often used for granting extra privileges

− e.g. the mount command runs as the super-user

OperaƟng Systems 583/746 Access Control

Sticky Directories

• ϐile creation and deletion is a directory permission

− this is problematic for shared directories

− in particular the system /tmp directory

• in a sticky directory, different rules apply

− new ϐiles can be created as usual

− only the owner can unlink a ϐile from the directory

OperaƟng Systems 584/746 Access Control

Access Control Lists

• ACL is a list of ACE’s (access control elements)

− each ACE is a subject + verb pair

− it can name an arbitrary user

• ACL is attached to an object (ϐile, directory)

• more ϐlexible than the traditional UNIX system

OperaƟng Systems 585/746 Access Control

ACLs and POSIX

• part of POSIX.1e (security extensions)

• most POSIX systems implement ACLs

− this does not supersede UNIX permission bits

− instead, they are interpreted as part of the ACL

• ϐile system support is not universal (but widespread)

OperaƟng Systems 586/746 Access Control

Device Files

• UNIX represents devices as special i-nodes

− this makes them subject to normal access control

• the particular device is described in the i-node

− only a super-user can create device nodes

− users could otherwise gain access to any device

OperaƟng Systems 587/746 Access Control

Sockets and Pipes

• named sockets and pipes are just i-nodes

− also subject to standard ϐile permissions

• especially useful with sockets

− a service sets up a named socket in the ϐile system

− ϐile permissions decide who can talk to the service

OperaƟng Systems 588/746 Access Control

Special Attributes

• ϐlags that allow additional restrictions on ϐile use

− e.g. immutable ϐiles (cannot be changed by anyone)

− append-only ϐiles (for logϐile integrity protection)

− compression, copy-on-write controls

• non-standard (Linux chattr, BSD chflags)

OperaƟng Systems 589/746 Access Control

Network File System

• NFS 3.0 simply transmits numeric uid and gid

− the numbering needs to be synchronised

− can be done via a central user database

• NFS 4.0 uses per-user authentication

− the user authenticates to the server directly

− ϐilesystem uid and gid values are mapped

OperaƟng Systems 590/746 Access Control

File System Quotas

• storage space is limited, shared by users

− ϐiles take up storage space

− ϐile ownership is also a liability

• quotas set up limits space use by users

− exhausted quota can lead to denial of access

OperaƟng Systems 591/746 Access Control

Removable Media

• access control at ϐile system level makes no sense

− other computers may choose to ignore permissions

− user names or id’s would not make sense anyway

• option 1: encryption (for denying reads)

• option 2: hardware-level controls

− usually read-only vs read-write on the entire medium

OperaƟng Systems 592/746 Access Control

The chroot System Call

• each process in UNIX has its own root directory

− for most, this coincides with the system root

• the root directory can be changed using chroot()

• can be useful to limit ϐile system access

− e.g. in privilege separation scenarios

OperaƟng Systems 593/746 Access Control

Uses of chroot

• chroot alone is not a security mechanism

− a super-user process can get out easily

− but not easy for a normal user process

• also useful for diagnostic purposes

• and as lightweight alternative to virtualisation

Part 11.3: Sub-User Granularity

OperaƟng Systems 595/746 Access Control

Users are Not Enough

• users are not always the right abstraction

− creating users is relatively expensive

− only a super-user can create new users

• you may want to include programs as subjects

− or rather, the combination user + program

OperaƟng Systems 596/746 Access Control

Naming Programs

• users have user names, but how about programs?

• option 1: cryptographic signatures

− portable across computers but complex

− establishes identity based on the program itself

• option 2: i-node of the executable

− simple, local, identity based on location

OperaƟng Systems 597/746 Access Control

Program as a Subject

• program: passive (ϐile) vs active (processes)

− only a process can be a subject

− but program identity is attached to the ϐile

• rights of a process depend on its program

− exec()will change privileges

OperaƟng Systems 598/746 Access Control

Mandatory Access Control

• delegates permission control to a central authority

• often coupled with security labels

− classiϐies subjects (users, processes)

− and also objects (ϐiles, sockets, programs)

• the owner cannot change object permissions

OperaƟng Systems 599/746 Access Control

Capabilities

• not all verbs (actions) need to take objects

• e.g. shutting down the computer (there is only one)

• mounting ϐile systems (they can’t be always named)

• listening on ports with number less than 1024

OperaƟng Systems 600/746 Access Control

Dismantling the root User

• the traditional root user is all-powerful

− “all or nothing” is often unsatisfactory

− violates the principle of least privilege

• many special properties of root are capabilities

− root then becomes the user with all capabilities

− other users can get selective privileges

OperaƟng Systems 601/746 Access Control

Security and Execution

• security hinges on what is allowed to execute

• arbitrary code execution are the worst exploits

− this allows unauthorized execution of code

− same effect as impersonating the user

− almost as bad as stolen credentials

OperaƟng Systems 602/746 Access Control

Untrusted Input

• programs often process data from dubious sources

− think image viewers, audio & video players

− archive extraction, font rendering,…

• bugs in programs can be exploited

− the program can be tricked into executing data

OperaƟng Systems 603/746 Access Control

Process as a Subject

• some privileges can be tied to a particular process

− those only apply during the lifetime of the process

− often restrictions rather than privileges

− this is how privilege dropping is done

• processes are identiϐied using their numeric pid

− restrictions are inherited across fork()

OperaƟng Systems 604/746 Access Control

Sandboxing

• tries to limit damage from code execution exploits

• the program drops all privileges it can

− this is done before it touches any of the input

− the attacker is stuck with the reduced privileges

− this can often prevent a successful attack

OperaƟng Systems 605/746 Access Control

Untrusted Code

• traditionally, you would only execute trusted code

− usually based on reputation or other external factors

− this does not scale to a large number of vendors

• it is common to execute untrusted, even dubious code

− this can be okay with sufϐicient sandboxing

OperaƟng Systems 606/746 Access Control

API-Level Access Control

• capability system for user-level resources

− things like contact lists, calendars, bookmarks

− objects not provided directly by the kernel

• enforcement e.g. via a virtual machine

− not applicable to execution of native code

− alternative: an IPC-based API

OperaƟng Systems 607/746 Access Control

Android/iOS Permissions

• applications from a store are semi-trusted

• typically single-user computers/devices

• permissions are attached to apps instead of users

• partially virtual users, partially API-level

OperaƟng Systems 608/746 Access Control

Review Questions

37. What is a user?

38. What is the principle of least privilege?

39. What is an access control object?

40. What is a sandbox?

Part 12: Virtualisation & Containers

OperaƟng Systems 610/746 VirtualisaƟon & Containers

Lecture Overview

1. Hypervisors

2. Containers

3. Management

Part 12.1: Hypervisors

OperaƟng Systems 612/746 VirtualisaƟon & Containers

What is a Hypervisor

• also known as a Virtual Machine Monitor

• allows execution of multiple operating systems

• like a kernel that runs kernels

• improves hardware utilisation

OperaƟng Systems 613/746 VirtualisaƟon & Containers

Motivation

• OS-level sharing is tricky

− user isolation is often insufϐicient

− only root can install software

• the hypervisor/OS interface is simple

− compared to OS-application interfaces

OperaƟng Systems 614/746 VirtualisaƟon & Containers

Virtualisation in General

• many resources are “virtualised”

− physical memory by the MMU

− peripherals by the OS

• makes resource management easier

• enables isolation of components

OperaƟng Systems 615/746 VirtualisaƟon & Containers

Hypervisor Types

• type 1: bare metal

− standalone, microkernel-like

• type 2: hosted

− runs on top of normal OS

− usually need kernel support

OperaƟng Systems 616/746 VirtualisaƟon & Containers

Type 1 (Bare Metal)

• IBM z/VM

• (Citrix) Xen

• Microsoft Hyper-V

• VMWare ESX

OperaƟng Systems 617/746 VirtualisaƟon & Containers

Type 2 (Hosted)

• VMWare (Workstation, Player)

• Oracle VirtualBox

• Linux KVM

• FreeBSD bhyve

• OpenBSD vmm

OperaƟng Systems 618/746 VirtualisaƟon & Containers

History

• started with mainframe computers

• IBM CP/CMS: 1968

• IBM VM/370: 1972

• IBM z/VM: 2000

OperaƟng Systems 619/746 VirtualisaƟon & Containers

Desktop Virtualisation

• x86 hardware lacks virtual supervisor mode

• software-only solutions viable since late 90s

− Bochs: 1994

− VMWare Workstation: 1999

− QEMU: 2003

OperaƟng Systems 620/746 VirtualisaƟon & Containers

Paravirtualisation

• introduced as VMI in 2005 by VMWare

• alternative approach in Xen in 2006

• relies on modiϐication of the guest OS

• near-native speed without HW support

OperaƟng Systems 621/746 VirtualisaƟon & Containers

The Virtual x86 Revolution

• 2005: virtualisation extensions on x86

• 2008: MMU virtualisation

• unmodiϐied guest at near-native speed

• most software-only solutions became obsolete

OperaƟng Systems 622/746 VirtualisaƟon & Containers

Paravirtual Devices

• special drivers for virtualised devices

− block storage, network, console

− random number generator

• faster than software emulation

− orthogonal to CPU/MMU virtualisation

OperaƟng Systems 623/746 VirtualisaƟon & Containers

Virtual Computers

• usually known as Virtual Machines

• everything in the computer is virtual

− either via hardware (VT-x, EPT)

− or software (QEMU, virtio,…)

• much easier to manage than actual hardware

OperaƟng Systems 624/746 VirtualisaƟon & Containers

Essential Resources

• the CPU and RAM

• persistent (block) storage

• network connection

• a console device

OperaƟng Systems 625/746 VirtualisaƟon & Containers

CPU Sharing

• same principle as normal processes

• there is a scheduler in the hypervisor

− simpler, with different trade-offs

• privileged instructions are trapped

OperaƟng Systems 626/746 VirtualisaƟon & Containers

RAM Sharing

• very similar to standard paging

• software (shadow paging)

• or hardware (second-level translation)

• ϐixed amount of RAM for each VM

OperaƟng Systems 627/746 VirtualisaƟon & Containers

Shadow Page Tables

• the guest system cannot access the MMU

• set up shadow table, invisible to the guest

• guest page tables are sync’d to the sPT by VMM

• the gPT can be made read-only to cause traps

OperaƟng Systems 628/746 VirtualisaƟon & Containers

Second-Level Translation

• hardware-assisted MMU virtualisation

• adds guest-physical to host-physical layer

• greatly simpliϐies the VMM

• also much faster than shadow page tables

OperaƟng Systems 629/746 VirtualisaƟon & Containers

Network Sharing

• usually a paravirtualised NIC

− transports frames between guest and host

− usually connected to a SW bridge in the host

− alternatives: routing, NAT

• a single physical NIC is used by everyone

OperaƟng Systems 630/746 VirtualisaƟon & Containers

Virtual Block Devices

• usually also paravirtualised

• often backed by normal ϐiles

− maybe in a special format

− e.g. based on copy-on-write

• but can be a real block device

OperaƟng Systems 631/746 VirtualisaƟon & Containers

Special Resources

• mainly useful in desktop systems

• GPU / graphics hardware

• audio equipment

• printers, scanners,…

OperaƟng Systems 632/746 VirtualisaƟon & Containers

PCI Passthrough

• an anti-virtualisation technology

• based on an IO-MMU (VT-D, AMD-Vi)

• a virtual OS can touch real hardware

− only one OS at a time, of course

OperaƟng Systems 633/746 VirtualisaƟon & Containers

GPUs and Virtualisation

• can be assigned (via VT-d) to a single OS

• or time-shared using native drivers (GVT-g)

• paravirtualised

• shared by other means (X11, SPICE, RDP)

OperaƟng Systems 634/746 VirtualisaƟon & Containers

Peripherals

• useful either via passthrough

− audio, webcams,…

• or standard sharing technology

− network printers & scanners

− networked audio servers

OperaƟng Systems 635/746 VirtualisaƟon & Containers

Peripheral Passthrough

• virtual PCI, USB or SATA bus

• forwarding to a real device

− e.g. a single USB stick

− or a single SATA drive

OperaƟng Systems 636/746 VirtualisaƟon & Containers

Suspend & Resume

• the VM can be quite easily stopped

• the RAM of a stopped VM can be copied

− e.g. to a ϐile in the host ϐilesystem

− along with registers and other state

• and also later loaded and resumed

OperaƟng Systems 637/746 VirtualisaƟon & Containers

Migration Basics

• the stored state can be sent over network

• and resumed on a different host

• as long as the virtual environment is same

• this is known as paused migration

OperaƟng Systems 638/746 VirtualisaƟon & Containers

Live Migration

• uses asynchronous memory snapshots

• host copies pages and marks them read-only

• the snapshot is sent as it is constructed

• changed pages are sent at the end

OperaƟng Systems 639/746 VirtualisaƟon & Containers

Live Migration Handoff

• the VM is then paused

• registers and last few pages are sent

• the VM is resumed at the remote end

• usually within a few milliseconds

OperaƟng Systems 640/746 VirtualisaƟon & Containers

Memory Ballooning

• how to deallocate “physical” memory?

− i. e. return it to the hypervisor

• this is often desirable in virtualisation

• needs a special host/guest interface

Part 12.2: Containers

OperaƟng Systems 642/746 VirtualisaƟon & Containers

What are Containers?

• OS-level virtualisation

− e.g. virtualised network stack

− or restricted ϐile system access

• not a complete virtual computer

• turbocharged processes

OperaƟng Systems 643/746 VirtualisaƟon & Containers

Why Containers

• virtual machines take a while to boot

• each VM needs its own kernel

− this adds up if you need many VMs

• easier to share memory efϐiciently

• easier to cut down the OS image

OperaƟng Systems 644/746 VirtualisaƟon & Containers

Kernel Sharing

• multiple containers share a single kernel

• but not user tables, process tables,…

• the kernel must explicitly support this

• another level of isolation (process, user, container)

OperaƟng Systems 645/746 VirtualisaƟon & Containers

Boot Time

• a light virtual machine takes a second or two

• a container can take under 50ms

• but VMs can be suspended and resumed

• but dormant VMs take up a lot more space

OperaƟng Systems 646/746 VirtualisaƟon & Containers

chroot

• the mother of all container systems

• not very sophisticated or secure

• but allows multiple OS images under 1 kernel

• everything else is shared

OperaƟng Systems 647/746 VirtualisaƟon & Containers

chroot-based Containers

• process tables, network, etc. are shared

• the superuser must also be shared

• containers have their own view of the ϐilesystem

− including system libraries and utilities

OperaƟng Systems 648/746 VirtualisaƟon & Containers

BSD Jails

• an evolution of the chroot container

• adds user and process table separation

• and a virtualised network stack

− each jail can get its own IP address

• root in the jail has limited power

OperaƟng Systems 649/746 VirtualisaƟon & Containers

Linux VServer

• like BSD jails but on Linux

− FreeBSD jail 2000, VServer 2001

• not part of the mainline kernel

• jailed root user is partially isolated

OperaƟng Systems 650/746 VirtualisaƟon & Containers

Namespaces

• visibility compartments in the Linux kernel

• virtualizes common resources

− the ϐilesystem hierarchy (including mounts)

− process tables

− networking (IP address)

OperaƟng Systems 651/746 VirtualisaƟon & Containers

cgroups

• controls resource allocation in Linux

• a CPU group is a fair scheduling unit

• a memory group sets limits on memory use

• mostly orthogonal to namespaces

OperaƟng Systems 652/746 VirtualisaƟon & Containers

LXC

• mainline Linux way to do containers

• based on namespaces and cgroups

• relative newcomer (2008, 7 years after vserver)

• feature set similar to VServer, OpenVZ &c.

OperaƟng Systems 653/746 VirtualisaƟon & Containers

User-Mode Linux

• halfway between a container and a virtual machine

• an early fully paravirtualised system

• a Linux kernel runs as a process on another Linux

• integrated in Linux 2.6 in 2003

OperaƟng Systems 654/746 VirtualisaƟon & Containers

DragonFlyBSD Virtual Kernels

• very similar to User-Mode Linux

• part of DFlyBSD since 2007

• uses standard libc, unlike UML

• paravirtual ethernet, storage and console

OperaƟng Systems 655/746 VirtualisaƟon & Containers

User Mode Kernels

• easier to retroϐit securely

− uses existing security mechanisms

− for the host, mostly a standard process

• the kernel needs to be ported though

− analogous to a new hardware platform

OperaƟng Systems 656/746 VirtualisaƟon & Containers

Migration

• not widely supported, unlike in hypervisors

• process state is much harder to serialise

− ϐile descriptors, network connections &c.

• somewhat mitigated by fast shutdown/boot time

Part 12.3: Management

OperaƟng Systems 658/746 VirtualisaƟon & Containers

Disk Images

• disk image is the embodiment of the VM

• the virtual OS needs to be installed

• the image can be a simple ϐile

• or a dedicated block device on the host

OperaƟng Systems 659/746 VirtualisaƟon & Containers

Snapshots

• making a copy of the image = snapshot

• can be done more efϐiciently: copy on write

• alternative to OS installation

− make copies of the freshly installed image

− and run updates after cloning the image

OperaƟng Systems 660/746 VirtualisaƟon & Containers

Duplication

• each image will have a copy of the system

• copy-on-write snapshots can help

− most of the base system will not change

− regression as images are updated separately

• block-level de-duplication is expensive

OperaƟng Systems 661/746 VirtualisaƟon & Containers

File Systems

• disk images contain entire ϐile systems

• the virtual disk is of (apparently) ϐixed size

• sparse images: unwritten area is not stored

• initially only ϐilesystemmetadata is allocated

OperaƟng Systems 662/746 VirtualisaƟon & Containers

Overcommit

• the host can allocate more resources than it has

• this works as long as not many VMs reach limits

• enabled by sparse images and CoW snapshots

• also applies to available RAM

OperaƟng Systems 663/746 VirtualisaƟon & Containers

Thin Provisioning

• the act of obtaining resources on demand

• the host system can be extended as needed

− to keep pace with growing guest demands

• alternatively, VMs can be migrated out

• improves resource utilisation

OperaƟng Systems 664/746 VirtualisaƟon & Containers

Conϐiguration

• each OS has its own conϐiguration ϐiles

• same methods apply as for physical networks

− software conϐiguration management

• bundled services are deployed to VMs

OperaƟng Systems 665/746 VirtualisaƟon & Containers

Bundling vs Sharing

• bundling makes deployment easier

• the bundled components have known behaviour

• but updates are much trickier

• this also prevents resource sharing

OperaƟng Systems 666/746 VirtualisaƟon & Containers

Security

• hypervisors have a decent track record

− security here means protection of host from guest

− breaking out is still possible sometimes

• containers are more of a mixed bag

− many hooks are needed into the kernel

OperaƟng Systems 667/746 VirtualisaƟon & Containers

Updates

• each system needs to be updated separately

− this also applies to containers

• blocks coming from a common ancestor are shared

− but updating images means loss of sharing

OperaƟng Systems 668/746 VirtualisaƟon & Containers

Container vs VM Updates

• de-duplication may be easier in containers

− shared ϐile system – e.g. link farming

• kernel updates: containers and type 2 hypervisors

− can be mitigated by live migration

• type 1 hypervisors need less downtime

OperaƟng Systems 669/746 VirtualisaƟon & Containers

Docker

• automated container image management

• mainly a service deployment tool

• containers share a single Linux kernel

− the kernel itself can run in a VM

• rides on a wave of bundling resurgence

OperaƟng Systems 670/746 VirtualisaƟon & Containers

The Cloud

• public virtualisation infrastructure

• “someone else’s computer”

• the guests are not secure against the host

− entire memory is exposed, including secret keys

− host compromise is fatal

• the host is mostly secure from the guests

OperaƟng Systems 671/746 VirtualisaƟon & Containers

Review Questions

41. What is a hypervisor?

42. What is paravirtualisation?

43. How are VMs suspended and migrated?

44. What is a container?

Part 13: Review

OperaƟng Systems 673/746 Review

What is an OS made of?

• the kernel

• system libraries

• system daemons / services

• user interface

• system utilities

Basically every OS has those.

OperaƟng Systems 674/746 Review

The Kernel

• lowest level of an operating system

• executes in privileged mode

• manages all the other software

− including other OS components

• enforces isolation and security

• provides low-level services to programs

OperaƟng Systems 675/746 Review

System Libraries

• form a layer above the OS kernel

• provide higher-level services

− use kernel services behind the scenes

− easier to use than the kernel interface

• typical example: libc

− provides C functions like printf

− also known as msvcrt on Windows

OperaƟng Systems 676/746 Review

Programming Interfaces

• kernel system call interface

• system libraries / APIs

• inter-process protocols

• command-line utilities (scripting)

OperaƟng Systems 677/746 Review

(System) Libraries

• mainly C functions and data types

• interfaces deϐined in header ϐiles

• deϐinitions provided in libraries

− static libraries (archives): libc.a

− shared (dynamic) libraries: libc.so

• on Windows: msvcrt.lib and msvcrt.dll

• there are (many) more besides libc / msvcrt

OperaƟng Systems 678/746 Review

Shared (Dynamic) Libraries

• required for running programs

• linking is done at execution time

• less code duplication

• can be upgraded separately

• but: dependency problems

OperaƟng Systems 679/746 Review

Why is Everything a File

• re-use the comprehensive ϐile system API

• re-use existing ϐile-based command-line tools

• bugs are bad simplicity is good

• want to print? cat file.txt > /dev/ulpt0

− (reality is a little more complex)

OperaƟng Systems 680/746 Review

What is a Filesystem?

• a set of ϐiles and directories

• usually lives on a single block device

− but may also be virtual

• directories and ϐiles form a tree

− directories are internal nodes

− ϐiles are leaf nodes

OperaƟng Systems 681/746 Review

File Descriptors

• the kernel keeps a table of open ϐiles

• the ϐile descriptor is an index into this table

• you do everything using ϐile descriptors

• non-Unix systems have similar concepts

OperaƟng Systems 682/746 Review

Regular ϐiles

• these contain sequential data (bytes)

• may have inner structure but the OS does not care

• there is metadata attached to ϐiles

− like when were they last modiϐied

− who can and who cannot access the ϐile

• you read() and write() ϐiles

OperaƟng Systems 683/746 Review

Privileged CPU Mode

• many operations are restricted in user mode

− this is how user programs are executed

− also most of the operating system

• software running in privileged mode can do ~anything

− most importantly it can program the MMU

− the kernel runs in this mode

OperaƟng Systems 684/746 Review

Memory Management Unit

• is a subsystem of the processor

• takes care of address translation

− user software uses virtual addresses

− the MMU translates them to physical addresses

• the mappings can be managed by the OS kernel

OperaƟng Systems 685/746 Review

What does a Kernel Do?

• memory & process management

• task (thread) scheduling

• device drivers

− SSDs, GPUs, USB, bluetooth, HID, audio,…

• ϐile systems

• networking

OperaƟng Systems 686/746 Review

Kernel Architecture Types

• monolithic kernels (Linux, *BSD)

• microkernels (Mach, L4, QNX, NT,…)

• hybrid kernels (macOS)

• type 1 hypervisors (Xen)

• exokernels, rump kernels

OperaƟng Systems 687/746 Review

System Call Sequence

• ϐirst, libc prepares the system call arguments

• and puts the system call number in the correct register

• then the CPU is switched into privileged mode

• this also transfers control to the syscall handler

OperaƟng Systems 688/746 Review

What is an i-node?

• an anonymous, ϐile-like object

• could be a regular ϐile

− or a directory

− or a special ϐile

− or a symlink

OperaƟng Systems 689/746 Review

Disk-Like Devices

• disk drives provide block-level access

• read and write data in 512-byte chunks

− or also 4K on big modern drives

• a big numbered array of blocks

OperaƟng Systems 690/746 Review

I/O Scheduler (Elevator)

• reads and writes are requested by users

• access ordering is crucial on a mechanical drive

− not as important on an SSD

− but sequential access is still much preferred

• requests are queued (recall, disks are slow)

− but they are not processed in FIFO order

OperaƟng Systems 691/746 Review

Filesystem as Resource Sharing

• usually only 1 or few disks per computer

• many programs want to store persistent data

• ϐile system allocates space for the data

− which blocks belong to which ϐile

• different programs can write to different ϐiles

− no risk of trying to use the same block

OperaƟng Systems 692/746 Review

Filesystem as Abstraction

• allows the data to be organised into ϐiles

• enables the user to manage and review data

• ϐiles have arbitrary & dynamic size

− blocks are transparently allocated & recycled

• structured data instead of a ϐlat block array

OperaƟng Systems 693/746 Review

Memory-mapped IO

• uses virtual memory (cf. last lecture)

• treat a ϐile as if it was swap space

• the ϐile is mapped into process memory

− page faults indicate that data needs to be read

− dirty pages cause writes

• available as the mmap system call

OperaƟng Systems 694/746 Review

Fragmentation

• internal – not all blocks are fully used

− ϐiles are of variable size, blocks are ϐixed

− a 4100 byte ϐile needs 2 4 KiB blocks

• external – free space is non-contiguous

− happens when many ϐiles try to grow at once

− this means new ϐiles are also fragmented

OperaƟng Systems 695/746 Review

Hard Links

• multiple names can refer to the same i-node

− names are given by directory entries

− we call such multiple-named ϐiles hard links

− it’s usually forbidden to hard-link directories

• hard links cannot cross device boundaries

− i-node numbers are only unique within a ϐilesystem

OperaƟng Systems 696/746 Review

Process Resources

• memory (address space)

• processor time

• open ϐiles (descriptors)

− also working directory

− also network connections

OperaƟng Systems 697/746 Review

Process Memory

• each process has its own address space

• this means processes are isolated from each other

• requires that the CPU has an MMU

• implemented via paging (page tables)

OperaƟng Systems 698/746 Review

Process Switching

• switching processes means switching page tables

• physical addresses do not change

• but the mapping of virtual addresses does

• large part of physical memory is not mapped

− could be completely unallocated (unused)

− or belong to other processes

OperaƟng Systems 699/746 Review

What is a Thread?

• thread is a sequence of instructions

• different threads run different instructions

− as opposed to SIMD or many-core units (GPUs)

• each thread has its own stack

• multiple threads can share an address space

OperaƟng Systems 700/746 Review

Fork

• how do we create new processes?

• by fork-ing existing processes

• fork creates an identical copy of a process

• execution continues in both processes

− each of them gets a different return value

OperaƟng Systems 701/746 Review

Process vs Executable

• process is a dynamic entity

• executable is a static ϐile

• an executable contains an initial memory image

− this sets up memory layout

− and content of the text and data segments

OperaƟng Systems 702/746 Review

Exec

• on UNIX, processes are created via fork

• how do we run programs though?

• exec: load a new executable into a process

− this completely overwrites process memory

− execution starts from the entry point

• running programs: fork + exec

OperaƟng Systems 703/746 Review

What is a Scheduler?

• scheduler has two related tasks

− plan when to run which thread

− actually switch threads and processes

• usually part of the kernel

− even in micro-kernel operating systems

OperaƟng Systems 704/746 Review

Interrupt

• a way for hardware to request attention

• CPU mechanism to divert execution

• partial (CPU state only) context switch

• switch to privileged (kernel) CPU mode

OperaƟng Systems 705/746 Review

Timer Interrupt

• generated by the PIT or the local APIC

• the OS can set the frequency

• a hardware interrupt happens on each tick

• this creates an opportunity for bookkeeping

• and for preemptive scheduling

OperaƟng Systems 706/746 Review

What is Concurrency?

• events that can happen at the same time

• it is not important if it does, only that it can

• events can be given a happens-before partial order

• they are concurrent if unordered by happens-before

OperaƟng Systems 707/746 Review

Why Concurrency?

• problem decomposition

− different tasks can be largely independent

• reϐlecting external concurrency

− serving multiple clients at once

• performance and hardware limitations

− higher throughput on multicore computers

OperaƟng Systems 708/746 Review

Critical Section

• any section of code that must not be interrupted

• the statement x = x + 1 could be a critical section

• what is a critical section is domain-dependent

− another example could be a bank transaction

− or an insertion of an element into a linked list

OperaƟng Systems 709/746 Review

Race Condition: Deϐinition

• (anomalous) behaviour that depends on timing

• typically among multiple threads or processes

• an unexpected sequence of events happens

• recall that ordering is not guaranteed

OperaƟng Systems 710/746 Review

Mutual Exclusion

• only one thread can access a resource at once

• ensured by a mutual exclusion device (a.k.a mutex)

• a mutex has 2 operations: lock and unlock

• lockmay need to wait until another thread unlocks

OperaƟng Systems 711/746 Review

Deadlock Conditions

1. mutual exclusion

2. hold and wait condition

3. non-preemtability

4. circular wait

Deadlock is only possible if all 4 are present.

OperaƟng Systems 712/746 Review

Starvation

• starvation happens when a process can’t make progress

• generalisation of both deadlock and livelock

• for instance, unfair scheduling on a busy system

• also recall the readers and writers problem

OperaƟng Systems 713/746 Review

What is a Driver?

• piece of software that talks to a device

• usually quite speciϐic / unportable

− tied to the particular device

− and also to the operating system

• often part of the kernel

OperaƟng Systems 714/746 Review

Drivers and Microkernels

• drivers are excluded frommicrokernels

• but the driver still needs hardware access

− this could be a special memory region

− it may need to react to interrupts

• in principle, everything can be done indirectly

− but this may be quite expensive, too

OperaƟng Systems 715/746 Review

Interrupt-driven IO

• peripherals are much slower than the CPU

− polling the device is expensive

• the peripheral can signal data availability

− and also readiness to accept more data

• this frees up CPU to do other work in the meantime

OperaƟng Systems 716/746 Review

Memory-mapped IO

• devices share address space with memory

• more common in contemporary systems

• IO uses the same instructions as memory access

− load and store on RISC, mov on x86

• allows selective user-level access (via the MMU)

OperaƟng Systems 717/746 Review

Direct Memory Access

• allows the device to directly read/write memory

• this is a huge improvement over programmed IO

• interrupts only indicate buffer full/empty

• the device can read and write arbitrary physical memory

− opens up security / reliability problems

OperaƟng Systems 718/746 Review

GPU Drivers

• split into a number of components

• graphics output / frame buffer access

• memory management is often done in kernel

• geometry, textures &c. are prepared in-process

• front end API: OpenGL, Direct3D, Vulkan,…

OperaƟng Systems 719/746 Review

Storage Drivers

• split into adapter, bus and device drivers

• often a single driver per device type

− at least for disk drives and CD-ROMs

• bus enumeration and conϐiguration

• data addressing and data transfers

OperaƟng Systems 720/746 Review

Networking Layers

2. Link (Ethernet, WiFi)

3. Network (IP)

4. Transport (TCP, UDP,…)

7. Application (HTTP, SMTP,…)

OperaƟng Systems 721/746 Review

Networking and Operating Systems

• a network stack is a standard part of an OS

• large part of the stack lives in the kernel

− although this only applies to monolithic kernels

− microkernels use user-space networking

• another chunk is in system libraries & utilities

OperaƟng Systems 722/746 Review

Kernel-Side Networking

• device drivers for networking hardware

• network and transport protocol layers

• routing and packet ϐiltering (ϐirewalls)

• networking-related system calls (sockets)

• network ϐile systems (SMB, NFS)

OperaƟng Systems 723/746 Review

IP (Internet Protocol)

• uses 4 byte (v4) or 16 byte (v6) addresses

− split into network and host parts

• it is a packet-based protocol

• is a best-effort protocol

− packets may get lost, reordered or corrupted

OperaƟng Systems 724/746 Review

TCP: Transmission Control Protocol

• a stream-oriented protocol on top of IP

• works like a pipe (transfers a byte sequence)

− must respect delivery order

− and also re-transmit lost packets

• must establish connections

OperaƟng Systems 725/746 Review

UDP: User (Unreliable) Datagram Protocol

• TCP comes with non-trivial overhead

− and its guarantees are not always required

• UDP is a much simpler protocol

− a very thin wrapper around IP

− with minimal overhead on top of IP

OperaƟng Systems 726/746 Review

DNS: Domain Name Service

• hierarchical protocol for name resolution

− runs on top of TCP or UDP

• domain names are split into parts using dots

− each domain knows whom to ask for the next bit

− the name database is effectively distributed

OperaƟng Systems 727/746 Review

NFS (Network File System)

• the traditional UNIX networked ϐilesystem

• hooked quite deep into the kernel

− assumes generally reliable network (LAN)

• ϐilesystems are exported for use over NFS

• the client side mounts the NFS-exported volume

OperaƟng Systems 728/746 Review

Shell

• programming language centered on OS interaction

• rudimentary control ϐlow

• untyped, text-centered variables

• dubious error handling

OperaƟng Systems 729/746 Review

Interactive Shells

• almost all shells have an interactive mode

• the user inputs a single statement on keyboard

• when conϐirmed, it is immediately executed

• this forms the basis of command-line interfaces

OperaƟng Systems 730/746 Review

Shell Scripts

• a shell script is an (executable) ϐile

• in simplest form, it is a sequence of commands

− each command goes on a separate line

− executing a script is about the same as typing it

• but can use structured programming constructs

OperaƟng Systems 731/746 Review

Terminal

• can print text and read text from a keyboard

• normally everything is printed on the last line

• the text could contain escape (control) sequences

− for printing colourful text or clearing the screen

− also for printing text at a speciϐic coordinate

OperaƟng Systems 732/746 Review

A GUI Stack

• graphics card driver, mode setting

• drawing/painting (usually hardware-accelerated)

• multiplexing (e.g. using windows)

• widgets: buttons, labels, lists,…

• layout: what goes where on the screen

OperaƟng Systems 733/746 Review

X11 (X Window System)

• a traditional UNIX windowing system

• provides a C API (xlib)

• built-in network transparency (socket-based)

• core protocol version 11 from 1987

OperaƟng Systems 734/746 Review

Users

• originally a proxy for people

• currently a more general abstraction

• user is the unit of ownership

• many permissions are user-centered

OperaƟng Systems 735/746 Review

User Management

• the system needs a database of users

• in a network, user identities often need to be shared

• could be as simple as a text ϐile

− /etc/passwd and /etc/group on UNIX systems

• or as complex as a distributed database

OperaƟng Systems 736/746 Review

User Authentication

• the user needs to authenticate themselves

• passwords are the most commonly used method

− the system needs to know the right password

− user should be able to change their password

• biometric methods are also quite popular

OperaƟng Systems 737/746 Review

Ownership

• various objects in an OS can be owned

− primarily ϐiles and processes

• the owner is typically whoever created the object

− ownership can be transferred

− usually at the impetus of the original owner

OperaƟng Systems 738/746 Review

Access Control Policy

• there are 3 pieces of information

− the subject (user)

− the verb (what is to be done)

− the object (the ϐile or other resource)

• there are many ways to encode this information

OperaƟng Systems 739/746 Review

Sandboxing

• tries to limit damage from code execution exploits

• the program drops all privileges it can

− this is done before it touches any of the input

− the attacker is stuck with the reduced privileges

− this can often prevent a successful attack

OperaƟng Systems 740/746 Review

What is a Hypervisor

• also known as a Virtual Machine Monitor

• allows execution of multiple operating systems

• like a kernel that runs kernels

• isolation and resource sharing

OperaƟng Systems 741/746 Review

Hypervisor Types

• type 1: bare metal

− standalone, microkernel-like

• type 2: hosted

− runs on top of normal OS

− usually need kernel support

OperaƟng Systems 742/746 Review

Paravirtual Devices

• special drivers for virtualised devices

− block storage, network, console

− random number generator

• faster than software emulation

− orthogonal to CPU/MMU virtualisation

OperaƟng Systems 743/746 Review

VM Suspend & Resume

• the VM can be quite easily stopped

• the RAM of a stopped VM can be copied

− e.g. to a ϐile in the host ϐilesystem

− along with registers and other state

• and also later loaded and resumed

OperaƟng Systems 744/746 Review

What are Containers?

• OS-level virtualisation

− e.g. virtualised network stack

− or restricted ϐile system access

• not a complete virtual computer

• turbocharged processes

OperaƟng Systems 745/746 Review

Bundling vs Sharing

• bundling makes deployment easier

• the bundled components have known behaviour

• but updates are much trickier

• this also prevents resource sharing

OperaƟng Systems 746/746 Review

The End

Actually…

• a 2-part, written ϐinal exam

• test: 9/10 required

− pool of 44 questions (in the slides)

• free-form text

− one of the 11 lecture topics

− 1 page A4: be concise but comprehensive

