Implementing an Interpreter in
C++

Petr Rockai

Organisation

theory: ~50 minutes every two weeks
coding: all the remaining time

Assignments

2 weeks — 1 topic — 1 assignment (6 total)

you should get most of the work done during the seminar
assignments include writing tests!

you have 14 days to hand in your assignment

Implementing an Interpreter in C++ 2/109 May 17, 2018

Grading

each assignment is worth 2 points

implementing a game of tic-tac-toe is worth 10pt
— it has to run in the interpreter you implemented
attendance is optional: showing up is worth .2pt
missing a deadline on an assignment is worth -.5pt
you need to collect 20 points

Implementing an Interpreter in C++ 3/109 May 17, 2018

Your Own Programming Language (in 6 easy steps)

e Lexers and Parsers

e Symbol Tables

¢ Evaluating Expressions

¢ Type Checking

¢ Memory Management

o Talking to the Outside World

Implementing an Interpreter in C++ 4/109 May 17, 2018

What You Need To Know

e we will use C++14

e version control of your choice

¢ UNIX strongly recommended

e write automated tests (eg. shell scripts)

Implementing an Interpreter in C++ 5/109 May 17, 2018

Part 1: Lexers and Parsers

Lexical Structure

¢ the source code is ASCII (Unicode) text
* working one character at a time is not fun
¢ lexer converts text into a stream of tokens

Token Categories

e Kkeywords

¢ identifiers

o literals: strings and numbers
e operators

e brackets

Implementing an Interpreter in C++ 7/109 May 17, 2018

Lexer is a Finite State Automaton

e the token structure is regular

e example: an identifieris [a-zA-Z] [a-zA-Z0-9]*
e another one: anumberis [0-9][0-9]*

¢ needs to deal with whitespace between tokens, too

Lexer

¢ reads characters from the input file
e outputs tokens for future processing

Implementing an Interpreter in C++ 8/109 May 17, 2018

Token

¢ represented by a data type
e remembers the text and category
¢ also where it came from

struct Token

{
std::string text;
lineno;
enum Cat { If, Else, Endif,
Identifier, ParenOpen, ParenClose,
LitString, LitNumber } cat;
};

Implementing an Interpreter in C++ 9/109 May 17, 2018

struct Lexer

{

Lexer(const *filename);
Token next();

protected:
std::ifstream in;
std::string buf;

Token identifier();
Token literal();

T

Implementing an Interpreter in C++ 10/109 May 17, 2018

The next function reads and returns the next to-
ken

Token Lexer::next()
{
whitespace();
buf += (¢ = in.get());
if (std::isalpha(c))
return identifier();
switch (c)
{
case
}
}

Implementing an Interpreter in C++ 11/109 May 17, 2018

The state machine could be implemented by using
one method for each automaton state:

Token Lexer::identifer()

{
c,
while (std::isalnum(¢ = in.get()))
buf += c;

in.unget();

if (is_keyword(buf)) return

return Token(Token::Identifier, buf, ...);
}

next () from previous slide is the initial state

Implementing an Interpreter in C++ 12/109 May 17, 2018

Parsers

e typically a context-free language

e terminals (symbols) are the tokens

¢ astack (or recursion) is required for parsing

¢ selection of algorithms (LL, LR, GLR, monadic, rec. de-
scent)

¢ different trade-offs

Context

e parser reads tokens from the lexer
e creates an Abstract Syntax Tree (for short)

Implementing an Interpreter in C++ 13/109 May 17, 2018

Expressions: Prefix (eg. LISP)

* easy to parse, hard-ish to read, annoying to write
e variadic operators

e (+12 (*34)5)

Postfix (eg. PostScript)

e very easy to parse, hard to read, easy-ish to write
e unambiguous even without parens

e 34 *1+2+5 +

Infix (eg. everybody else)

e hard to parse, easy to read, easy-ish to write
e 1 +2+3*4+5

Implementing an Interpreter in C++ 14/109 May 17, 2018

Abstract Syntax Tree

« internal representation of the source code
¢ tree with different node types

if (x +1=5) print

pickup pencircle scaled .4mm ;

circleit.n if (btex \tt\orange if\strut etex
)

circleit.n _eq (btex \orange $=$\strut etex)
circleit.n plus (btex \orange $+$\strut etex)
circleit.n x (btex x\strut etex) ;
circleit.n one (btex \darkgreen 1\strut etex

Implementing an Interpreter in C++ May 17

AST in C++

e usestd::shared ptr for children
e don’t overdo it (many things can be kept as values)

template< typename T >
using Ptr = std::shared ptr< T >;

struct Expression { s
struct Statement { };
struct If : Node {
Ptr< Expression > condition;
Ptr< Statement > body;
};

Implementing an Interpreter in C++ 16/109 May 17, 2018

AST: Representing Alternatives

e youcanuse std::variant (since C++17)
e oruse Union from brick-types (see study materials in IS)
e or use enums and write out switches by hand (eww)

struct Expression;

using Atom = Union< Identifier, Literal >;

struct Binary { Ptr< Expression > left, right; };
using ExpBase = Union< Atom, Binary, Unary > {};
struct Expression : ExpBase { using ExpBase::Unio
}i

using Statement = Union< Expression, Block, If >;

Implementing an Interpreter in C++ 17/109 May 17, 2018

Parsing: Context-Free Languages

grammars with one-to-some rules

alternatively: stack machines

the goal is reconstructing a grammar derivation
grammars are often ambiguous

subsets of CFLs: LL(1), LR(1), LALR(1), ...

can be parsed more efficiently

eg. limited lookahead, no or limited backtracking

Implementing an Interpreter in C++ 18/109 May 17, 2018

Parsing: Recursive Descent

e parse LL(k) languages in linear time
e easy to write in direct C or C++
¢ no fancy generators needed (ie. no yacc nor bison)

Method

¢ look at one token and the grammar rules

¢ find which rules could have produced this token

o ifthere’s only one, you know which rule to pursue
e otherwise the grammar is not LL(1)

e you can try looking at two tokens instead: LL(2)

Implementing an Interpreter in C++ 19/109 May 17, 2018

Recursive Descent in C++

struct Parser

{
Lexer lexer;
Token tok;

Toplevel toplevel();

Call call();

Identifier identifier();

Ptr< Expression > expression();

IiE

¢ each non-terminal gets a function (more or less)
¢ each function returns the correspondlng AST node

Implementing an Interpreter in C++ May 17, 2018

Ptr< Expression > Parser::expression()
{
if (tok.cat == Token::Identifier)
return make expr(identifier());

if (tok.cat '= ParenOpen)
fail();
shift();
if (tok.cat == Token::Identifier)
return make expr(call());

}

¢ looks a bit like the lexer
e shift() grabs the nexttoken into tok

Implementing an Interpreter in C++ 21/109 May 17, 2018

Parsing: Reporting Errors

e LL(1) parsers can easily give nice error messages
e what you found vs what you expected to find

e the Token remembers where it came from
Example:

e parseerrorat [LitString "bar" at line 3],
* expected an operator; identifier, 1 f, while or let

Implementing an Interpreter in C++ 22/109 May 17, 2018

Assignment 1

come up with decent syntax (could be LISP-like)
conditionals, loops, expressions, variables & functions
create corresponding AST for your language

write a lexer and a parser to generate the AST

write a pretty-printer for the AST

write a dozen or so small example programs

add a script to check that parse + prettyprint is idempo-
tent

Deadline 9th of March.

Implementing an Interpreter in C++ 23/109 May 17, 2018

Assignment 1: Hints

use prefix expressions (saves a lot of time)

straight LISP-like syntax is LL(1)

think about the grammar before writing too much code
think about what you need in a programming language
don’t forget about local variables

use C++ facilities (vectors, maps, sets) whenever useful
don’t lose much sleep over parsing speed

you can find inspiration in ex-parser.tar.gz in the IS

Implementing an Interpreter in C++ 24/109 May 17, 2018

Part 2: Symbol Tables

Lexical Scoping

e this is the contemporary norm
e alternative: dynamic scope (shell, elisp)
¢ alternative: no local variables

Symbol Tables

e Kkeep track of what is in scope
o offer efficient lookup of definitions
e possibly also keep track of values

Implementing an Interpreter in C++ 26/109 May 17, 2018

From Identifiers to Integers

e string comparison is slow
¢ the set of identifiers in a program is static
e we can assign a unique number to each identifier

For example:

e put all identifiers in a hashset or a search tree
e assign numbers in iteration order
¢ build a number — identifier (string) map

Implementing an Interpreter in C++ 27/109 May 17, 2018

Lexical Scopes

the global scope is shared by everything
scopes can be nested

global;
fool()
{
local;
if (z = local + global)
printf(, Z);
}

e scope nesting is rigid and does not change at runtime
Implementihg an Interpretef=n C++ 28/109 y 17,2018

Lexical Scoping: Implementation

* every lexical scope gets a (static) symbol table
symbol tables get references to their parents
if a symbol is not found, the table asks its parent scope

Scope: : Lookup (id)
{
if (idmap.find(id) == idmap.end())
return parent.lookup(id);
}

Implementing an Interpreter in C++ 29/109 May 17, 2018

Static Checks

e correctsyntax does not mean the program is well-formed
variables must be defined before they are used
functions must be defined before they are called

(we will deal with type checking later)

symbol tables are how these checks are done

Implementing an Interpreter in C++ 30/109 May 17, 2018

Execution Stack

« functions call other functions (or themselves)

¢ the interpreter needs to keep track of this

e may consist of pointers to AST nodes

e ifvariables are mutable, keeps track of their values

g X)

g(x +1);

f() { y; g(3); }
main() { f(); }

|g(),X=4|

Implementing an Interpreter in C++ 314109 May 17, 2018

—_—

Mutable Variables

¢ each activation record needs a copy of the value
— activation record = stack frame

¢ option one: index stack frames by identifiers
— less efficient, easier to implement

e option two: pre-compute a fixed layout for frames
— store variable offsets in the static symbol table
— more efficient but more work to implement

Implementing an Interpreter in C++ 32/109 May 17, 2018

Dynamic Scope

e inlexical scoping, the parent is the enclosing block

o if the scope parent is the caller, you get dynamic scoping
* the scope lookup proceeds along the execution stack

¢ sometimes quite powerful, usually very confusing

Examples

shell variables

perl optionally (only some variables)
old LISPs (including emacs lisp)
Common Lisp optionally

Implementing an Interpreter in C++ 33/109 May 17, 2018

Lexical Closures

¢ you may want to allow local function definitions
e abitlike C++ lambda expressions

e capture the lexical scope at the point of definition
e carry the scope (symbol table) around

f(std::vector< > &vec)
{
std::for each(vec.begin(), vec.end(), [&](
X)
{ std::cout << vec.front() - x << std::endl;
})
}

Implementing an Interpreter in C++ 34/109 May 17, 2018

Lexical Closures: Lifetime

e C++lambdas capture by name or by reference
o if a reference-captured value goes out of scope, SIGSEGV
e in “dynamic” languages, this is usually different
— reference-captured values live as long as needed
— even if their original scope is gone
— you need a garbage collector to do this
e capture by reference is usually more useful
— in imperative languages, that is

Implementing an Interpreter in C++ 35/109 May 17, 2018

Walking the AST

e use recursion to visit children of a node
e use type-based matching from Union where appropriate

expr.match(

[&]1(IfLike &stmt) { recurse(stmt.conditio
R
[&] (DefLike &stmt) { recurse(stmt.body);
},

);

¢ first pass builds the symbol tables
¢ second pass checks that all identifier uses are correct

Implementing an Interpreter in C++ 36/109 May 17, 2018

Symbol Tables: Summary

¢ static table for each lexical unit (function, block)
— ensure functions and variables are in scope when used
— possibly store auxiliary data (frame offsets)

e values are stored somewhere else (execution stack)
— can use std: :map from identifiers to values

Implementing an Interpreter in C++ 37/109 May 17, 2018

Assignment 2

design and implement a symbol table data structure
implement string — integer key mapping for identifiers
write code to build all symbol tables from the AST

check that all variables are in scope when used

— print an error message otherwise

figure outhow to store values (atleastintegers and strings)
write tests for everything above

Deadline 23rd of March.

Implementing an Interpreter in C++ 38/109 May 17, 2018

Assignment 2: Hints

don’'tforgettouse std: :mapand/orstd: :unordered map
take advantage of pattern matching in Union

you can print symbol tables and use text comparison again
try attaching local symbol tables to AST nodes

ideally, a symbol table applies to one node + all its chil-
dren
sorry, no code hints this time, you did too well on parsers

-)

Implementing an Interpreter in C++ 39/109 May 17, 2018

Part 3: Evaluating Expressions

Overview

e values and variables
e evaluation order

e recursive evaluators
e RPN evaluators

Implementing an Interpreter in C++ 41/109 May 17, 2018

Evaluator

e an expression evaluator is the heart of an interpreter

Roles

e arithmetic and other elementary operations
e variable lookup

¢ function calls and argument passing

e control flow

Implementing an Interpreter in C++ 42/109 May 17, 2018

Representing Values

e eagsy if all you have is integers

o otherwise, disjoint unions could work
¢ also useful for run-time type checking
Alternative (advanced)

e raw data (C unions) with type erasure
¢ needs a solid static type system
Alternative

e objects (as in OOP)

Implementing an Interpreter in C++ 43/109

May 17, 2018

From Symbols to Values

» expressions without variables are boring
* symbol tables to the rescue

L-values and R-values

e ordinary variable use is R-value use

e avariable reference is replaced by its current value
¢ does not work for assignment (mutable variables)
e L-value stands for the address of a variable

Implementing an Interpreter in C++ 44/109 May 17, 2018

Evaluation Order

¢ relevant for function application (calls)
¢ also for built-ins (control flow)
Normal

e expand the body first
e substitute un-evaluated arguments
¢ also known/implemented as: call by name, lazy

Strict

e compute argument values first
¢ also known/implemented as: call by value, eager

Implementing an Interpreter in C++ 45/109 May 17, 2018

(Mostly) Imperative Programming

e call by value

¢ call by name (thunks)

¢ call by reference (pointers)

e call by object reference (call by sharing)
o call by value result (by value return)

e call by need (lazy)

» call by macro expansion (text-based)

¢ call by future (concurrent)

Implementing an Interpreter in C++ 46/109 May 17, 2018

Thunks

f() { std::cerr << ; return 3; }
strict(value) { return value + value;
}
normal(std::function< () > value)
{
return value() + value();
}
main()
{

std::cerr << strict(3 + f());
std::cerr << normal([1{ return 3 + f(); });

I}\plementing an Interpreter in C++ 47/109 May 17, 2018

Evaluation Order in C++

¢ almost all expressions are eager

* logical operators are lazy / “short circuiting”

e statements (if) are “lazy”

e promise/futures for lazy evaluation

e std::future/std::asyncwithstd::launch: :deferred
¢ basically an explicit, type-safe thunk

Implementing an Interpreter in C++ 48/109 May 17, 2018

Flexibility in Evaluation Order

¢ lazy values in a strict language — usually easy
e very easy with first-class functions
¢ including infinite data structures (co-data)

On the Other Hand

e strict values in a lazy language — usually hard

e typically needs language support

« often very far from intuitive

e compare normal forms: beta, beta-eta, head, weak head
e Haskell: seq, deepseq, NFData, $!, BangPatterns

Implementing an Interpreter in C++ 49/109 May 17, 2018

Implementation: Recursive Evaluation

e the simplest method

e works directly on the AST

¢ may not need an explicit execution stack
e also the slowest

Value eval(If &e if)

{
if (eval(e if.condition))
return eval(e if. then);
else
return eval(e if. else);
}

Implementing an Interpreter in C++ 50/109 May 17, 2018

Reverse Polish Notation (RPN)

faster than recursive

only useful with eagerly evaluated constructs
good for arithmetic-heavy programs

recall postfix syntax from part 1

(5 + 3) * xwrittenas5 3 + x *

trivial evaluation on an explicit stack

Implementing an Interpreter in C++ 51/109 May 17, 2018

RPN: Implementation

eval ()

if (size() == 1)
return;
Value a = pop(), b = pop();
Op op = pop();
if (op == Add)
push(a + b);

e the result is the only value left on the stack

Implementing an Interpreter in C++ 52/109 May 17, 2018

RPN: Control Flow

¢ control flow in an RPN evaluator is a bit tricky
¢ normally every “operator” is strict

However

¢ lazy semantics in a strict language? thunks
¢ push thunks for then/else branches onto the RPN stack
e profit

Function calls?

Implementing an Interpreter in C++ 53/109 May 17, 2018

Three-Address Code

¢ might be faster than RPN

e control flow is straightforward

¢ ~halfway to a compiler

e data stored in arrays (not stacks)
e alot more complicated than RPN
e quite some room for optimisation

Implementing an Interpreter in C++ 54/109

May 17, 2018

Trampolines

e execute continuation-passing-style programs
e converts CPS into standard call/return semantics
¢ more of a compiler technique

Implementing an Interpreter in C++ 55/109 May 17, 2018

Keeping Track of Calls
g(X)
{
g(x + 1);
}
() { y; g(3); }
main() { f(); }

| gl), x = 4|
| 8(),x =3

f,y =5
Implementing an Interpreter in C++ 564109 May 17, 2018

Assignment 3

write an evaluator for your language

arithmetic, conditionals, loops, variables and function calls
mutable variables and an assignment operator

write arithmetic- and recursion-based tests

lexical closures are optional

Deadline 6th of April.

Implementing an Interpreter in C++ 57/109 May 17, 2018

Assignment 3: Hints

a recursive evaluator is the simplest to implement

strict evaluation order is the simplest

you can Keep variable valuesinan std: :unordered map
RPN evaluation is also nice (don’t forget about thunks)
hybrids are viable (recursion only for calls & control flow)

Implementing an Interpreter in C++ 58/109 May 17, 2018

Part 4: Type Checking

Overview

+ whatis a type

e sub-typing

¢ dynamic types (run-time checking)
e static types (ahead of time)

¢ classes and objects

Implementing an Interpreter in C++ 60/109

May 17, 2018

Why Types?

same reason as syntax checkers

programmers (= people) make mistakes

type mismatch is, usually, a mistake

types = high-powered version of dimension analysis
you don’t want to add seconds to meters by mistake
hence, type discipline and enforcement

Implementing an Interpreter in C++ 61/109 May 17, 2018

What is a Type?

first approximation: a set of values
set of integers, set of strings, etc.
every value belongs to a (single) type
both values and variables have types

Function Types?

eg. a set of maps from integers to integers
maps are still sets, so this (almost) works out

Implementing an Interpreter in C++ 62/109 May 17, 2018

Well-Typed Programs

all type constraints are satisfied

in particular, on function (operator) applications
letf 2T —>T,x:Tandy:: U

f xis well-typed, f v is not

also: assignment and initialisers, pattern matching

std::string x = 0.5;

Implementing an Interpreter in C++ 63/109 May 17, 2018

Products and Sums

e cartesian product of two types is again a type

e soisasum (union, or maybe a disjoint union)

¢ unions + products form the basis of algebraic data types
e function type is a special subset of the product type

Multi-parameter functions

e (T'xT) - TiswhatC/C++ use
e T = (T - T)is what Haskell uses
e the two are isomorphic (think curry/uncurry)

Implementing an Interpreter in C++ 64/109 May 17, 2018

Product Types: Aggregates

C struct is a typical product type

amore “obvious” example: std: :pairand std::tuple
products with named fields are usually very important
(also known as records)

they form the backbone of user-defined types

(classes are based on product types)

Implementing an Interpreter in C++ 65/109 May 17, 2018

Subtyping

maybe there’s a user type shape
every circleis clearly also a shape
subtypes correspond to subsets
induces a (pre)order relation on types

Contravariance

let T be a type and S its subtype

whenever a T is expected, S can be provided

this usual behaviour is called covariant

however! T — S is a subtype of S = S

function arguments are contravariant wrt. subtyping

Implementing an Interpreter in C++ 66/109 May 17, 2018

Polymorphism

monomorphic function types are quite constraining

eg: plain C functions

think int min(int a, int b) ... how about float?
counter-eg.: C++ function templates

“types = sets” is no longer good enough

Approaches

parametric: eg. Hindley-Milner
ad-hoc: like parametric but dirtier (think C++ templates)
subtyping + optionally late binding

Implementing an Interpreter in C++ 67/109 May 17, 2018

Parametric Polymorphism

one implementation, multiple (parametric) types

e ML, Haskell, etc. (based on Hindley-Milner)

e adds type variables

e id :: a -> aisgood for any type a

» type checking is only a little harder than monomorphic
e C++templates (w/o specialisation) are an approximation
e can be extended with type classes (Haskell)

e min :: (Ord a) =>a -> a -> a

Implementing an Interpreter in C++ 68/109 May 17, 2018

Algebraic Data Types (revisited)

e products and sums are nice but relatively weak

¢ how about recursive (infinite) data types?

¢ allows encoding lists, trees and other inductive types
¢ may also allow encoding co-data types

e data List = Nil | Cons Int List

e values must contain pointers

Parametric ADTs

¢ also: much more powerful with type variables
e data List a = Nil | Cons a List

Implementing an Interpreter in C++ 69/109 May 17, 2018

Static Type Checking

o all type enforcement is done at compile/load time

¢ typeinformation can be erased (more efficient execution)
e may require explicit type annotation (as in C, C++98)

e orbepartiallyinferred (modern Haskell, C++11 and later)
e or be completely inferred (“classical” Haskell)

e type errors show up early

* may allow static (fast) type-based dispatch

Implementing an Interpreter in C++ 70/109 May 17, 2018

Dynamic Type Checking

* type enforcement is (mostly) done at runtime
» values carry along their types encoded as data
« function application also runs the type checker
e RTTI could be as little as a couple of bits (LISP)
e or as much as a full machine pointer (OOP)

Implementing an Interpreter in C++ 71/109 May 17, 2018

Classes and Objects

¢ subtyping naturally leads to OOP

* extends types with methods and encapsulation

¢ optionally with late binding

e one signature, multiple types, multiple implementations
e primarily a problem decomposition tool

» also neatly solves namespace problems

e works with static (C++) and dynamic (Python) types

Implementing an Interpreter in C++ 72/109 May 17, 2018

Late Binding

supertype methods can be overridden in subtypes
different implementations for different types
form of run-time, type-based dispatch
incompatible with (completely) static types

in C++ realised through vtable pointers

Implementing an Interpreter in C++ 73/109 May 17, 2018

Type Casting and Coercion

sometimes you know you are right
even though the types don’t match
casts convert from one type to another
coercion simply re-interprets the value
both more-or-less break type safety

C has some arcane implicit casting rules

Implementing an Interpreter in C++ 74/109

May 17, 2018

Assignment 4: Static Variant

o allow user-defined product types with named fields
¢ implement monomorphic function types

¢ add type annotations to the parser & AST

e type-check each function application at load time

Assignment 4: Dynamic/OOP Variant

o allow user-defined classes (with attributes and methods)
e pass values in the evaluator as references to objects

¢ implement late binding (type-based dispatch)

¢ detect failing method lookups at runtime

Deadline 20th of April.

Implementing an Interpreter in C++ 75/109 May 17, 2018

Assignment 4: Hints

both variants need parser extensions

dynamic types are easier to work with (from user POV)
static types are safer and get you faster code

static type checker builds on the semantic checker
dynamic type checker builds on the evaluator

you can mix & match aspects of both (like C++)

it’s OK to put types and variables in a single namespace

Implementing an Interpreter in C++ 76/109 May 17, 2018

Part 5: Memory Management

Overview

e whatlives in memory

» reference counting

e mark and sweep

¢ copying collectors (compacting)
¢ Cheney on the M.T.A.

e generational collection

¢ latency and concurrency

Implementing an Interpreter in C++ 78/109

May 17, 2018

What is in program’s memory?

e scalar data and arrays of scalars

e data structures with pointers in them
Pointers: Good and Bad

e pointer dereferences are expensive

¢ allows encoding all sorts of structure
o lists, trees, graphs

¢ very useful for building abstractions

Implementing an Interpreter in C++ 79/109

May 17, 2018

From Flat Memory to Objects

¢ imagine a node in a linked list

o itlives somewhere

how do you decide where to put one?
e entermallocand free

Semi-Automatic Memory Management

e malloc finds a good place to put data
e free marks a bit of memory for re-use

Implementing an Interpreter in C++ 80/109 May 17, 2018

Building the Abstraction Tower

e malloc/free give us abstract-ish objects

¢ but we still need to track lifetime manually
* and worse, place free calls statically

e thisis tedious and sometimes impossible

Automatic Garbage Collection

« figure out which objects are alive (and which dead)
¢ we no longer need to call free
e freeisdynamically performed by the GC

Implementing an Interpreter in C++ 81/109 May 17, 2018

Basic Idea: Reachability along Pointers

e pick aroot set of live objects
— could be the C stack + registers
— or the active (executing) frame
¢ live = reachable from the root set
¢ dead = everything else

Implementing an Interpreter in C++ 82/109 May 17, 2018

First Approximation: Reference Counting

» along with each object, keep a counter

* when a pointer is created/copied, increase the counter
¢ when a pointer is lost, decrease the counter

* when the counter hits zero, free the object
Problems

e expensive to take/copy pointers (memory write)

« fails to free object cycles

Advantages

¢ low/predictable latency
e reasonable memory overhead

Implementing an Interpreter in C++ 83/109 May 17, 2018

Garbage Collectors

e add a collector procedure
o the rest of the program is called the mutator
¢ run the collector at convenient times (not too often)

Dealing with Loops: Mark & Sweep

¢ the collector executes reachability along pointers
¢ marking every reachable object

e then iterating over all objects

¢ calling free on the unmarked ones (sweeping)

Implementing an Interpreter in C++ 84/109 May 17, 2018

Challenges

the collector procedure may need to allocate memory
mutator threads may need to stop while the collector runs
the collector needs to know which words are pointers

— problems with foreign function interfaces (C calls)
performance under memory pressure

Implementing an Interpreter in C++ 85/109 May 17, 2018

Mark & Sweep: Advantages

e comparatively easy to implement

¢ low memory overhead

e canre-use existingmalloc/free

e approximate (conservative) collection is possible

Disadvantages

¢ high/messy latency (bad for interactive programs)
e more memory used = slower collection
» interacts badly with concurrency

Implementing an Interpreter in C++ 86/109 May 17, 2018

A Copying Collector

split memory into 2 halfspaces

one is the working set, other is dormant
bump allocation of new memory

collect when the live halfspace fills up

Collection

copy live objects to the other halfspace
updating all pointers along the way

Implementing an Interpreter in C++ 87/109 May 17, 2018

Cheney’s Algorithm

look at a from-space object

copy it over to the to-space

replace the from-space copy with a forwarding pointer
recurse/update pointers in the to-space copy

(not actually implemented recursively)

Implementing an Interpreter in C++ 88/109 May 17, 2018

Copying Collectors: Advantages

fast memory allocation

e no time spent dealing with garbage
keeps data physically close together
possibly improving cache utilisation

Disadvantages

¢ needs exact information about pointers
e poor memory utilisation (always 1 empty halfspace)

Implementing an Interpreter in C++ 89/109 May 17, 2018

Cheney on the M.T.A.

all allocation is done on the C stack

when the stack is about to fill up:

make a new stack and “Cheney” data from the old one
the program is compiled into C

the compiled functions never return

easy integration with C calls

Disadvantage: same as “normal” copying collector

Implementing an Interpreter in C++ 90/109 May 17, 2018

Compromises: Generational Collectors

observation: many objects only live for a short while
split memory into a hatchery and a mature space

use a different collector for each

typical: mark & copy for the hatchery (minor collection)
mark & sweep for the mature space (major collection)
the hatchery is traced much more often

Implementing an Interpreter in C++ 91/109 May 17, 2018

Generational Collectors: Advantages

e short-lived objects are quickly eliminated

* hot datais kept together (good for CPU caches)

e minor collection is fast & predictable (wrt. latency)

« foreign objects can live in the (non-moving) mature space

Disadvantages

e more complicated
¢ does not fix all the problems

Implementing an Interpreter in C++ 92/109 May 17, 2018

A Note on Latency: Incremental Collection

latency in interactive applications is bad
even more so in real-time systems

also in distributed computations

interleave the mutator and the collector
incremental collector can be made real-time
(by imposing a deadline on the increment)
tricky, but easier than concurrent collection

Implementing an Interpreter in C++ 93/109 May 17, 2018

Concurrent Collectors

e concurrent data structures are hard

¢ not freeing dead objects is not a big problem
o (they will be picked up by a later cycle)

¢ freeing live objects is a big problem

e needs cooperation from mutator threads

* easy-ish with reference counting

Eg. http://www.aicas.com/papers/ismm02f-siebert.pdf

Implementing an Interpreter in C++ 94/109 May 17, 2018

Assignment 5:

* implement a garbage collector

Deadline 24th of May.

Implementing an Interpreter in C++ 95/109 May 17, 2018

Part 6: Talking to The Outside World

Overview

o foreign function interface (FFI)

e constructing calls

¢ dealing with memory & outputs

e aggregate arguments and return values
¢ asimple runtime-only solution

Implementing an Interpreter in C++ 97/109 May 17, 2018

Foreign Function Interface

a mechanism for calling procedures

defined in a language different from our own
a typical target language is C

crucial for re-use of existing code

Implementing an Interpreter in C++ 98/109 May 17, 2018

Constructing Calls

problem: we need to call a function
but we don’t know what its arguments are

Some options:

ad-hoc: hard-code some argument combinations
template metaprogramming

automatic code generation

re-implement the C calling convention

Implementing an Interpreter in C++ 99/109 May 17, 2018

An Ad-Hoc Approach

¢ good enough to cover most syscalls
¢ not good to talk to libraries

ccall((*f) (), ArgT argt, ArgV v)
{
if (argt == ArgT{ Int })
return f(v[0 J.asInt());
if (argt == ArgT{ Int, Int })
return f(v[O J.asInt(), v[1].asInt()
)
}

Implementing an Interpreter in C++ 100/109 May 17, 2018

Template Metaprogramming

e use variadic/recursive function templates

e automates data conversion (the asInt () bit)

e required instances need to be known at compile time
¢ does not really fix the problem

f(a, b, const *c);
auto tup = std::make tuple(3, 7,);

brick::tuple::pass(f, tup);

Implementing an Interpreter in C++ 101/109 May 17, 2018

Automatic Code Generation

* uses specific, per-function wrappers
e the wrappers are generated as C (C++) code
* may use the template approach to simplify generated code

Value wrap write(std::vector< Value > args)
{
rv = write(args[0].asInt(),
args[1].asString(),
args[2 1l.asInt());
return Value(rv);

Implementing an Interpreter in C++ 102/109 May 17, 2018

The C Calling Convention

e architecture-specific (x86 is simple, amd64 is complex)
e the generic ccall needs to be written in assembly
e most compact but least portable

x86/cdecl

e arguments go onto the stack (right-to-left)
e scalar return values either in eax or st0

amd64: a 10 page spec on what goes where

Implementing an Interpreter in C++ 103/109 May 17, 2018

Dealing with Outputs

some functions return variable-sized data

like the read function

using output arguments (represented by pointers)
such arguments must be treated differently

the output of read should give us an in-language string

buffer[32];

read(0, buffer, 32);

Implementing an Interpreter in C++ 104/109 May 17, 2018

Aggregate Values

o C supports passing structures as arguments
¢ and returning them as values

o will not work with the ad-hoc approach

e too many different sizes

struct foo { X, Y, z

3 bar; };
foo update foo(foo x) { ... }

Implementing an Interpreter in C++ 105/109 May 17, 2018

A Simple Approach

usable with ad-hoc call construction
does not need to invoke a compiler
looks up functions by using dLsym

main()
{
(*w) () = dlsym(NULL,
w(1, , 12);
}
Implementing an Interpreter in C++ 106/109

May 17, 2018

How to Construct Wrappers

e option 1: reconstruct from calls

+ will not work for variadic functions (printf)

e option 2: special syntax for declaring C functions
e you rely on the user to translate the prototypes

e option 3: parse C headers (hard)

(define fun
(foreign-lambda c-string c-string))

Implementing an Interpreter in C++ 107/109 May 17, 2018

Assignment 6

e implement a simple C-based FFI for your interpreter
¢ must be able to call functions w/ up to 4 args
— only consider integer/pointer arguments
e itmustbe able to deal with read or similar
» use the FFI to get [/O capabilities

Deadline 31st of May.

Implementing an Interpreter in C++ 108/109 May 17, 2018

Final Project

¢ implement an interactive game of tic-tac-toe
e thereis no deadline

Implementing an Interpreter in C++ 109/109 May 17, 2018

