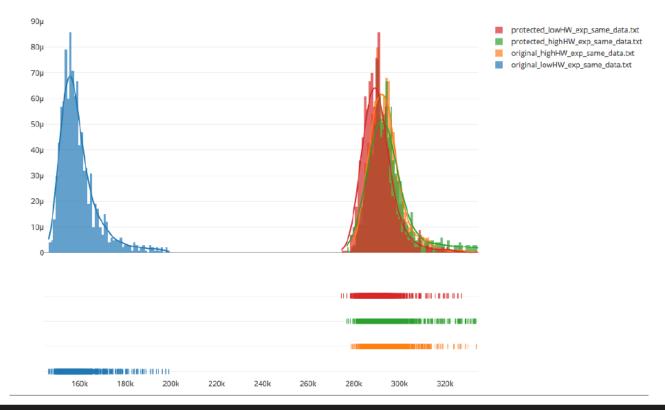
PV204 Security technologies

Authentication and passwords

Petr Švenda <u>svenda@fi.muni.cz</u> Faculty of Informatics, Masaryk University CROCS Centre for Research on Cryptography and Security


How to approach homework I.

- What you should specify your configuration (replication)
 - live vs. dedicated machine \rightarrow impact on measurement
 - list platform configuration, compilation flags used (for replication)
- Analysis
 - Good to print only shape of histogram instead of bars (visibility)
 - Good to print multiple histograms in single graph better visibility
 - Don't compare only original to the protected version. More sense makes to compare different data/exponent for given version (e.g., protected)
- Good to test also with medium hamming weight
 - More spread in histogram with same data \rightarrow harder to use Template attacks
 - Be aware what is included in timing e.g., generation of masking r? Network jitter (can attacker model and subtract)?

Example solution (J. Masarik)

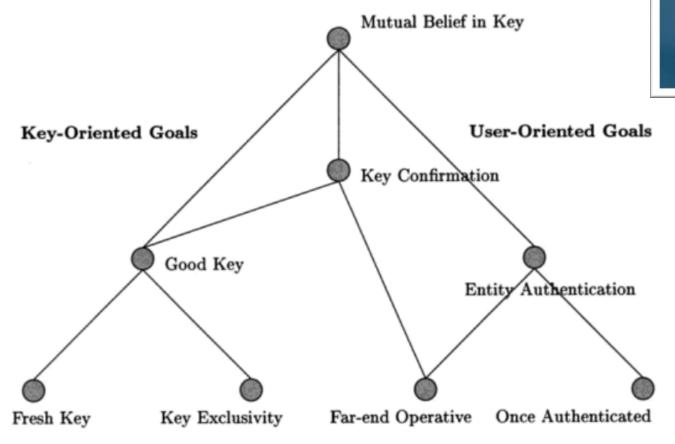
Scenario 5: Low/high hw exponent and same data

- make probably most sense in this case since we want to find out if the algorithm isn't vulnerable to SDA
- the difference between original and protected is huge in case of low HW exponent (as expected)

Conclusions for Homework I.

- Variability for the same data and key => noise in measurement (=> potentially harder to attack)
- Difference between any two measured values => possibility to use template attack
- Difference between data with low/mid/high hamming weight => some information is leaking
- Dependency of time on HW of private exponent may be possible to detect even for improved or blinded RSA
- Compiler can remove inserted protection (releases)

AUTHENTICATION & AUTHORIZATION


5 PV204 Authentication and passwords

Basic terms

- Identification
 - Establish what the (previously unknown) entity is
- Authentication
 - Verify if entity is really what it claims to be
- Authorization (access control)
 - Define an access policy to use specified resource
 - Check if entity is allowed (authorized) to use resource
- Authentication may be required before entity allowed to use resource to which is authorized

CROCS

Hierarchy of authentication and key establishment goals

Colin Boyd

Protocols for

Authentication and

Key Establishment

Springer

PASSWORDS

8 PV204 Authentication and passwords

Search CNET

Ne

CNET > Security > LastPass CEO reveals details on security breach

LastPass CEO reveals details on security breach

CEO of the password management company, which is dealing with a likely breach, tells PC World that users with strong master passwords should be safe,

users with strong master passwords should be safe,

🔾 o / 🚹 / 💟 / ኩ / 😵 / 📼 more+

Following yesterday's **revelation of a likely security breach** at password management company LastPass, the company's CEO is revealing more details about the incident and trying to offer some comfort and advice to his users.

But passwords are encrypted, right?

Siegrist explained that he doesn't think a lot of data would've been hacked,

Pvzu4 Aumentiteationanurbasswords a small number of user names and passwords

Problems associated with passwords

- How to create strong password?
- How to use password securely?
- How to store password securely?
- Same value is used for the long time (exposure)
- Value of password is independent from target operation (e.g., authorization of request)

Mode of usage for passwords

- 1. Verify by direct match
 - provided_password == expected_password?
 - Example: HTTP basic access authentication
 - Be aware of potential side-channels
- 2. Verify by derived value (hash(password | salt))
 Be aware of rainbow tables and brute-force crackers
- 3. Derive key: Password → cryptographic key
 Example: key = PBKDF2(password)
- 4. Use to establish authenticated key
 - Example: Password + Diffie-Hellman \rightarrow authenticated key...

Where passwords can be compromised?

- 1. Database storage
 - Cleartext storage
 - Backup data (tapes)
 - Server compromise
- 2. Host machine (memory, history, cache)
- 3. Network transmission (network sniffer, proxy logs)
- 4. Hardcoded secrets (inside app binary)
- Difficult to detect compromise and change after the exposure

Hard-coded password might be visible both in application binary and memory

🔆 OllyDbg - AES_PolarSSL.exe	
<u>F</u> ile <u>V</u> iew <u>D</u> ebug <u>P</u> lugins Op <u>t</u> ions <u>W</u> indow <u>H</u> elp	
	C / K B R S ☷ ☷ ?
CPU - main thread, module AES_Pola	
C CPU - main thread, module AES_Pola 011010001 \$ 55 011010031 PUSH EBP MOV EBP,ESP 0100031 PUSH EB1 01010031 011010031 \$ 65 011010031 PUSH EB1 011010051 CMP DWORD PTR DS:Laes_init_donel,0 USH EB1 011010051 011010051 \$ 65 011010151 PUSH EB1 CALL AES_Pola.0110101F CALL AES_Pola.0110101F CALL AES_Pola.0110101F CALL AES_Pola.0110101F CALL AES_Pola.0110101F CALL AES_Pola.01101042 011010251 \$ 815 10 MOV DWORD PTR DS:LEEP-C1,EAX 00V DWORD PTR SS:LEEP-C1,EAX 0100251 MOV EAX,DWORD PTR SS:LEEP-C1,EAX 0100261 011010251 \$ 776 2020501001 MOV DWORD PTR SS:LEEP-C1,EAX 0100261 JE SHORT AES_Pola.01101042 01010251 011010251 \$ 776 16 011010251 JE SHORT AES_Pola.01101042 011010251 JE SHORT AES_Pola.01101042 01101042 011010251 \$ 774 16 01101042 JE SHORT AES_Pola.01101063 01101042 JE SHORT AES_Pola.01101063 01101042 011010451 \$ 774 18 011010451 JMP SHORT AES_Pola.01101063 01001042 JMP SHORT AES_Pola.01101063 01001042 011010451 \$ 7760 02000009 01001045 YE 200 JMP SHORT AES_Pola.01101063 01001045 011010451 \$ 7760 02000009 01001045 YE 200 JMP SHORT AES_Pola.01101060 01001050 011010451 \$ 8845 08 0100100000000 PTR DS:LEED+831 01001053 JMP SHOR	Dump - 0020B0000020FFFF Image: Display to the second secon

17 PV204 Authentication and passwords

Possible password replacements

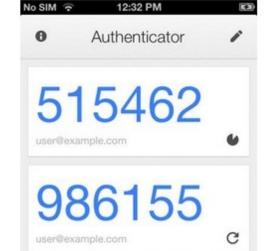
- Cambridge's TR wide range of possibilities listed
 - The quest to replace passwords: a framework for comparative evaluation of Web authentication schemes
 - <u>https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-817.pdf</u>
- Many different possibilities, but passwords are cheap to start with, lot of legacy code exists and no mechanism offers all benefits
- Mandatory reading: UCAM-CL-817
 - At least chapters: II. Benefits, V. Discussion
 - Whole report is highly recommended

ONE-TIME PASSWORDS

19 PV204 Authentication and passwords

Recall: Problems associated with passwords

- How to create secure password?
- How to use password securely?
- How to store password securely?
- Same value is used for the long time (exposure)
- Value of password is independent from target operation (e.g., authorization of request)



One-time passwords tries to address these issues

HMAC-based One-time Password Algorithm

- HMAC-based One-time Password Algorithm (HOTP)
 - Secret key K
 - Counter (challenge) C
 - $HMAC(K,C) = SHA1(K \oplus 0x5c5c... \parallel SHA1(K \oplus 0x3636... \parallel C))$
 - HOTP(K,C) = Truncate(HMAC(K,C)) & 0x7FFFFFF

 - HOTP-Value = HOTP(K, C) mod 10^d (d ... # of digits)
- Many practical implementations
 - E.g., Google Authenticator
- <u>https://en.wikipedia.org/wiki/HOTP</u>

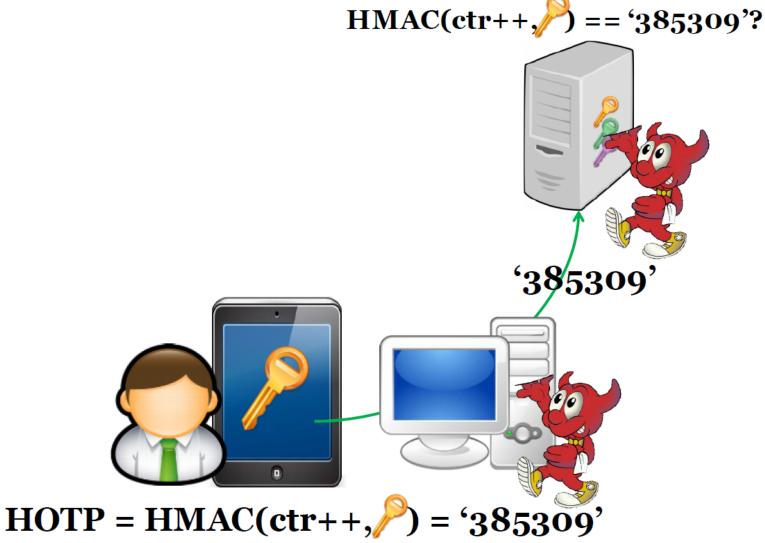
HOTP – items, operations

- Logical operations
 - 1. Generate initial state for new user and distribute key
 - 2. Generate HOTP code and update state (user)
 - 3. Verify HOTP code and update state (auth. server)
- Security considerations of HOTP
 - Client compromise
 - Server compromise
 - Repeat of counter/challenge
 - Counter mismatch tolerance window

Time-based One-time Password Algorithm

- Very similar to HOTP
 - Time used instead of counter
- Requires synchronized clocks
 In practice realized as time window

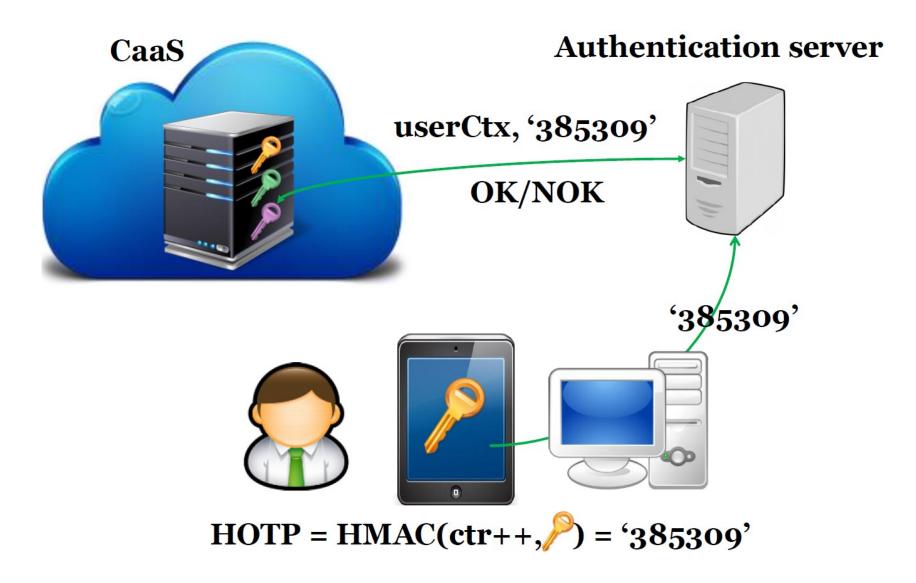
- Tolerance to gradual desynchronization possible
 - Server keeps device's desynchronization offset
 - Updates with every successful login


CROCS

OCRA: OATH Challenge-Response Algorithm

- Initiative for Open Authentication (OATH)
- OCRA is authentication algorithm based on HOTP
- OCRA code = CryptoFunction(K, DataInput)
 - K: a shared secret key known to both parties
 - DataInput: concatenation of the various input data values
 - Counter, challenges, H(PIN/Passwd), session info, H(time)
 - Default *CryptoFunction* is HOTP-SHA1-6
 - https://tools.ietf.org/html/rfc6287
- Don't confuse with Oauth (delegation of authentication)
 - The OAuth 2.0 Authorization Framework (RFC6749)
 - TLS-based security protocol for accessing HTTP service

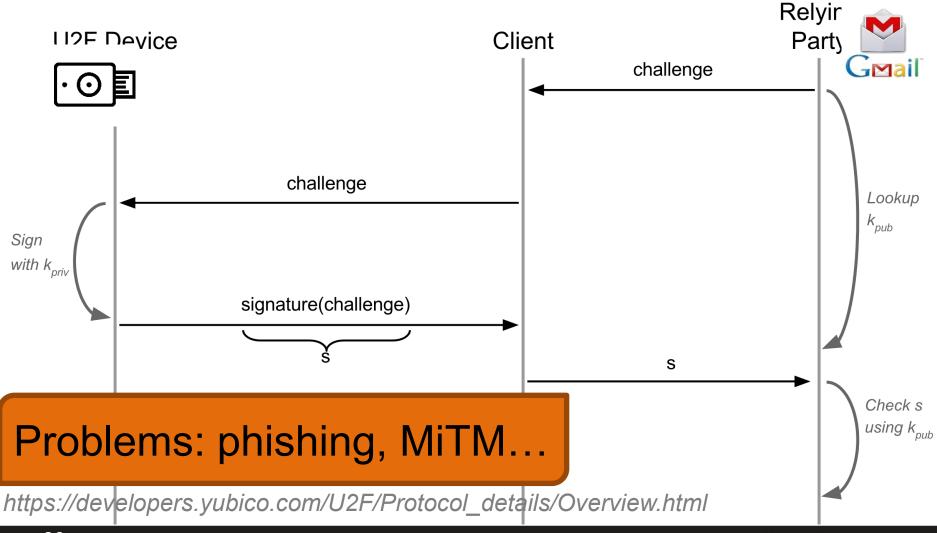
CROCS


Authentication server

Increased risk at *OTP verification server

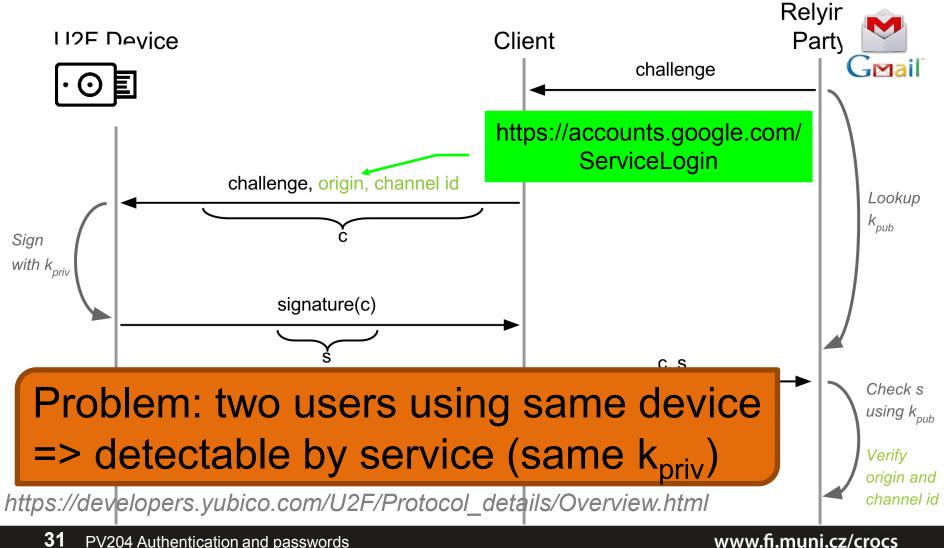
- More secure against client compromise

 Using OTP instead of passwords, KDF(time|key),
- But what if server is compromised?
 - database hacks, temporal attacker presence
 - E.g., Heartbleed dump of OTP keys
- Possible solution
 - Trusted hardware on the server
 - OTP code verified inside trusted environment
 - OTP key never leaves the hardware

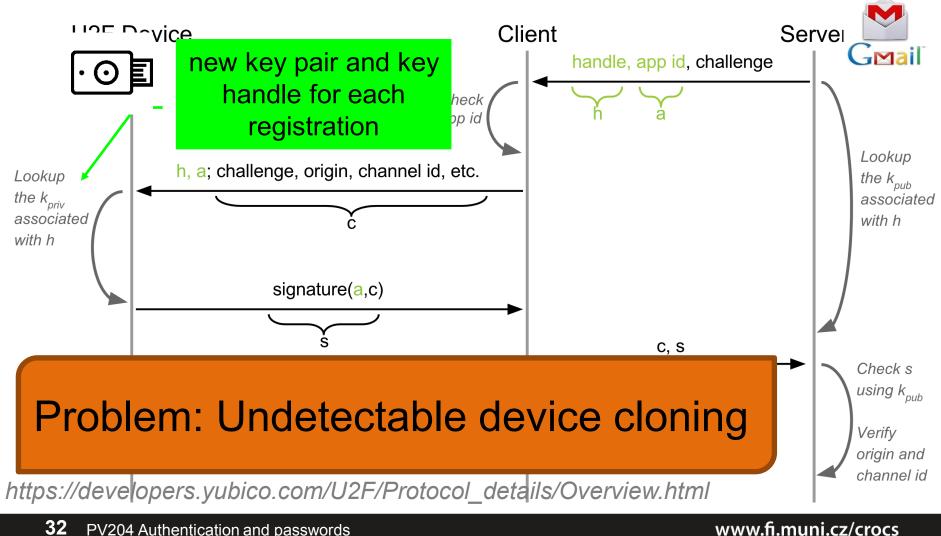


PROBLEM: IS OTP CODE FRESH?

FIDO U2F PROTOCOL

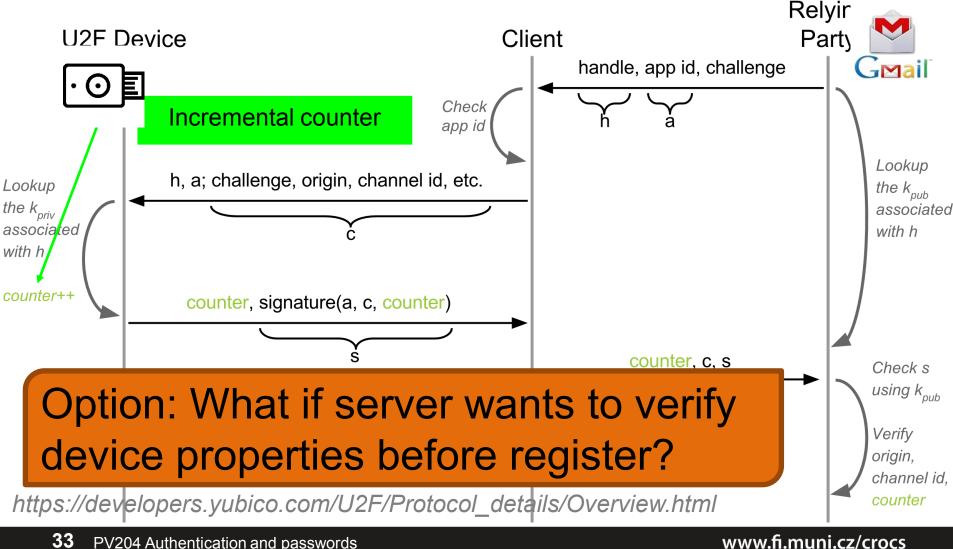

29 PV204 Authentication and passwords

Revision 1: ECC-based challenge-response

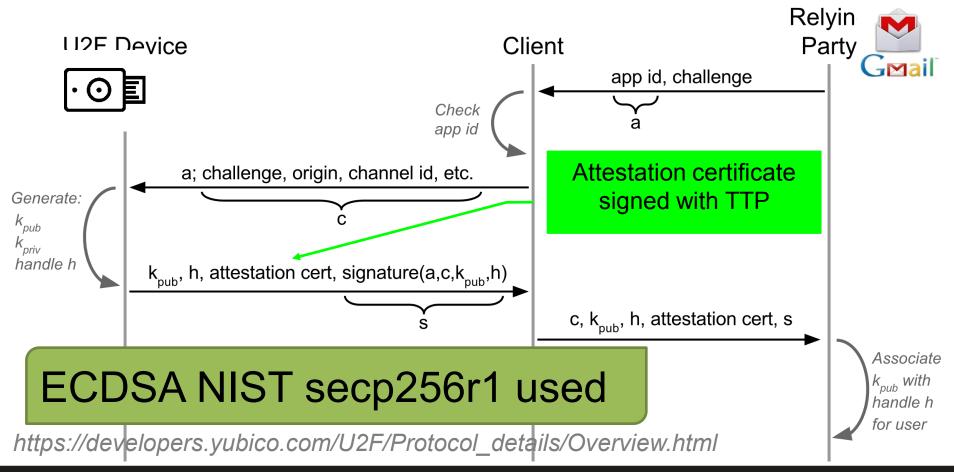


30 PV204 Authentication and passwords

Revision 2: URI + TLS channel id added



Revision 3: Application-specific key added

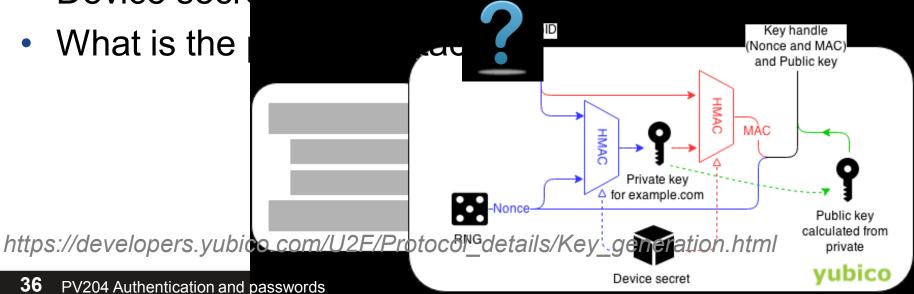


32 PV204 Authentication and passwords

Revision 4: Authentication counter added

Revision 5: Device attestation added

34 PV204 Authentication and passwords


FIDO U2F devices

- Why have button? Is missing display problem?
- Recent problem: direct WebUSB API in Chrome
 - Malware bypass U2F API checking the URL
 - Legitimate URL is send from malicious page
 - <u>https://www.wired.com/story/chrome-yubikey-phishing-webusb/</u>
 - APDU-level communication: <u>https://npmccallum.gitlab.io/post/u2f-protocol-overview/</u>
- Well known is Yubikey, but open-source hardware and software-only implementations also possible
 - <u>https://github.com/conorpp/u2f-zero</u>

Always dig for implementation details

- How are ECC keys generated and stored?
- Yubikey saves ECC storage place by deriving ECC private keys instead of randomly generating
 Possible as the ECC private key is random value
- Device secret generated during manufacturing

METHODS OF DERIVATION OF SECRETS FROM PASSWORD

37 PV204 Authentication and passwords

Problems when password used as a key

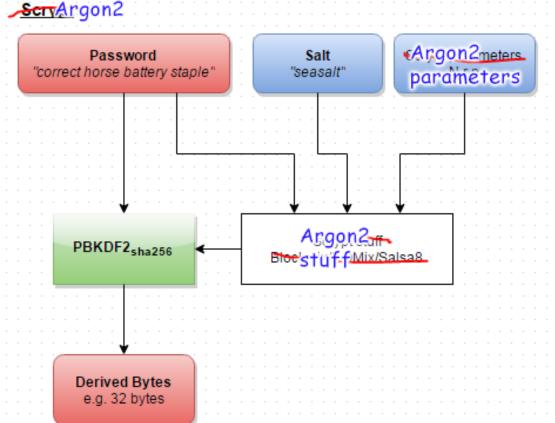
- Passwords are usually shorter / longer than key
- If password as a key => low number of distinct keys
- Password does not contain same amount of entropy as binary key (only printable characters...)
- K = SHA-2("password")
 - Same passwords from multiple users => same key
 - Large pre-computed "rainbow" tables allow for quick check
 - Solved by addition of random (potentially public) salt
 - K = SHA-2(pass | salt)
- Dictionary-based brute-force still possible

Derivation of secrets from password

- PBKDF2 function, widely used - Password is HMAC "key" Salt HMAC-SHA-256 Iterations to slow derivation Password HMAC-1 HMAC-SHA-256 Salt added XOR Password HMAC-HMAC-SHA-256 XOR HMAC-10000 Final hash Source: https://nakedsecurity.sophos.com PBKDF2 using XOR to combine 10,000 successive HMAC-SHA-256 outputs into a final has
- Problem with custom-build hardware (GPU, ASIC)
 - Repeated iterations not enough to prevent bruteforce
 - (or would be too slow on standard CPU user experience)

scrypt – memory hard function

- Design as a protection against cracking hardware (usable against PBKDF2)
 - GPU, FPGA, ASICs...
 - <u>https://github.com/wg/scrypt/blob/master/src/main/java/com/lambdaworks/crypto/SCrypt.java</u>
- Memory-hard function
 - Force computation to hold *r* (parameter) blocks in memory
 - Uses PBKDF2 as outer interface
- Improved version: NeoScrypt (uses full Salsa20)


Reuse of external PBKDF2 structure

https://www.reddit.com/r/crypto/comments/3dz285/password_hashing_competition_phc_has_selected/

Argon2

Password hashing competition (PHC) winner, 2013

https://www.reddit.com/r/crypto/comments/3dz285/password_hashing_competition_phc_has_selected/

Problem solved?

- To: cfrg at irtf.org
- Subject. [City] Argon21, scrypt, balloon hashing, ...
- From: Phillip Rogaway <<u>rogaway at cs.ucdavis.edu</u>>
- Date. Mon, 15 Aug 2010 15.57.21 -0700 (Facine Daylight Time)
- Archived-at: <https://mailarchive.ietf.org/arch/msg/cfrg/Xu9hCT6dqVmD50CezeR1MFsos0o>
- Delivered-to: cfrg at ietfa.amsl.com
- In-reply-to: <mailman.995.1471241877.1171.cfrg@irtf.org>
- List-archive: <<u>https://</u>
- List-help: <<u>mailto:cfr</u>
- List-id: Crypto Forum
- List-post: <<u>mailto:cfr</u>
- List-subscribe: <<u>https</u> request@irtf.org?subj

Problem: situation with PHC winner still unclear in 2018 ⊗

- List-unsubscribe: <<u>https://www.irtf.org/mailman/options/cfrg</u>>, <<u>mailto:cfrg-request@irtf.org</u>?subject=unsubscribe>
- References: <mailman.995.1471241877.1171.cfrg@irtf.org>
- User-agent: Alpine 2.00 (WNT 1167 2008-08-23)

I would like to gently suggest the CFRG not move forward with blessing any memory-hard hash function at this time. The area seems too much in flux, at this time, for this to be desirable. Really nice results are coming out apace. Standards can come too early, you know, just as they can come out too late.

phil

https://www.ietf.org/mail-archive/web/cfrg/current/msg08439.html

PASSWORD MANAGERS

44 PV204 Authentication and passwords

www.fi.muni.cz/crocs

Evolution of password (managers)

Pas\$wOrd

Google:

Skype:

Sfdlk2c&432mo2

202432

*(&21mefd872!&

Pas\$w0rd01

- 1. Human memory only
- 2. Write it down on paper
- 3. Write it into file
- 4. Use local password manaça

Google: Sfdlk2c&

Skype:

*(&21mefd

Google: Cfdlk2c&432mo%

> ype: 21mefd

Remote password <u>managers</u>

thentication and passwords

Common (mis-)Assumptions

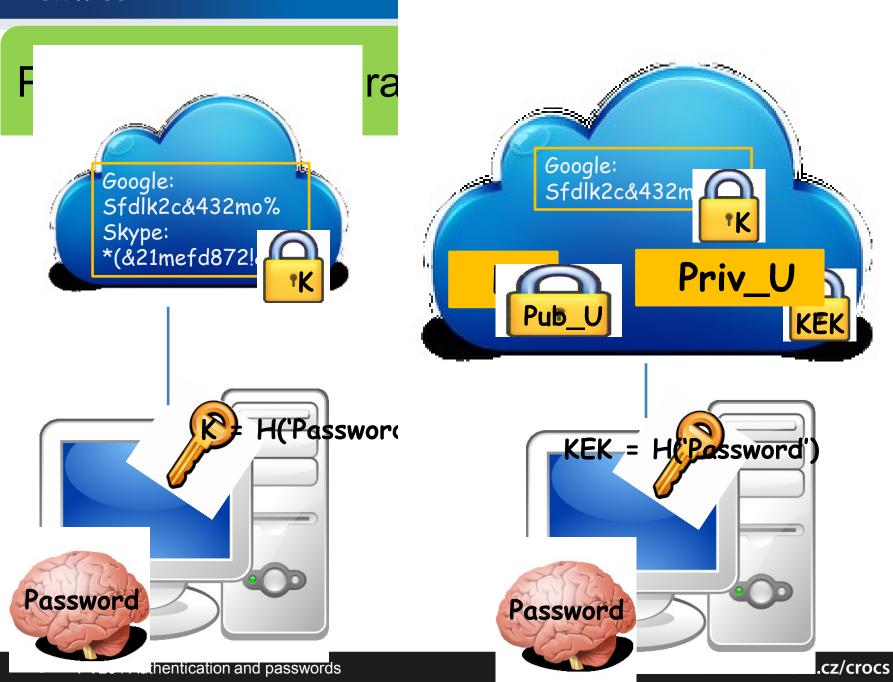
User has strong password
 >60% can be usually brute-forced

- 2. Server/service is hard to compromise
 - Server-side compromises are now very frequent
- 3. User have unique passwords
 - Gawker/root.com leak: 76% had the exact same password
- 4. Different authentication channels are independent
 - Web-browsing + SMS on smart phones?
- 5. Account recovery often weak(er)

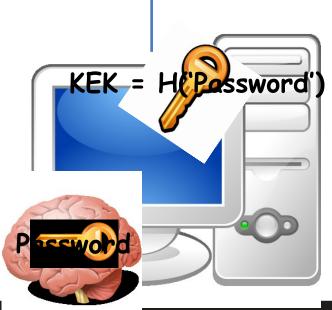
Re-enter your password		1
Pick a secret question		
Select your secret question	+)
Select your secret question	_	
What street did you grow up on?		
What is your mother's maiden name?		
What is the name of your first school?		dentity w
What is your pet's name?		
What is your father's middle name?		
What is your school's mascot?		Neer
Month	J	rear-

You must be at least 18 years old to use eBay

47 PV204 Authentication and passwords

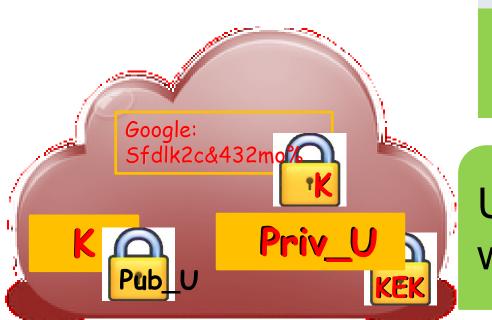

Case study

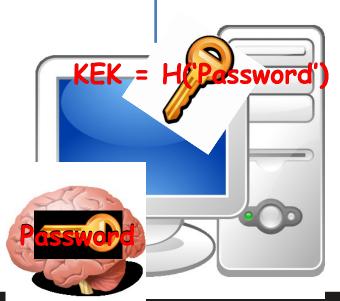
PASSWORD MANAGER FOR MULTIPLE DEVICES


www.fi.muni.cz/crocs

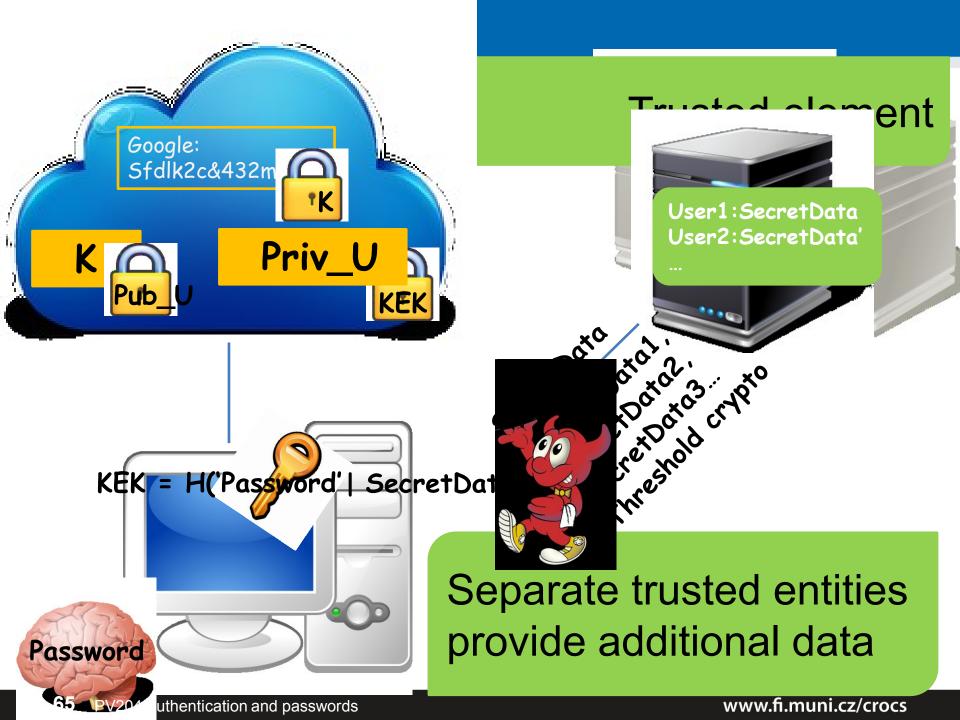
Main security design principles

- Treat storage service as untrusted and perform security sensitive operations on client
- Make necessary trusted component as small as possible
- Prevent offline brute-force, but don't expect strong password from user
 - add entropy from other source
- Make transmitted sensitive values short-lived
- Trusted hardware can provide additional support



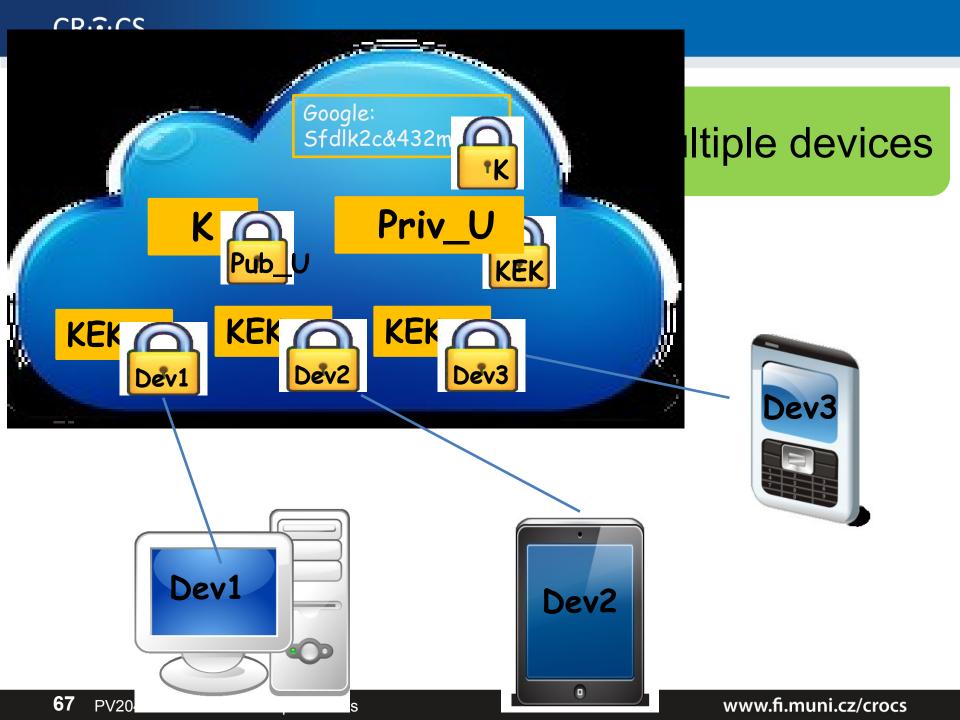

Public-key crypto indirection allows for asynchronous change of K

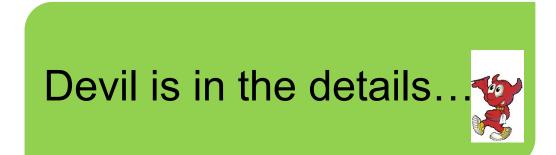
Long private key can be also stored on Service


Weak password?

Users tend to have weak passwords...

Attacker has motivation for attacking the Service!


v204 Authentication and passwords


uthentication and passwords

www.fi.muni.cz/crocs

Other operations

- Device management (new, remove, revoke)
- Device authentication
- Group management (users, boards, secrets)
- Password change, private key change
- Access recovery

Do we have some implementations?

- Apple's service showcased in 2013
- Lack of details until iOS Security report 02/2014
 - <u>https://www.apple.com/business/docs/iOS_Security_Guide.pdf</u>
- <u>https://blog.cryptographyengineering.com/2016/08/13/</u> <u>is-apples-cloud-key-vault-crypto/</u> (M.Green)

CRତCS

Apple's iCloud Keychain

- Multiple similarities to described example
 - Layer of indirection via asymmetric cryptography
 - Support for multiple devices
 - Asynchronous operations via application tickets
 - Authorization and signature of additional devices
 - User phone registered and required
- Still reliance on user's (potentially weak) password
 But limited number of tries allowed
- Trusted component of iCloud realized via internal HSM
 - Recovery mode with 4 digit code (default, can be set longer)
 - HSM will decrypt recovery key only after code validation
 - 4 digits length is not an issue here HSM enforce limited # retries

Summary

- Passwords have multiple issues, but are hard to be replaced
- Important to use passwords securely (guidelines)
- One-time passwords and tokens getting more used
- Password manager with synchronization over multiple devices is not straightforward
- Mandatory reading: UCAM-CL-817
 - At least chapters: II. Benefits, V. Discussion
 - Whole report is highly recommended