PV204 Security technologies

Labs: Project presentation, improvements

Petr Švenda <u>svenda@fi.muni.cz</u>
Faculty of Informatics, Masaryk University

The plan

- Presentation of projects (Phase II.), discussion
 - 10-15 minutes presentation
- Collaborative work on google docs spreadsheet summarizing important observations
 - https://docs.google.com/spreadsheets/d/1VNj1WnrcaSotiO
 2aNT7ILGrwICP1fbS7FqqTSay-cB0/edit?usp=sharing
 - Fill your findings into spreadsheet under your project
 - Use colour for issue seriousness
- Proposal how to fix detected issues
 - Plan for fixing, discuss (also with me)
 - Open issues on GitHub under corresponding milestone

HOMEWORK, PROJECT

Homework

- Homework: Password-Authenticated Key Exchange (PAKE)
 - -29.3.201824:00
 - Two options: simpler (DH-based) and advanced (RSA-based)
- Project
 - Phase III.: Improve code (GitHub), 10 points (19.4.2018)
 - Functionality and security tests (unit tests, integration)
 - Best practices, fix identified problems
 - Version + repo info specific command
 - Verify on simulator and on real card
 - Based on the performed analysis and discussion
 - Identified in Phase II and discussed today

Diffie-Hellman Encrypted Key Exchange

Step	Alice	Bob
1	Shared Secret: $S = H(password)$	
2	Parameters: p, g	
3	A = random()	random() = B
	$a = g^A \pmod{p}$	$g^B \; (\bmod \; p) = b$
4a	$E_S(a) \longrightarrow$	
	$\longleftarrow E_S(b)$	
4b	$a \longrightarrow$	
	$\longleftarrow E_S(b)$	
4c	$E_S(a) \longrightarrow$	
	<i>← b</i>	
5	$K = g^{BA} \pmod{p} = b^A \pmod{p}$ $a^B \pmod{p} = g^{AB} \pmod{p} = K$	
6	$\longleftarrow E_K(data) \longrightarrow$	

Homework: PAKE

- Create implementation of Password-Authenticated Key Exchange
 - Shares authentication using PIN or short password (max. 6 characters)
 - Shared between card and PC (can be hardcoded)
 - Derive properly two AES128 session keys
 - Implement also PC-side code and demonstrate its functionality
 - Start with simulator, then attempt real card
 - Explain why attacker can't perform offline bruteforce after eavesdropping APDU-level communication
 - Remove <u>all</u> unnecessary code (no leftover from examples!)
- Produce short text description of your solution
- Option 1: DH or ECDH-based PAKE (max. 5 points)
- Option 2: RSA-based PAKE (max. 7 points)
- Submit before 29.3. 23:59 into IS HW vault
 - Soft deadline: -1.5 points for every started 24 hours

Option 1: DH-based PAKE

- Use DH or ECDH for ephemeral keys
- Select suitable version
 - Make clear which one you selected
 - Make clear why you selected that one
- Relatively straightforward (maximum 5 points)

Option 2: RSA-based PAKE

- Use RSA for ephemeral keys
- Study existing RSA-based protocols
- Important: completely secure RSA-based PAKE is not easy straightforward task
- You can still get full number of points, even when your scheme will not be 100% secure against all attacks
 - But you must clearly describe the limitations of your design and implementation
- More demanding (maximum 7 points)