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Outline of the lecture

• Course introduction
• Course motivation and goals

• Course organization

• Our team

• Roadmap to quality assurance methods
• Define quality issues

• Prevent quality issues

• Detect quality issues

• Repair quality issues

• Keep track of quality issues

• Choose well, plan well
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Course motivation and goals

“People forget how fast you did a job – but they remember 
how well you did it”   – some guy named Howard Newton

• The aim of the course is to help the students to

• understand activities contributing to building high-quality software;

• develop critical thinking and be able to identify code flaws related to 

reliability, performance, scalability, maintainability and testability;

• be able to refactor existing code to improve different quality attributes;

• have practical experience with software testing and related tools.
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Outline of lectures

Lect 1. Course organization. Roadmap to software quality engineering methods.

Lect 2. Requirements and test cases. From unit testing to integration testing.

Lect 3. Quality and testing in agile. Practical insights on QA in real product 
development.

Lect 4. Clean Code & SOLID principles. Bad code smells and code refactoring.

Lect 5. Performance engineering and performance testing.

Lect 6. Automated testing and testability. Continuous integration.

Lect 7. Software measurement and metrics, and their role in quality improvement.

Lect 8. The role of software architecture.

Lect 9. Focus on quality attributes and conflicts between them.

Lect 10. Static code analysis and code reviews.

Lect 11. Challenges of quality management in cloud applications.

Lect 12. Software quality management process. Course summary.

Colloquium event
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Course organization

• Lectures
• Shared by us and experts from companies

• May not be recorded

• Final colloquium event after the end of semester

• Seminars
• Practical assignments on computers

• Teamwork, homework, projects

• 2 Java groups – taught by LaSArIS lab members

• 1 C# group – taught by YSoft experts
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Course organization

• Evaluation
• 45 points for seminar assignments
• 10 seminar activity points
• 10 lecture activity points
• 35 points for final colloquium assessment, consisting of 

• obligatory attendance at the final colloquium event and 

• final written test

• Minimum of 70 points for passing the course

• Colloquium event
• On June 4, between 9-14h
• Discussion groups led by industrial experts
• Student presentations of outcomes
• Written test (at the end of the day, or on a separate term)
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Our team
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• Ondřej Krajíček
• Martin Osovský
• Radim Göth
• and others

• Barbora Bühnová
• Bruno Rossi
• David Gešvindr
• Stanislav Chren

• Jaromír Skřivan
• Lukáš Pitoňák
• Jakub Papcun
• Jan Svoboda

• Jan Verner• Jiří Pokorný
• Pavel Macík
• Martin Večeřa
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Quality Assurance (QA) methods
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Usability testing
Security testing

Security tactics



Roadmap to QA methods

Prevent 
quality issues

Detect 
quality issues

Repair 
quality issues

Keep track of 
quality issues

Define 
quality issues
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Define quality issues

• Software quality is commonly
defined as the capability of
a software product to conform
to requirements [ISO/IEC 9001].

• Requirements engineering

• Software metrics
• ’You cannot manage what you cannot measure’

• Quality attributes
• Of a product, process and resources
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What "quality" means to you?
… and your customer?

… and your manager?
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The Software Quality Iceberg
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INTERNAL QUALITY
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The big five

• Along the course we will focus on:

• Maintainability – ease of change (without increased technical debt)

• Performance – response time and efficiency in resource utilization

• Reliability – probability of failure-free operation over a period of time

• Testability – degree to which the system facilitates testing

• Scalability – system’s ability to handle growing work load

• Quality attributes studied in related courses:

• Security – system’s ability to protect itself from attacks

• Usability – ease of system use and learnability
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Prevent quality issues

• Coding best practices
• Clean code, SOLID principles

• Design patterns

• Pair programming

• Code conventions
• Language specif. recommendations

• Quality assurance processes
• V-model of testing

• Standards for development process improvement
• CMMI and ITIL reference models

• ISO 9000, ISO/IEC 25010
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Detect quality issues

• Testing functional requirements
• Manual or automated

• Testing non-functional req.
• Performance, usability, security

testing

• Design inspections
• Manual inspections of design artifacts

• Code reviews
• Manual inspections of code

• Automated static code analysis
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Roadmap to software testing
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Inspired from [1]
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Repair quality issues

• Functional issue
• Code repair

• Reliability issue
• Fault tolerance mechanisms

• Performance issue
• Concurrency, effective resource utilization, 

identify and remove system bottlenecks

• Security issue
• Identify and remove system vulnerabilities (single points of failure)

• Maintainability issue
• Refactoring to clean code principles, to design patterns
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Keep track of quality issues

• Issue tracking
• Supports the management of 

issues reported by customers

• Technical debt management
• Level of code quality degradation

• Work that needs to be done before
a particular job can be considered complete or proper

• Configuration management
• Version management and release management

• System integration
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Roadmap to QA methods – the Big Picture

Prevent quality issues

- Coding best practices
- Code conventions
- QA processes
- Standards

Detect quality issues

(Non)Functional testing -
Design inspections -

Code reviews -
Static code analysis -

Repair quality issues

- Reliability tactics
- Performance tactics
- Security tactics
- Maintainability tactics

Keep track 
of quality issues

Issue tracking -
Technical debt management -
Configuration management -

Define quality issues

- Requirements engineering
- Quality attributes
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Choose well, plan well

• Think well about your requirements
and the cost of the quality
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Choose well – Combination is the key
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From [2,3], see also RebelLabs reports [4] 



Plan well –The Power of Analogy

• Airplane Servicing
• Requires regular servicing e.g. every 100,000 miles.
• Takes place even if everything seems to work all right, 

because we cannot afford a failure.

• Technical Debt Management
• Introduced by Ward Cunningham
• Analogy of quality degradation with financial debt 

– if not paid off, interests increase. One can get into trouble.

• Sometimes it is wise to “borrow money”
• When one expects to have more money in the future (start-up company)
• When one needs to act fast not to miss a market opportunity
• When one expects money devaluation (e.g. developers will become 

more experienced, it will be easier to understand user needs)
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Can we quantify it?



Takeaways

• Quality assurance (QA) is much more than testing, including 
many different methods to
• prevent, detect, repair and keep track of quality issues

• Combination of the methods is the key to successful QA
• But choose well and plan well, not all methods are best for your project!

• Make sure you understand the needs of your customer
• Balance both internal and external quality attributes for both 

the present and the future

Barbora Bühnová, FI MU Brno
buhnova@fi.muni.cz
www.fi.muni.cz/~buhnova

contact me

thanks for listening
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