SOLID Principles

PV260 Software Quality
Stanislav Chren, Viclav Hala

2. 3. 2017

NRTIS Iz
® %,
2

§
$
" 1)
2, $
% W/ &
W

SOLID Principles

e Problems the SOLID principles help to address !

¢ Rigidity
making small changes ripples throughout the entire system

o Fragility
changes to one module causes other unrelated modules to
misbehave

o Immobility
a module's internal components cannot be extracted and
reused in new environments

e Viscosity
building and testing are difficult to perform and take a long
time to execute

e Only recommendations and best practices, not hard rules

WIS I
& %,

!Taken from http://zeroturnaround.com/rebellabs/object-oriented-design- *
principles-and-the-5-ways-of-creating-solid-applications/

. ¥ ! »)
" e R - (¢ .
g L h A Y <
> L aut
{] %
-y >
o Y

S\
SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

Single Responsibility Principle
SOLID

e A class should have exactly one responsibility
e Responsibility is the purpose of the class
e Responsibility is a reason to change

e Seems simple, very hard to get right

IS
S %,

7

2

SHiey,

~

% / §
o S
RCTC

&t
#
i

OPEN CLOSED PRINCIPLE

Open Chest Surgery Is Not Needed When Putting On A Coat

Open Closed Principle
SOLID

Behavior of a class should be extendable without modifying
the class itself
Modules should be open for extension, closed for modification

Changing existing code could break other part of the system

Adhering to the principle yields reusability and maintainability

IS I
N %

7

WFAg
/»\ 'ty

% N
/y A
iag e

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

Liskov Substitution Principle
SOLID

e Class should be substitutable for any of its subclasses

e The contract of the supertype must be satisfied,
implementation details are irrelevant

e The principle is broken if client has to check which
implementation is actually used

INTERFACE SEGREGATION PRINCIPLE

You Want Me To Plug This In, Where?

Interface Segregation Principle
SOLID

e Many client-specific interfaces are better than one
general-purpose interface

e Clients should not be forced to depend on interfaces they do
not use

e Adhering to the principle results in high cohesion and low
coupling

e The principle is broken if usually only a small subset of the
interface is used

IS g,
NS '?\/,y

7

2

N
SWVECy,

§
&

%, N
g s

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

Dependency Inversion Principle
SOLID

e High level modules should not depend upon low level
modules, both should depend upon abstractions

e Abstractions should not depend upon details, details should
depend upon abstractions

¢ Violating the principle leads to hard to change and fragile
software

IS
S %,

7

STy
g S

Z,
4

Y/
g s

Further Reading

e http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

e http://zeroturnaround.com/rebellabs/object-oriented-design-
principles-and-the-5-ways-of-creating-solid-applications/

e http://code.tutsplus.com/series/the-solid-principles—cms-634

WIS
v

vHieg,

S

Source of Images

e https://lostechies.com /derickbailey/2009/02/11/solid-
development-principles-in-motivational-pictures/

IS I
N %

7

SOFicy,

~

AV
&
iag e

	SOLID Principles
	SRP
	OCP
	LSP
	ISP
	DIP
	Sources

