Essential Information Theory

PA154 Jazykové modelování (1.3)

Pavel Rychlý

pary@fi.muni.cz

February 23, 2017

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

The Formula

- Let $p_x(x)$ be a distribution of random variable X
- \blacksquare Basic outcomes (alphabet) Ω

Entropy

 $H(X) = -\sum_{x \in \Omega} p(x) \log_2 p(x)$

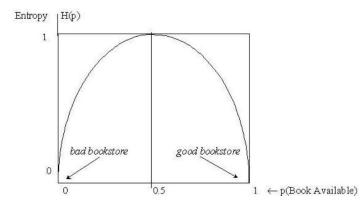
■ Unit: bits (log₁₀: nats)

■ Notation: $H(X) = H_p(X) = H(p) = H_X(p) = H(p_X)$

PA154 Jazykové modelování (1.3) Essential Information Theory

3/13

Example: Book Availability



The Notion of Entropy

- Entropy "chaos" , fuzziness, opposite of order,...
 - ▶ you know it
 - ▶ it is much easier to create "mess" than to tidy things up...
- Comes from physics:
 - ▶ Entropy does not go down unless energy is used
- Measure of uncertainty:
 - ▶ if low ... low uncertainty

Entropy

The higher the entropy, the higher uncertainty, but the higher "surprise" (information) we can get out of experiment.

PA154 Jazykové modelování (1.3) Essential Information Theory

Using the Formula: Example

- Toss a fair coin: $\Omega = \{head, tail\}$
 - ▶ p(head) = .5, p(tail) = .5
 - ► $H(p) = -0.5 \log_2(0.5) + (-0.5 \log_2(0.5)) = 2 \times ((-0.5) \times (-1)) =$ $2\times 0.5=1\,$
- Take fair, 32-sided die: $p(x) = \frac{1}{32}$ for every side x
 - ► $H(p) = -\sum_{i=1...32} p(x_i) \log_2 p(x_i) = -32(p(x_1) \log_2 p(x_1))$ (since for all $i \ p(x_i) = p(x_1) = \frac{1}{32}$ $= -32 \times (\frac{1}{32} \times (-5)) = 5 \ (now \ you \ see \ why \ it's \ called \ bits?)$
- Unfair coin:
 - ▶ p(head) = .2 . . . H(p) = .722
 - p(head) = .1 ... H(p) = .081

ové modelování (1.3) Essential Information Theory

4/13

The Limits

- When H(p) = 0?
 - if a result of an experiment is **known** ahead of time:
 - ► necessarily:

$$\exists x \in \Omega; p(x) = 1\& \forall y \in \Omega; y \neq x \Rightarrow p(y) = 0$$

- Upper bound?
 - ▶ none in general
 - ▶ for $|\Omega| = n : H(p) \le \log_2 n$
 - ▶ nothing can be more uncertain than the uniform distribution

PA154 Jazykové modelování (1.3) Essential Information Theory PA154 Jazykové modelování (1.3) Essential Information Theory 6/13

Entropy and Expectation

■ Recall:

$$\blacktriangleright E(X) = \sum_{x \in X(\Omega)} p_x(x) \times x$$

Then:
$$E\left(\log_2\left(\frac{1}{p(x)}\right)\right) = \sum_{x \in X(\Omega)} p_x(x) \log_2\left(\frac{1}{p_x(x)}\right) = -\sum_{x \in X(\Omega)} p_x(x) \log_2 p_x(x) = H(p_x) =_{notation} H(p)$$

ové modelování (1.3) Essential Information Theory

Perplexity: motivation

■ Recall:

▶ 2 equiprobable outcomes: H(p) = 1 bit

► 32 equiprobable outcomes: H(p) = 5 bits

▶ 4.3 billion equiprobable outcomes: $H(p) \cong 32$ bits

■ What if the outcomes are not equiprobable?

▶ 32 outcomes, 2 equiprobable at 0.5, rest impossible:

► H(p) = 1 bit

▶ any measure for comparing the entropy (i.e. uncertainty/difficulty of prediction) (also) for random variables with different number of outcomes?

PA154 Jazykové modelování (1.3) Essential Information Theory

Perplexity

Perplexity:

$$G(p) = 2^{H(p)}$$

- ... so we are back at 32 (for 32 eqp. outcomes), 2 for fair coins, etc.
- it is easier to imagine:
 - ▶ NLP example: vocabulary size of a vocabulary with uniform distribution, which is equally hard to predict
- the "wilder" (biased) distribution, the better:
 - ► lower entropy, lower perplexity

PA154 Jazykové modelování (1.3) Essential Information Theory

9/13

Joint Entropy and Conditional Entropy

- Two random variables: X (space Ω), Y (Ψ)
- Joint entropy:
 - ▶ no big deal: ((X,Y) considered a single event):

$$H(X,Y) = -\sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 p(x,y)$$

■ Conditional entropy:

$$H(Y|X) = -\sum_{x \in \Omega} \sum_{y \in \Psi} p(x, y) \log_2 p(y|x)$$

recall that $H(X) = E\left(\log_2 \frac{1}{p_x(x)}\right)$ (weighted "average", and weights are not conditional)

PA154 Jazykové modelování (1.3) Essential Information Theory

10/13

Conditional Entropy (Using the Calculus)

other definition:

$$\begin{split} H(Y|X) &= \sum_{x \in \Omega} p(x) H(Y|X = x) = \\ & \text{for } H(Y|X = x), \text{ we can use} \\ \text{the single-variable definition } (x \sim \text{constant}) \\ &= \sum_{x \in \Omega} p(x) \left(-\sum_{y \in \Psi} p(y|x) \log_2 p(y|x) \right) = \\ &= -\sum_{x \in \Omega} \sum_{y \in \Psi} p(y|x) p(x) \log_2 p(y|x) = \\ &= -\sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 p(y|x) \end{split}$$

Properties of Entropy I

- Entropy is non-negative:
 - ► $H(X) \ge 0$
 - ▶ proof: (recall: $H(X) = -\sum_{x \in \Omega} p(x) \log_2 p(x)$)
 - ▶ $\log_2(p(x))$ is negative or zero for $x \le 1$,
 - p(x) is non-negative; their product $p(x) \log(p(x))$ is thus negative,
 - ▶ sum of negative numbers is negative,
 - ▶ and -f is positive for negative f
- Chain rule:
 - ► H(X,Y) = H(Y|X) + H(X), as well as ► H(X,Y) = H(X|Y) + H(Y) (since H(Y,X) = H(X,Y))

PA154 Jazykové modelování (1.3) Essential Information Theory 11/13 PA154 Jazykové modelování (1.3) Essential Information Theory 12/13

Properties of Entropy II

- Conditional Entropy is better (than unconditional):
 - ► $H(Y|X) \le H(Y)$
- $H(X,Y) \leq H(X) + H(Y)$ (follows from the previous (in)equalities)
 - ► equality iff X,Y independent
 - (recall: X,Y independent iff p(X,Y)=p(X)p(Y))
- \blacksquare H(p) is concave (remember the book availability graph?)
 - concave function f over an interval (a,b): $\forall x, y \in (a, b), \forall \lambda \in [0, 1]$: $f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$
 - function f is convex if -f is concave
- for proofs and generalizations, see Cover/Thomas

PA154 Jazykové modelování (1.3) Essential Information Theory