"Coding" Interpretation of Entropy

Cross Entropy PA154 Jazykové modelování (2.1)

Pavel Rychlý

pary@fi.muni.cz

March 2, 2017

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

The least (average) number of bits needed to encode a message (string, sequence, series, ...) (each element having being a result of a random process with some distribution p): = H(p)

Remember various compressing algorithms?

▶ they do well on data with repeating (= easily predictable = = low entropy) patterns

PA154 Jazykové modelování (2.1) Cross Entropy

• their results though have high entropy \Rightarrow compressing compressed data does nothing

Coding: Example

- How many bits do we need for ISO Latin 1?
 - \blacktriangleright \Rightarrow the trivial answer: 8
- Experience: some chars are more common, some (very) rare:
 - ... so what if we use more bits for the rare, and less bits for the frequent? (be careful: want to decode (easily)!)
 - ▶ suppose: p('a') = 0.3, p('b') = 0.3, p('c') = 0.3, the rest: p(x) ≅.0004
 - \blacktriangleright code: 'a' \sim 00, 'b' \sim 01, 'c' \sim 10, rest: $11b_1b_2b_3b_4b_5b_6b_7b_8$
 - code 'acbbécbaac':
 - 00 10 01 01 <u>1100001111</u> 10 01 00 00 10 a c b b é c b a a c
 - number of bits used: 28 (vs. 80 using "naive" coding)

A154 Jazykové modelování (2.1) Cross Entropy

• code length $\sim -log(probability)$

Entropy of Language

Imagine that we produce the next letter using

 $p(I_{n+1}|I_1,\ldots,I_n),$

where $I_1, \ldots I_n$ is the sequence of **all** the letters which had been uttered so far (i.e. *n* is really big!); let's call $l_1, \ldots l_n$ the **history** $h(h_{n+1})$, and all histories H:

- Then compute its entropy: • $-\sum_{h\in H}\sum_{l\in A}p(l,h)\log_2 p(l|h)$
- Not very practical, isn't it?

Cross-Entropy

- Typical case: we've got series of observations
- $T = \{t_1, t_2, t_3, t_4, \dots, t_n\}$ (numbers, words, \dots ; $t_1 \in \Omega$); estimate (sample): $\forall y \in \Omega : \tilde{p}(y) = \frac{c(y)}{|T|}$ def. $c(y) = |\{t \in T; t = y\}|$

- ... but the true p is unknown; every sample is too small!
- Natural question: how well do we do using p̃ (instead of p)?
- Idea: simulate actual p by using a different T (or rather: by using different observation we simulate the insufficiency of T vs. some other data ("random" difference))

Cross Entropy: The Formula

 $\blacksquare H_{p'}(\tilde{p}) = H(p') + D(p'||\tilde{p})$

$$H_{p'}(\tilde{p}) = -\sum_{x \in \Omega} p'(x) \log_2 \tilde{p}(x)$$

- \mathbf{p}' is certainly not the true p, but we can consider it the "real world" distribution against which we test \tilde{p}
- note on notation (confusing ...): $\frac{p}{p'} \leftrightarrow \tilde{p}$, also $H_{T'}(p)$

A154 Jazykové modelování (2.1) Cross Entropy

• (Cross)Perplexity: $G_{p'}(p) = G_{T'}(p) = 2^{H_{p'}(\tilde{p})}$

3/12

2/12

4/12

Conditional Cross Entropy

- So far: "unconditional" distribution(s) $p(x), p'(x), \ldots$
- In practice: virtually always conditioning on context

PA154 Jazykové modelování (2.1) Cross Entropy

Interested in: sample space Ψ , r.v. Y, $y \in \Psi$; context: sample space Ω , r.v.X, $x \in \Omega$: "our" distribution p(y|x), test against p'(y,x), which is taken from some independent data:

$$H_{p'}(p) = -\sum_{y\in\Psi,x\in\Omega} p'(y,x)\log_2 p(y|x)$$

Sample Space vs. Data

- In practice, it is often inconvenient to sum over the space(s) Ψ, Ω (especially for cross entropy!)
- Use the following formula: $H_{p'}(p) =$ $-\sum_{y \in \Psi, x \in \Omega} p'(y, x) \log_2 p(y|x) = -1/|T'| \sum_{i=1...|T'|} \log_2 p(y_i|x_i)$
- This is in fact the normalized log probability of the "test" data:

$$H_{p'}(p) = -1/|T'|\log_2 \prod_{i=1...|T'|} p(y_i|x_i)$$

8/12

Cross Entropy: Some Observations

- H(p) ??<, =, >?? $H_{p'}(p)$: ALL!
- Previous example: p(a) = .25, p(b) = .5, p(α)= $\frac{1}{64}$ for $\alpha \in \{c..r\}$, = 0 for the rest: s,t,u,v,w,x,y,z

PA154 Jazykové modelování (2.1) Cross Entropy

$$H(p) = 2.5 bits = H(p')(barb)$$

• Other data: probable: $(\frac{1}{8})(6+6+6+1+2+1+6+6) = 4.25$

H(p) < 4.25 bits = H(p')(probable)

• And finally: <u>abba</u>: $(\frac{1}{4})(2+1+1+2) = 1.5$

 $H(p) > 1.5 bits = H(p')(\underline{abba})$

■ But what about: baby $-p'('y') \log_2 p('y') = -.25 \log_2 0 = \infty$ (??)

PA154 Jazykové modelování (2.1) Cross Entropy

10/12

Comparing Distributions

Computation Example

- $\Omega = \{a, b, ..., z\}$, prob. distribution (assumed/estimated from data): p(a) = .25, p(b) = .5, $p(\alpha) = \frac{1}{64}$ for $\alpha \in \{c..r\}$, = 0 for the rest: s,t,u,v,w,x,y,z
- Data (test): <u>barb</u> p'(a) = p'(r) = .25, p'(b) = .5
- Sum over Ω: a bcdefg...pq r st...z C. $-p'(\alpha)\log_2 p(\alpha)$.5+.5+0+0+0+0+0+0+0+0+0+1.5+0+0+0+0 = 2.
- Sum over data: -1/|T'|i/s; 1/b 2/a 3/r 4/b $6 + 1 = 10 (1/4) \times 10 = 2$. $-\log_2 p(s_i)$ 1

PA154 Jazykové modelování (2.1) Cross Entropy

Cross Entropy: Usage

- Comparing data??
- <u>NO!</u> (we believe that we test on <u>real</u> data!)
- Rather: comparing distributions (vs. real data)
- Have (got) 2 distributions: p and q (on some Ω, X)
 - which is better?
 - better: has lower cross-entropy (perplexity) on real data S
- "Real" data: S

 $H_{S}(p) = -1/|S| \sum_{i=1,.,|S|} \log_{2} p(y_{i}|x_{i}) \stackrel{(?)}{(?)} H_{S}(q) = -1/|S| \sum_{i=1,.,|S|} \log_{2} q(y_{i}|x_{i})$

PA154 Jazykové modelování (2.1) Cross Entropy

7/12

9/12