Cross Entropy

PA154 Jazykové modelování (2.1)

Pavel Rychlý

pary@fi.muni.cz

March 2, 2017

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

"Coding" Interpretation of Entropy

- The least (average) number of bits needed to encode a message (string, sequence, series, ...) (each element having being a result of a random process with some distribution p): = H(p)
- Remember various compressing algorithms?
 - they do well on data with repeating (= easily predictable = = low entropy) patterns
 - ▶ their results though have high entropy ⇒ compressing compressed data does nothing

Coding: Example

- How many bits do we need for ISO Latin 1?
 - ► ⇒ the trivial answer: 8
- Experience: some chars are more common, some (very) rare:
 - ...so what if we use more bits for the rare, and less bits for the frequent? (be careful: want to decode (easily)!)
 - ▶ suppose: p('a') = 0.3, p('b') = 0.3, p('c') = 0.3, the rest: $p(x) \cong .0004$
 - lacktriangle code: 'a' \sim 00, 'b' \sim 01, 'c' \sim 10, rest: $11b_1b_2b_3b_4b_5b_6b_7b_8$

 - ▶ number of bits used: 28 (vs. 80 using "naive" coding)
- code length $\sim -log(probability)$

Entropy of Language

Imagine that we produce the next letter using

$$p(I_{n+1}|I_1,\ldots I_n),$$

where $l_1, \ldots l_n$ is the sequence of **all** the letters which had been uttered so far (i.e. n is really big!); let's call $l_1, \ldots l_n$ the **history** $h(h_{n+1})$, and all histories H:

- Then compute its entropy:
 - $-\sum_{h\in H}\sum_{l\in A}p(l,h)\log_2p(l|h)$
- Not very practical, isn't it?

Cross-Entropy

- Typical case: we've got series of observations $T = \{t_1, t_2, t_3, t_4, \dots, t_n\}$ (numbers, words, ...; $t_1 \in \Omega$); estimate (sample): $\forall y \in \Omega : \tilde{p}(y) = \frac{c(y)}{|T|}$, def. $c(y) = |\{t \in T; t = y\}|$
- \blacksquare ... but the true p is unknown; every sample is too small!
- Natural question: how well do we do using \tilde{p} (instead of p)?
- Idea: simulate actual p by using a different T (or rather: by using different observation we simulate the insufficiency of T vs. some other data ("random" difference))

Cross Entropy: The Formula

- p' is certainly not the true p, but we can consider it the "real world" distribution against which we test \tilde{p}
- note on notation (confusing ...): $\frac{p}{p'} \leftrightarrow \tilde{p}$, also $H_{T'}(p)$
- (Cross)Perplexity: $G_{p'}(p) = G_{T'}(p) = 2^{H_{p'}(\tilde{p})}$

Conditional Cross Entropy

- So far: "unconditional" distribution(s) p(x), p'(x)...
- In practice: virtually always conditioning on context
- Interested in: sample space Ψ , r.v. Y, $y \in \Psi$; context: sample space Ω , r.v. X, $x \in \Omega$: "our" distribution p(y|x), test against p'(y,x), which is taken from some independent data:

$$H_{p'}(p) = -\sum_{y \in \Psi, x \in \Omega} p'(y, x) \log_2 p(y|x)$$

Sample Space vs. Data

- In practice, it is often inconvenient to sum over the space(s) Ψ, Ω (especially for cross entropy!)
- Use the following formula: $H_{p'}(p) = -\sum_{v \in \Psi, x \in \Omega} p'(y, x) \log_2 p(y|x) = -1/|T'| \sum_{i=1...|T'|} \log_2 p(y_i|x_i)$
- This is in fact the normalized log probability of the "test" data:

$$H_{p'}(p) = -1/|T'|log_2 \prod_{i=1...|T'|} p(y_i|x_i)$$

Computation Example

- $\Omega = \{a, b, ..., z\}$, prob. distribution (assumed/estimated from data): p(a) = .25, p(b) = .5, p(α) = $\frac{1}{64}$ for $\alpha \in \{c...r\}$, = 0 for the rest: s,t,u,v,w,x,y,z
- Data (test): $\underline{barb} p'(a) = p'(r) = .25, p'(b) = .5$
- Sum over Ω:

■ Sum over data:

$$i/s_i$$
 1/b 2/a 3/r 4/b $1/|T'|$ $-\log_2 p(s_i)$ 1 + 2 + 6 + 1 = 10 (1/4) × 10 = 2.

Cross Entropy: Some Observations

- H(p) ??<,=,>?? $H_{p'}(p)$: ALL!
- Previous example:

$$p(a)=.25, p(b)=.5, p(\alpha)=\frac{1}{64}$$
 for $\alpha\in\{c..r\},=0$ for the rest: s,t,u,v,w,x,y,z

$$H(p) = 2.5bits = H(p')(\underline{barb})$$

■ Other data: probable: $(\frac{1}{8})(6+6+6+1+2+1+6+6) = 4.25$

$$H(p) < 4.25 bits = H(p')(probable)$$

■ And finally: <u>abba</u>: $(\frac{1}{4})(2+1+1+2) = 1.5$

$$H(p) > 1.5 bits = H(p')(\underline{abba})$$

■ But what about: $\underline{\mathsf{baby}} - p'(\mathsf{'}y\mathsf{'})\log_2 p(\mathsf{'}y\mathsf{'}) = -.25\log_2 0 = \infty$ (??)

Cross Entropy: Usage

- Comparing data??
 - ▶ NO! (we believe that we test on <u>real</u> data!)
- Rather: comparing distributions (vs. real data)
- Have (got) 2 distributions: p and q (on some Ω, X)
 - which is better?
 - ▶ better: has lower cross-entropy (perplexity) on real data *S*
- "Real" data: *S*

$$H_S(p) = -1/|S| \sum_{i=1..|S|} log_2 p(y_i|x_i) \stackrel{??}{?} H_S(q) = -1/|S| \sum_{i=1..|S|} log_2 q(y_i|x_i)$$

Comparing Distributions

■ p(.) from previous example: $(H_S(p) = 4.25)$ p(a) = .25, p(b) = .5, $p(\alpha) = \frac{1}{64}$ for $\alpha \in \{c..r\}$, = 0 for the rest: s,t,u,v,w,x,y,z

 \blacksquare q(.|.) (conditional; defined by a table):

q(. .)→	a	ь	е	1	0	p	r	other	
a	0	.5	0	0	0	.1 25	0	0	
ь	1	0	0	0	1	.1 25	0	0	ex.: q(o r) = 1
e	0	0	0	1	0	.1 25	0	g	711
1	0	.5	0	0	0	.1 25	0 /	0	q(r p) = .125
0	0	0	0	0	0	.1 25	1	0	
р	0	0	0	0	0	.1 25	0	1	
r	0	0	0	0	0	.1 25 -	- 0 -	-0-	
other	0	0	1	0	0	.1 25	0	0	