Language Modeling (and the Noisy Channel)

PA154 Jazykové modelování (2.2)

Pavel Rychlý

pary@fi.muni.cz

March 2, 2017

ce: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

Noisy Channel Applications

- OCR
 - straightforward: text → print (adds noise), scan → jimage
- Handwriting recognition
- text → neurons, muscles ("noise"), scan/digitize → image
- Speech recognition (dictation, commands, etc.)
 - text \rightarrow conversion to acoustic signal ("noise") \rightarrow acoustic waves
- Machine Translation
 - text in target language ightarrow translation ("noise") ightarrow source language
- Also: Part of Speech Tagging
 - sequence of tags \rightarrow selection of word forms \rightarrow text

PA154 Jazykové modelování (2.2) Noisy Cannel

The Perfect Language Model

- Sequence of word forms (forget about tagging for the moment)
- Notation: A ~ W = $(w_1, w_2, w_3, ..., w_d)$
- The big (modeling) question:

$$p(W) = ?$$

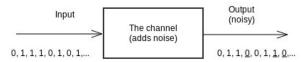
■ Well, we know (Bayes/chain rule) \rightarrow):

$$p(W) = p(w_1, w_2, w_3, ..., w_d) = \\ p(w_1) \times p(w_2|w_1) \times p(w_3|w_1, w_2) \times ... \times p(w_d|w_1, w_2, ...w_{d-1})$$

■ Not practical (even short W → too many parameters)

The Noisy Channel

■ Prototypical case



■ Model: probability of error (noise):

Example: p(0|1) = .3 p(1|1) = .7 p(1|0) = .4 p(0|0) = .6

■ The task:

known: the noisy output; want to know; the input (decoding)

The Golden Rule of OCR, ASR, HR, MT,...

■ Recall:

recall:
$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$
 (Bayes formula)
$$A_{best} = argmax_A p(B|A)p(A)$$
 (The Golden Rule)

- p(B|A): the acoustic/image/translation/lexical model
 - application-specific name
 - will explore later
- p(A): language model

Markov Chain

- Unlimited memory (cf. previous foil):
 - for w_i we know all its predecessors $w_1, w_2, w_3, ..., w_{i-1}$
- Limited memory:
 - we disregard "too old" predecessors
 - remember only k previous words: $w_{i-k}, w_{i-k+1}, ..., w_{i-1}$
 - called "kth order Markov approximation"
- + stationary character (no change over time):

$$p(W) \cong \prod_{i=1..d} p(w_i|w_{i-k}, w_{i-k+1}, ..., w_{i-1}), d = |W|$$

PA154 Jazykové modelování (2.2) Noisy Cannel PA154 Jazykové modelování (2.2) Noisy Cannel

n-gram Language Models

■ $(n-1)^{th}$ order Markov approximation \rightarrow n-gram LM:

$$p(W) = \prod_{i=1...d} p(\underbrace{w_i}_{w_{i-n+1}}, \underbrace{w_{i-n+2},...,w_{i-1}}_{w_{i-n+2}})$$

■ In particular (assume vocabulary |V| = 60k):

0-gram LM: uniform model, p(w) = 1/|V|,1 parameter 1-gram LM: unigram model, 6×10⁴ parameters p(w), $p(w_i|w_{i-1}),$ 3.6×10⁹ parameters 2-gram LM: bigram model, $p(w_i|w_{i-2}, w_{i-1}), 2.16 \times 10^{14} \text{ parameters}$ 3-gram LM: trigram model,

The Length Issue

- $\blacksquare \ \forall n; \Sigma_{w \in \Omega^n} p(w) \ = \ 1 \Rightarrow \Sigma_{n=1..\infty} \Sigma_{w \in \Omega^n} p(w) \gg 1 (\to \infty)$
- We want to model all sequences of words
- for "fixed" length tasks: no problem n fixed, sum is 1
 - ► tagging, OCR/handwriting (if words identified ahead of time)
- for "variable" length tasks: have to account for
 - discount shorter sentences
- General model: for each sequence of words of length n, define p'(w) = $\lambda_n p(w)$ such that $\sum_{n=1...\infty} \lambda_n = 1 \Rightarrow$

$$\Sigma_{n=1..\infty}\Sigma_{w\in\Omega^n}p'(w)=1$$

e.g. estimate λ_n from data; or use normal or other distribution

PA154 Jazykové modelování (2.2) Noisy Canne

Maximum Likelihood Estimate

- MLE: Relative Frequency...
 - ...best predicts the data at hand (the "training data")
- Trigrams from training Data T:
- count sequences of three words in T: $c_3(w_{i-2}, w_{i-1}, w_i)$
- (NB: notation: just saying that three words follow each other)
- count sequences of two words in T: $c_2(w_{i-1}, w_i)$
 - either use $c_2(y,z) = \sum_w c_3(y,z,w)$
 - ▶ or count differently at the beginning (& end) of the data!

$$p(w_i|w_{i-2},w_{i-1}) =_{est.} \frac{c_3(w_{i-2},w_{i-1},w_i)}{c_2(w_{i-2},w_{i-1})}$$
!

LM: Observations

- How large *n*?
 - nothing in enough (theoretically)
 - but anyway: as much as possible (\rightarrow close to "perfect" model)
 - empirically: 3
 - parameter estimation? (reliability, data availability, storage space, ...)
 - 4 is too much: $|V|=60k \rightarrow 1.296 \times 10^{19}$ parameters
 - ▶ but: 6-7 would be (almost) ideal (having enough data): in fact, one can recover original from 7-grams!
- \blacksquare Reliability ~(1/Detail) (\rightarrow need compromise)
- For now, keep word forms (no "linguistic" processing)

Parameter Estimation

- Parameter: numerical value needed to compute p(w|h)
- From data (how else?)
- Data preparation:
 - ▶ get rid of formating etc. ("text cleaning")
 - define words (separate but include punctuation, call it "word")
 - define sentence boundaries (insert "words" <s> and </s>)
 - letter case: keep, discard, or be smart:
 - name recognition
 - number type identification (these are huge problems per se!)
 - numbers: keep, replace by <num>, or be smart (form ~ punctuation)

PA154 Jazykové modelování (2.2) Noisy Cannel

Character Language Model

■ Use individual characters instead of words:

$$p(W) =_{df} \prod_{i=1..d} p(c_i | c_{i-n+1}, c_{i-n+2}, ..., c_i)$$

- Same formulas etc.
- Might consider 4-grams, 5-grams or even more
- Good only for language comparison)
- Transform cross-entropy between letter- and word-based models:

 $H_S(p_c) = H_S(p_w)/avg$. # of characters/word in S

PA154 Jazykové modelování (2.2) Noisy Cannel PA154 Jazykové modelování (2.2) Noisy Cannel

LM: an Example

■ Training data:

<s> <s> He can buy the can of soda.

- Unigram: $p_1(He) = p_1(buy) = p_1(the) = p_1(of) p_1(soda) = p_1(.) = .125$ $p_1(can) = .25$

- Bigram: $p_2(\text{He}|\text{-}\text{s>}) = 1$, $p_2(\text{can}|\text{He}) = 1$, $p_2(\text{buy}|\text{can}) = .5$, $p_2(\text{of}|\text{can}) = .5$,

- Trigram: $p_3(He|<s>, <s>) = 1, p_3(can|<s>,He) = 1, p_3(buy|He,can) = 1,$ $p_3(\text{of}|\text{the,can}) = 1, ..., p_3(.|\text{of,soda}) = 1.$

– Entropy: $H(p_1) = 2.75$, $H(p_2) = .25$, $H(p_3) = 0 \leftarrow Great$?! LM: an Example (The Problem)

- Cross-entropy:
- \blacksquare S = <s><s> It was the greatest buy of all.
- Even $H_S(p_1)$ fails (= $H_S(p_2) = H_S(p_3) = \infty$), because:
 - all unigrams but p₁(the), p₁(buy), p₁(of) and p₁(.) are 0.
 all bigram probabilities are 0.

 - ► all trigram probabilities are 0.
- We want: to make all (theoretically possible*) probabilities non-zero.

*in fact, all: remeber our graph from day1?

PA154 Jazykové modelování (2.2) Noisy Cannel