Language Modeling (and the Noisy Channel) PA154 Jazykové modelování (2.2)

Pavel Rychlý

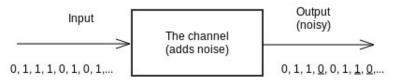
pary@fi.muni.cz

March 2, 2017

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

The Noisy Channel

Prototypical case



Model: probability of error (noise):

■ Example: p(0|1) = .3 p(1|1) = .7 p(1|0) = .4 p(0|0) = .6

The task: known: the noisy output; want to know; the input (decoding)

Noisy Channel Applications

OCR

– straightforward: text \rightarrow print (adds noise), scan \rightarrow image

Handwriting recognition

- text \rightarrow neurons, muscles ("noise"), scan/digitize \rightarrow image
- Speech recognition (dictation, commands, etc.)
 - text \rightarrow conversion to acoustic signal ("noise") \rightarrow acoustic waves

Machine Translation

- text in target language \rightarrow translation ("noise") \rightarrow source language
- Also: Part of Speech Tagging
 - sequence of tags \rightarrow selection of word forms \rightarrow text

The Golden Rule of OCR, ASR, HR, MT,...

Recall: $p(A|B) = \frac{p(B|A)p(A)}{p(B)} \quad (Bayes formula)$ $A_{best} = argmax_A p(B|A)p(A) \quad (The Golden Rule)$

- p(B|A): the acoustic/image/translation/lexical model – application-specific name
 - will explore later
- p(A): *language model*

Sequence of word forms (forget about tagging for the moment)

- Notation: A ~ W = $(w_1, w_2, w_3, ..., w_d)$
- The big (modeling) question:

p(W) = ?

■ Well, we know (Bayes/chain rule) \rightarrow):

 $p(W) = p(w_1, w_2, w_3, ..., w_d) =$

 $p(w_1) \times p(w_2|w_1) \times p(w_3|w_1, w_2) \times ... \times p(w_d|w_1, w_2, ...w_{d-1})$

■ Not practical (even short $W \rightarrow$ too many parameters)

- Unlimited memory (cf. previous foil):
 - for w_i we know <u>all</u> its predecessors $w_1, w_2, w_3, ..., w_{i-1}$
- Limited memory:
 - we disregard "too old" predecessors
 - remember only k previous words: $w_{i-k}, w_{i-k+1}, ..., w_{i-1}$
 - called "kth order Markov approximation"
- + stationary character (no change over time):

$$p(W) \cong \prod_{i=1..d} p(w_i | w_{i-k}, w_{i-k+1}, ..., w_{i-1}), d = |W|$$

• $(n-1)^{th}$ order Markov approximation \rightarrow n-gram LM:

$$p(W) =_{df} \prod_{i=1...d} p(W_i | W_{i-n+1}, W_{i-n+2}, ..., W_{i-1})$$

In particular (assume vocabulary |V| = 60k):

0-gram LM: uniform model,
1-gram LM: unigram model,
2-gram LM: bigram model,
3-gram LM: trigram model,p(w) = 1/|V|,
p(w),
p(w),
 $p(w_i|w_{i-1})$,
 $p(w_i|w_{i-2}, w_{i-1})$,
 $p(w_i|w_i)$,
 $p(w_i|w_{i-2}, w_{i-1})$,
 $p(w_i|w_i)$ 1 parameter
 6×10^4 parameters
 2.16×10^{14} parameters

LM: Observations

■ How large n?

- nothing in enough (theoretically)
- but anyway: as much as possible (\rightarrow close to "perfect" model)
- empirically: 3
 - parameter estimation? (reliability, data availability, storage space, ...)
 - $\blacktriangleright~4$ is too much: $|V|{=}60k \rightarrow 1.296 \times 10^{19}$ parameters
 - but: 6–7 would be (almost) ideal (having enough data): in fact, one can recover original from 7-grams!
- Reliability ~(1/Detail) (→ need compromise)
- For now, keep word forms (no "linguistic" processing)

The Length Issue

$$\forall n; \Sigma_{w \in \Omega^n} p(w) = 1 \Rightarrow \Sigma_{n=1..\infty} \Sigma_{w \in \Omega^n} p(w) \gg 1(\to \infty)$$

- We want to model <u>all</u> sequences of words
 - for "fixed" length tasks: no problem n fixed, sum is 1
 - tagging, OCR/handwriting (if words identified ahead of time)
 - for "variable" length tasks: have to account for
 - discount shorter sentences

■ General model: for each sequence of words of length n, define p'(w) = $\lambda_n p(w)$ such that $\sum_{n=1...\infty} \lambda_n = 1 \Rightarrow$

$$\Sigma_{n=1..\infty}\Sigma_{w\in\Omega^n}p'(w)=1$$

e.g. estimate λ_n from data; or use normal or other distribution

- Parameter: numerical value needed to compute p(w|h)
- From data (how else?)
- Data preparation:
 - get rid of formating etc. ("text cleaning")
 - define words (separate but include punctuation, call it "word")
 - define sentence boundaries (insert "words" <s> and </s>)
 - letter case: keep, discard, or be smart:
 - name recognition
 - number type identification (these are huge problems per se!)
 - numbers: keep, replace by <num>, or be smart (form ~ punctuation)

- MLE: Relative Frequency...
 - -...best predicts the data at hand (the "training data")
- Trigrams from training Data T:
 - count sequences of three words in T: $c_3(w_{i-2}, w_{i-1}, w_i)$
 - (NB: notation: just saying that three words follow each other)
 - count sequences of two words in T: $c_2(w_{i-1}, w_i)$
 - either use $c_2(y, z) = \Sigma_w c_3(y, z, w)$
 - or count differently at the beginning (& end) of the data!

$$p(w_i|w_{i-2},w_{i-1}) =_{est.} \frac{c_3(w_{i-2},w_{i-1},w_i)}{c_2(w_{i-2},w_{i-1})}$$

Use individual characters instead of words:

$$p(W) =_{df} \prod_{i=1..d} p(c_i | c_{i-n+1}, c_{i-n+2}, ..., c_i)$$

- Same formulas etc.
- Might consider 4-grams, 5-grams or even more
- Good only for language comparison)
- Transform cross-entropy between letter- and word-based models:

 $H_S(p_c) = H_S(p_w)/avg.$ # of characters/word in S

LM: an Example

Training data:

<s> <s> He can buy the can of soda.

- Unigram: $p_1(He) = p_1(buy) = p_1(the) = p_1(of) p_1(soda) = p_1(.) = .125$ $p_1(can) = .25$ - Bigram: $p_2(He|<s>) = 1, p_2(can|He) = 1, p_2(buy|can) = .5, p_2(of|can) = .5, p_2(the|buy) = 1,...$ - Trigram: $p_3(He|<s>, <s>) = 1, p_3(can|<s>,He) = 1, p_3(buy|He,can) = 1, p_3(of|the,can) = 1, ..., p_3(.|of,soda) = 1.$ - Entropy:

 $H(p_1) = 2.75, H(p_2) = .25, H(p_3) = 0 \leftarrow Great?!$

LM: an Example (The Problem)

Cross-entropy:

- $\blacksquare S = \langle s \rangle \langle s \rangle$ It was the greatest buy of all.
- Even $H_S(p_1)$ fails (= $H_S(p_2) = H_S(p_3) = \infty$), because:
 - ▶ all unigrams but p_1 (the), p_1 (buy), p_1 (of) and p_1 (.) are 0.
 - all bigram probabilities are 0.
 - all trigram probabilities are 0.
- We want: to make all (theoretically possible*) probabilities non-zero.

*in fact, all: remeber our graph from day1?