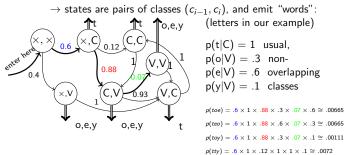
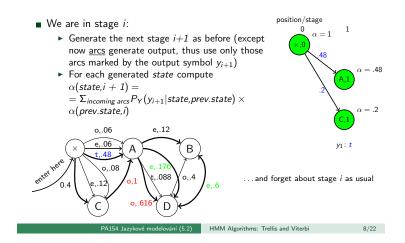


Trellis: The Complete Example

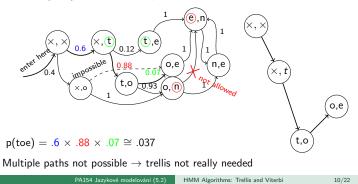


Trigrams with Classes

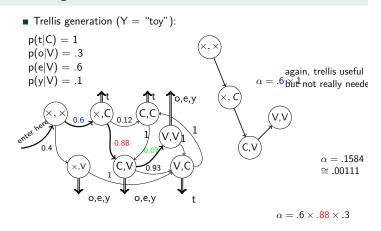

- More interesting:
 - n-gram class LM: $p(w_i|w_{i-2}, w_{i-1}) = p(w_i|c_i)p(c_i|c_{i-2}, c_{i-1})$

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

11/22

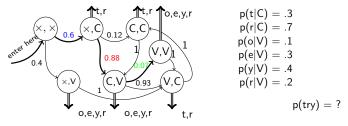


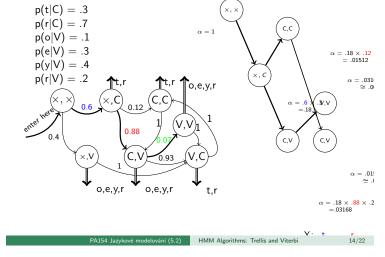
General Trellis: The Next Step


The Case of Trigrams

- Like before, but:
 - states correspond to bigrams,
 - output function always emits the second output symbol of the pair (state) to which the arc goes:

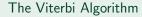
10/22


Class Trigrams: the Trellis


Y· t o Trellis and Viterbi iní (5.2) HMM Algorithms: 12/22

Overlapping Classes

- Imagine that classes may overlap
 - e.g. 'r' is sometimes vowel sometimes consonant, belongs to V as well as C:


é modelování (5.2) HMM Algorithms: Trellis and Viterbi

Overlapping Classes: Trellis Example

Trellis: Remarks

- So far, we went left to right (computing α)
- Same result: going right to left (computing β)
 supposed we know where to start (finite data)
- In fact, we might start in the middle going left and right
- Important for parameter estimation (Forward-Backward Algortihm alias Baum-Welch)
- Implementation issues:
 - scaling/normalizing probabilities, to avoid too small numbers & addition problems with many transitions

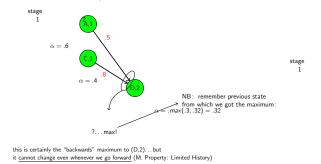
13/22

15/22

17/22

 Solving the task of fmding the most likely sequence of states which generated the observed data

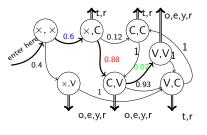
PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi


■ i.e., finding

 $S_{best} = argmax_{S}P(S|Y)$ which is equal to (Y is constant and thus P(Y) is fixed): $S_{best} = argmax_{S}P(S,Y) =$ $= argmax_{S}P(s_{0}, s_{1}, s_{2}, \dots, s_{k}, y_{1}, y_{2}, \dots, y_{k}) =$ $= argmax_{S}P\Pi_{i=1..k} p(y_{1}|s_{i}, s_{i-1})p(s_{i}|s_{i-1})$

The Crucial Observation

Imagine the trellis build as before (but do not compute the αs yet; assume they are o.k.); stage i:


PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

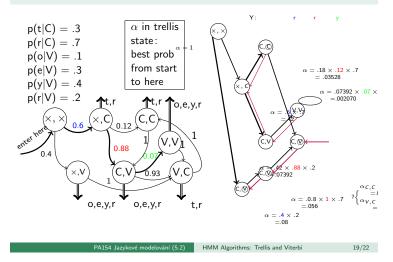
PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

Viterbi Example

'r' classification (C or V?, sequence?):

 $\begin{array}{l} p(t|C) = .3 \\ p(r|C) = .7 \\ p(o|V) = .1 \\ p(e|V) = .3 \\ p(y|V) = .4 \\ p(r|V) = .2 \end{array}$

 $\operatorname{argmax}_{XYZ} p(rry|XYZ) = ?$


16/22

18/22


Possible state seq.: (×, V)(V, C)(C, V)[VCV], (×, C)(C, C)(C, V)[CCV], (×, C)(C, V)(V, V)[CVV]

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

Viterbi Computation

<u>n</u>-best State Sequences

Tracking Back the n-best paths

- Backtracking-style algorithm:
 - ▶ Start at the end, in the best of the n states (*s*_{best})
 - Put the other n-1 best nodes/back pointer pairs on stack, except those leading from s_{best} to the same best-back state.
- Follow the back "beam" towards the start of the data, spitting out nodes on the way (backwards of course) using always only the <u>best</u> back pointer.
- At every beam split, push the diverging node/back pointer pairs onto the stack (node/beam width is sufficient!).
- When you reach the start of data, close the path, and pop the topmost node/back pointer(width) pair from the stack.
- Repeat until the stack is empty; expand the result tree if necessary.

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

Pruning

21/22

Sometimes, too many trellis states in a stage:

A	$\alpha = .002$	
F	$\alpha = .043$	
X	$\alpha = .001$	criteria: (a) α < threshold (b) $\Sigma \pi$ < threshold (c) $\#$ of states > threshold (get rid of smallest α)
К	$\alpha = .231$	
$\langle X \rangle$	$\alpha = .002$	
\sim	$\alpha = .000003$	
X	$\alpha = .000435$	0435
X	$\alpha = .0066$	

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

22/22