
HMM Algorithms: Trellis and Viterbi
PA154 Jazykové modelováńı (5.2)

Pavel Rychlý

pary@fi.muni.cz

March 20, 2019

Source: Introduction to Natural Language Processing (600.465)
Jan Hajič, CS Dept., Johns Hopkins Univ.
www.cs.jhu.edu/˜hajic



HMM: The Two Tasks

HMM (the general case):
I five-tuple (S, S0, Y, Ps , PY ), where:

I S = {s1, s2, . . . , sT} is the set of states, S0 is the initial,
I Y = {y1, y2, . . . , yv} is the output alphabet,
I Ps(sj |si ) is the set of prob. distributions of transitions,
I PY (yk |si , sj) is the set of output (emission) probability distributions.

Given an HMM & an output sequence Y = {y1, y2, . . . , yk}

(Task 1) compute the probability of Y;
(Task 2) compute the most likely sequence of states which has

generated Y.

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 2/22



Trellis - Deterministic Output

HMM: Trellis: time/position t

× A B

C D

1

t

0.12

e

0.88

t

p(toe)=×.6× .88× 1+
×.4× .1× 1 = .568

o

0.40.3

p(4|3)=0.1

1

0.2

en
te

r her
e

“rollout”

×,0

0

×,1

1

×,2

2

×,3

3

A,0 A,1 A,2 A,3

B,0 B,1 B,2 B,3

C,0 C,1 C,2 C,3

D,0 D,1 D,2 D,3

4. . .

.6

.4
.88

.1 1

+

- trellis state: (HMM state, position)
- each state: holds one number (prob):α
- probability or Y: Σα in the last state

Y: t o e
α(×, 0) = 1 α(A, 1) = .6 α(D, 2) = .568 α(B, 3) = .568

α(C , 1) = .4

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 3/22



Creating the Trellis: The Start

Start in the start state (×),
I its α(×,0) to 1.

Create the first stage:

I get the first “output” symbol y1

I create the first stage (column)
I but only those trellis states

which generate y1

I set their α(state,1) to the Ps(state|×) α(×, 0)︸ ︷︷ ︸
1

. . . and forget about the 0 -th stage

×,0

α = 1

position/stage
0

A,1
α = .6

1

C,1
α = .4

.6

.4

y1: t

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 4/22



Trellis: The Next Step

Suppose we are in stage i,

Creating the next stage:
I create all trellis state in the next stage

which generate yi+1, but only those
reachable from any of the stage-i states

I set their α(state, i + 1) to:
PS(state| prev.state) ×α(prev.state, i)
(add up all such numbers on arcs going to
a common trellis state)

I . . . and forget about stage i

A,1

α = .6

position/stage
i=1 2

C,1

α = .4

D,2

α = .568
yi+1 = y2 : o

.1

.88

+

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 5/22



Trellis: The Last Step

Continue until “output” exhausted
– |Y | = 3: until stage 3

Add together all the α(state,|Y |)
That’s the P(Y).

Observation (pleasant):
I memory usage max: 2|S |
I multiplicationsmax: |S |2|Y |

B,3
α = .568

last position/stage
↓

D,2
α = .568

P(Y)=.568

1

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 6/22



Trellis: The General Case (still, bigrams)

Start as usual:
I start state (×), set its α(×,0) to 1. ×,0

α = 1

× A B

C D

o,.06

e,.06

t,.48

e,.12

e,.176

t,.088

o,.616

o,1e,.12

o,.08

0.4
o,.4

e,.6en
te

r her
e

p(toe) = .48 × .616 × .6 +
.2 × 1 × .176 +

.2 × 1 × .12 ∼= .237

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 7/22



General Trellis: The Next Step

We are in stage i :
I Generate the next stage i+1 as before (except

now arcs generate output, thus use only those
arcs marked by the output symbol yi+1)

I For each generated state compute
α(state,i + 1) =
= Σincoming arcsPY (yi+1|state,prev.state)×
α(prev.state,i)

×,0

α = 1

position/stage
0 1

A,1

α = .48

C,1

α = .2

y1 : t

.48

.2

× A B

C D

o,.06

e,.06

t,.48

e,.12

e,.176

t,.088

o,.616

o,1e,.12

o,.08

0.4
o,.4

e,.6en
te

r her
e

. . . and forget about stage i as usual

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 8/22



Trellis: The Complete Example

Stage:

×,0
α = 1

0 −−−−−−−→ 1

A,1
α = .48

C,1
α = .2

.48

.2

A,1

1 −−−−−−−→ 2

A,2
α = .2

C,1

D,2

α ∼= .29568

1

.616

A,2

2 −−−−−−−→ 3

B,3
α = .024 + .177408 = .201408

+
=.035200

↓
P(Y)=P(toe)=.236608

D,2

y3 : e

D,3

α

.176

.12

.6

× A B

C D

o,.06

e,.06

t,.48

e,.12

e,.176

t,.088

o,.616

o,1e,.12

o,.08

t,.2
o,.4

e,.6en
te

r her
e

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 9/22



The Case of Trigrams

Like before, but:
I states correspond to bigrams,
I output function always emits the second output symbol of the pair

(state) to which the arc goes:

e©,n

×,× ×, t© t©,e

o,e n,e

×,o

p(toe) = .6 × .88 × .07 ∼= .037

t,o o, n©

0.6 0.12

0.88
0.4

1

0.07

0.93 1

1

1

×
not allowed

1

1

enter here

impossib
le

×,×

×, t

t,o

o,e

Multiple paths not possible → trellis not really needed

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 10/22



Trigrams with Classes

More interesting:
I n-gram class LM: p(wi |wi−2,wi−1) = p(wi |ci )p(ci |ci−2, ci−1)

→ states are pairs of classes (ci−1, ci ), and emit “words”:

×,× ×,C C,C

V,V

×,V C,V V,C

0.6 0.12

0.88
0.4

1

0.07

0.93

enter here

1 1
1

t t o,e,y

o,e,y o,e,y t

(letters in our example)

p(t|C) = 1 usual,
p(o|V) = .3 non-
p(e|V) = .6 overlapping
p(y|V) = .1 classes

p(toe) = .6× 1× .88× .3× .07× .6 ∼= .00665

p(teo) = .6× 1× .88× .6× .07× .3 ∼= .00665

p(toy) = .6× 1× .88× .3× .07× .1 ∼= .00111

p(tty) = .6× 1× .12× 1× 1× .1 ∼= .0072

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 11/22



Class Trigrams: the Trellis

Trellis generation (Y = “toy”):

×,×

p(t|C) = 1
p(o|V) = .3
p(e|V) = .6
p(y|V) = .1

×,C C,C

V,V

×,V C,V V,C

0.6 0.12

0.88
0.4

1

0.07

0.93

enter here

1 1
1

t t o,e,y

o,e,y o,e,y t

×,×

again, trellis useful
but not really needed

×,C
α = .6× 1

C,V

α = .6× .88× .3

Y: t o y

V,V

α = .1584× .07× .1
∼= .00111

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 12/22



Overlapping Classes

Imagine that classes may overlap
I e.g. ‘r’ is sometimes vowel sometimes consonant, belongs to V as well

as C:

×,× ×,C C,C

V,V

×,V C,V V,C

0.6 0.12

0.88
0.4

1

0.07

0.93

enter here

1 1
1

t,r t,r o,e,y,r

o,e,y,r o,e,y,r t,r

p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

p(try) = ?

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 13/22



Overlapping Classes: Trellis Example

×,×

p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

×,C C,C

V,V

×,V C,V V,C

0.6 0.12

0.88
0.4

1

0.07

0.93

en
te

r here

1 1
1

t,r t,r o,e,y,r

o,e,y,r o,e,y,r t,r

×,×

α = 1

×, C

α = .6× .3
=.18

C,V

α = .18× .88× .2
=.03168

Y: t r y p(Y)=.006935

V,V

α = .03168× .07× .4
∼= .0008870

C,C

α = .18× .12× .7
= .01512

C,V

α = .01512× 1× .4
∼= .006048

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 14/22



Trellis: Remarks

So far, we went left to right (computing α)

Same result: going right to left (computing β)
I supposed we know where to start (finite data)

In fact, we might start in the middle going left and right

Important for parameter estimation
(Forward-Backward Algortihm alias Baum-Welch)

Implementation issues:
I scaling/normalizing probabilities, to avoid too small numbers

& addition problems with many transitions

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 15/22



The Viterbi Algorithm

Solving the task of fmding the most likely sequence of states which
generated the observed data

i.e., finding

Sbest = argmaxSP(S|Y)
which is equal to (Y is constant and thus P(Y) is fixed):

Sbest = argmaxSP(S,Y) =
= argmaxSP(s0, s1, s2, . . . , sk , y1, y2, . . . , yk) =
= argmaxSPΠi=1..k p(y1|si , si−1)p(si |si−1)

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 16/22



The Crucial Observation

Imagine the trellis build as before (but do not compute the αs yet;
assume they are o.k.); stage i :

A,1

α = .6

stage
1 2

C,1

α = .4
D,2

α = .max(.3, .32) = .32

.8

.5

?. . . max!

this is certainly the “backwards” maximum to (D,2). . . but

it cannot change even whenever we go forward (M. Property: Limited History)

A,1

NB: remember previous state
from which we got the maximum:

stage
1 2

C,1

D,2

α = .32

“reverse” the arc

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 17/22



Viterbi Example

‘r’ classification (C or V?, sequence?):

×,× ×,C C,C

V,V

×,V C,V V,C

0.6 0.12

0.88
0.4

1

0.07

0.93

enter here

1 1
1

t,r t,r o,e,y,r

o,e,y,r o,e,y,r t,r

p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

argmaxXYZ p(rry|XYZ) = ?

Possible state seq.:

(×,V )(V ,C)(C ,V )[VCV ], (×,C)(C ,C)(C ,V )[CCV ], (×,C)(C ,V )(V ,V )[CVV ]

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 18/22



Viterbi Computation

×,×

p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

×,C

α in trellis
state :
best prob
from start
to here

C,C

V,V

×,V C,V V,C

0.6 0.12

0.88
0.4

1

0.07

0.93

enter here

1 1
1

t,r t,r o,e,y,r

o,e,y,r o,e,y,r t,r

×,×

α = 1

Y : r r y

×, C

α = .6× .7
=.42

C,V

α = .42× .88× .2
=.07392

V,V

α = .07392× .07× .4
=.002070

C, C©

α = .18× .12× .7
= .03528

C, V©

?

{αC,C = .03528× 1× .4
=.01411

αV ,C = .056× .8× .4
= .01792 = αmax

C, V©

α = .0.8× 1× .7
=.056

C, V©

α = .4× .2
=.08

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 19/22



n-best State Sequences

Keep track of n best
“back pointers”:

Ex.: n= 2: Two
“winners”: VCV (best)
CCV (2nd best)

×,×

α = 1

Y : r r y

×, C

α = .6× .7
=.42

C,V

α = .42× .88× .2
=.07392

V,V

α = .07392× .07× .4
=.002070

C, C©

α = .18× .12× .7
= .03528

C, V©

?

{αC,C = .03528× 1× .4
=.01411

αV ,C = .056× .8× .4
= .01792 = αmax

C, V©

α = .0.8× 1× .7
=.056

C, V©

α = .4× .2
=.08

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 20/22



Tracking Back the n-best paths

Backtracking-style algorithm:
I Start at the end, in the best of the n states (sbest)
I Put the other n-1 best nodes/back pointer pairs on stack, except those

leading from sbest to the same best-back state.

Follow the back “beam” towards the start of the data, spitting out
nodes on the way (backwards of course) using always only the best
back pointer.

At every beam split, push the diverging node/back pointer pairs onto
the stack (node/beam width is sufficient!).

When you reach the start of data, close the path, and pop the
topmost node/back pointer(width) pair from the stack.

Repeat until the stack is empty; expand the result tree if necessary.

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 21/22



Pruning

Sometimes, too many trellis states in a stage:

A α = .002

F α = .043

G α = .001

K α = .231

N α = .002

Q α = .000003

S α = .000435

X α = .0066

criteria: (a) α < threshold
(b) Σπ < threshold
(c) # of states > threshold

(get rid of smallest α)

PA154 Jazykové modelováńı (5.2) HMM Algorithms: Trellis and Viterbi 22/22


