HMM Parameter Estimation: the Baum-Welch algorithm PA154 Jazykové modelování (6.1)

Pavel Rychlý

pary@fi.muni.cz

March 27, 2019

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/˜hajic

HMM: The Tasks

■ HMM(the general case):

- Five-tuple (S, S_0, Y, P_S, P_Y) , where:
	- \blacktriangleright $S = \{s_1, s_2, \ldots, s_T\}$ is the set of states, S_0 is the initial state,
	- $Y = \{y_1, y_2, \ldots, y_v\}$ is the output alphabet,
	- \blacktriangleright $P_S(s_i|s_i)$ is the set of prob. distributions of transitions,
	- \blacktriangleright $P_Y(y_k | s_i, s_i)$ is the set of output (emission) probability distributions.

Given an HMM & an output sequence $Y = \{y_1, y_2, \ldots, y_k\}$:

- \triangleright (Task 1) compute the probability of Y;
- \triangleright (Task 2) compute the most likely sequence of states which has generated Y
- \triangleright (Task 3) Estimating the parameters (transition/output distributions)

■ Idea(\sim EM, for another variant see LM smoothing (lect. 3)):

- Start with (possibly random) estimates of P_S and P_Y .
- \triangleright Compute (fractional) "counts" of state transitions/emissions taken, from P_S and P_Y , given data Y
- Adjust the estimates of P_S and P_Y from these "counts" (using MLE, i.e. relative frequency as the estimate).

Remarks:

- \triangleright many more parameters than the simple four-way smoothing
- \triangleright no proofs here; see Jelinek Chapter 9

Setting

- HMM (without P_S, P_Y)(S, S₀, Y), and data $T = \{y_i \in Y\}_{i=1...|T|}$ ► will use $T \sim |T|$
- **HMM** structure is given: (S, S_0)
- \blacksquare P_{ς} : Typically, one wants to allow "fully connected" graph
	- \triangleright (i.e. no transitions forbidden \sim no transitions set to hard 0)
	- \triangleright why? \rightarrow we better leave it on the learning phase, based on the data!
	- \triangleright sometimes possible to remove some transitions ahead of time
- \blacksquare P_Y : should be restricted (if not, we will not get anywhere!)
	- ► restricted \sim hard 0 probabilities of $p(y|s, s')$
	- ▶ "Dictionary": states \leftrightarrow words, "m:n" mapping on $S \times Y$ (in general)
- For computing the initial expected "counts"
- **Important part**
	- \triangleright EM guaranteed to find a *local* maximum only (albeit a good one in most cases)
- \blacksquare P_Y initialization more important
	- \triangleright fortunately, often easy to determine
		- ▶ together with dictionary \leftrightarrow vocabulary mapping, get counts, then MLE
- P_S initialization less important
	- e.g. uniform distribution for each $p(.|s)$

Data structures

■ Will need storage for:

- \triangleright The predetermined structure of the HMM (unless fully connected \rightarrow need not to keep it!)
- \triangleright The parameters to be estimated (P_S, P_Y)
- \triangleright The expected counts (same size as (P_S, P_Y))
- ► The training data $T = \{y_i \in Y\}_{i=1...T}$
- \blacktriangleright The trellis (if f.c.):

The Algorithm Part I

- **1** Initialize P_S , P_V
- 2 Compute "forward" probabilities:
	- **F** follow the procedure for trellis (summing), compute $\alpha(s, i)$ everywhere
	- \blacktriangleright use the current values of $P_S, P_Y(p(s'|s), p(y|s,s'))$: $\alpha(\mathbf{s}',i) = \sum_{\mathbf{s}\rightarrow\mathbf{s} }, \alpha(\mathbf{s},i-1) \times p(\mathbf{s}'|\mathbf{s}) \times p(\mathbf{y}_i|\mathbf{s},\mathbf{s}')$
	- \triangleright NB: do not throw away the previous stage!
- 3 Compute "backward" probabilities
	- \triangleright start at all nodes of the last stage, proceed backwards, $\beta(s, i)$
	- \triangleright i.e., probability of the "tail" of data from stage i to the end of data $\beta(\mathbf{s}',i) = \sum_{\mathbf{s}' \leftarrow \mathbf{s}} \beta(\mathbf{s},i+1) \times p(\mathbf{s}|\mathbf{s}') \times p(y_{i+1}|\mathbf{s}',\mathbf{s})$
	- ► also, keep the $\beta(s, i)$ at all trellis states

The Algorithm Part II

n Collect counts:

 \triangleright for each output/transition pair compute

- **Normalization badly needed**
	- \triangleright long training data \rightarrow extremely small probabilities
- Normalize α , β using the same norm.factor:

 $N(i) = \sum_{s \in S} \alpha(s, i)$ as follows:

- compute $\alpha(s, i)$ as usual (Step 2 of the algorithm), computing the sum $N(i)$ at the given stage *i* as you go.
- \triangleright at the end of each stage, recompute all *alphas*(for each state s): $\alpha^*(s, i) = \alpha(s, i)/N(i)$
- ► use the same $N(i)$ for βs at the end of each backward (Step 3) stage: $\beta^*(s, i) = \beta(s, i)/N(i)$

Example

- Task: pronunciation of "the"
- Solution: build HMM, fully connected, 4 states:
	- \triangleright S short article, L long article, C,V word starting w/consonant, vowel
	- \triangleright thus, only "the" is ambiguous (a, an, the not members of C,V)
- Output form states only $(p(w|s, s') = p(w|s'))$

[HMM Parameter Estimation: the Baum-Welch algorithm](#page-0-0) 10/14

Output probabilities:

- \blacktriangleright $p_{init}(w|c) = c(c,w)/c(c)$; where $c(S,the) = c(L,the) = c(the)/2$ (other than that, everything is deterministic)
- **Transition probabilities:**
	- \blacktriangleright $p_{init}(c'|c) = 1/4$ (uniform)
- Don't forget:
	- \blacktriangleright about the space needed
	- initialize $\alpha(X, 0) = 1$ (X : the never-occuring front buffer st.)
	- initialize $\beta(s, T) = 1$ for all s (except for $s = X$)

Fill in alpha, beta

- \blacksquare Left to right, alpha: $\alpha(\bm{s}',i)=\sum_{\bm{s}\to\bm{s}'}\alpha(\bm{s},i-1)\times p(\bm{s}'|\bm{s})\times p(w_i|\bm{s}')$, where \bm{s}' is the output from states
- Remember normalization (N(i)).
- Similary, beta (on the way back from the end).

Counts & Reestimation

- One pass through data
- At each position i , go through all pairs $\left(s_{i},s_{i+1}\right)$
- Increment appropriate counters by frac. counts (Step 4):

$$
\text{Inc}(y_{i+1}, s_i, s_{i+1}) = a(s_i, i) p(s_{i+1}|s_i) p(y_{i+1}|s_{i+1}) b(s_{i+1, i+1})
$$

$$
\blacktriangleright \ \ c(y,s_i,s_{i+1}) += \text{inc (for y at pos } i+1)
$$

$$
\blacktriangleright \ \ c(s_i,s_{i+1})+=\mathrm{inc}\ (\mathrm{always})
$$

►
$$
c(s_i)
$$
 + = inc (always)
inc(big,L,C)= α (L,7) p (C|L) p (big,C) β (V,8)
inc(big,S,C)= α (S,7) p (C|S) p (big,C) β (V,8)

Reestimate $p(s'|s)$, $p(y|s)$

• and hope for increase in $p(C|S)$ and $p(V|L)$...!!

HMM: Final Remarks

Parameter "tying"

- ► keep certain parameters same (\sim just one "counter" for all of them)
- \triangleright any combination in principle possible
- \triangleright ex.: smoothing (just one set of lambdas)
- Real Numbers Output
	- \blacktriangleright Y of infinite size (R, R^n)
		- \triangleright parametric (typically: few) distribution needed (e.g., "Gaussian")
- "Empty" transitions: do not generate output
	- $\triangleright \sim$ vertical areas in trellis; do not use in "counting"