

Wireless Sensor Networks – attacker models, secure routing, IDS

Lukáš Němec <u>lukas.nemec@mail.muni.cz</u>, Petr Švenda Faculty of Informatics, Masaryk University

Overview

- Intro to wireless sensor networks
- Security considerations
 - Why are WSNs special?
- Attacker models
- Routing attacks, secure routing
- Intrusion detection, reaction

Route to nodes technology

From Computer Desktop Encyclopedia

Wireless Sensor Node

- Basic technology
 - 8 bit CPU, ~1 kB RAM, ~10² kB flash
 - short range radio, battery powered
 - condition sensor (temperature, pressure, ...)
 - xBow MicaZ, TelosB, BT LE, Weightless...
 - https://en.wikipedia.org/wiki/List of wireless sensor nodes
- Putting pieces together...
 - battery-powered small MCU
 - + efficient radio module
 - + environmental sensor
 - => Wireless Sensor Network (WSN)

Do we have useful application for the state of the state

Traffic control

Remote fire detection

Medical information

Combat field control

Ideal in 2000:

WSN is highly distributed network with high number of low-cost sensor nodes powered by battery connected via multi-hop communication with base station

Large scale Wireless Sensor Networks

- Network of nodes and few powerful base stations
 - -10^2-10^6 sensor nodes
 - particular nodes deployed randomly, e.g., from plane
- Network characteristics
 - covering large areas distributed
 - ad-hoc position/neighbours not known in advance
 - multi-hop communication
- The price (still) is a current problem
 - currently ~50\$ or more (complete node)
 - (but 3.35 \$ for CC1110F32)

Reality in 2018 ©:

WSN is highly distributed centralized network with high small number of lowcost high-cost sensor nodes powered by battery power grid connected via multihop communication with communicating directly to base station

But situation is getting better ©

Navigating WSN (research) landscape

- The basic idea is sound and exciting
- BUT: extremely large body of research
 - Scholar + 'Wireless Sensor Networks': 1,480,000 results
 - Scholar + 'Cryptography': 811,000 results
- Large number of papers exploring artificial scenarios, lack of grounding to technology, not cited at all...
- If involved, always ask for realistic usage scenarios
 - Number of nodes, patterns of communication, network lifetime, energy consumption of sensors...

Current low(er)-cost technology

- IEEE 802.15.4 standard for low-rate PANs
 - Basis for ZigBee tec.
- Bluetooth LE/Smart enabled devices
 - ~\$10 for BT module

- 5 km range, 10 years lifetime, \$2 price (planned ☺)
- Thanks to large range, fewer hops to reach sink node
- Libelium Waspmote (multi-RF node)
- Simple processing can be run directly on network controller chip (if accessible)
 - Espressif ESP8266 (\$1.6) WiFi module

Operating systems for WSNs

- 1. Should work on very limited device (10²-10³B RAM)
- 2. Should provide concurrency (perceived, real)
- 3. Should be flexible enough to support different usage scenarios
- 4. Should conserve as much energy as possible
- Examples: TinyOS, Contiky, RIOT...

TinyOS architecture (Berkley)

- Used to be the most popular operating system for sensor nodes
 - first version released in 2002 (TinyOS 1.2), current 2.1.2 (released in 2012)
 - Open-source work https://github.com/tinyos/tinyos-main (active)
 - network protocols, sensor drivers and data acquisition tools
- Basic design principles
 - Event-driven (routines serving particular event)
 - Telescoping abstractions
 - abstractions with spectrum of levels, portability and optimization
 - Partial virtualization
 - top layers of telescopic abstractions are shared or virtualized
 - Static binding and allocation
 - no dynamic allocation, all required resources allocated statically
- Applications written in Network Embedded System C (nesC)
 - optimized for low memory, real-time applications

Contiki

Contiki architecture

The Open Source OS for the Internet of Things

- Initial release 2003, current version 3.0 (2015)
 - http://contiki-os.org/
- Basic design principles
 - Dynamic loading and unloading of code at runtime
 - Event-driven kernel
 - Proto-threads (small routines executed after event)
- OS requires about 10 kilobytes of RAM (minimum)
 - More complex than TinyOS (400B RAM only)
 - TCP/IP stack... Optional addition of GUI etc.

We (will) have exciting technology. Why/What security measures should be used?

Where do we need security in WSNs?

- Sensitive data are often sensed/processed
 - military application
 - medical information, location data (privacy)
- Commercially viable information
 - information for sale cost for owner of the network
 - know-how agriculture monitoring
- Protection against vandalism
 - distant non-existing fires blocks fireman

Early stage of WSN allows to build security in rather than as late patch

Why not "Just use TLS"?

- What are differences from standard networks and why classical solutions mail fail?
 - Why we cannot use standard "TLS" for protection of data?
 - Party authentication, confidentiality, integrity, freshness...
- Sometimes we can! (don't be dogmatic)
- But: certificates, asymmetric crypto, revocation control, high data/computational overhead, session management, authentication of data, local aggregation...
 - TLS is great for IoT (is WSN != IoT?)

Some differences from standard networks

- Running on battery (limited resource)
 - days for personal network
 - years for large scale monitoring network
 - especially communication is energy-expensive
- Relatively limited computation power
 - powerful CPU possible, but energy demanding
- Links can be temporal, network often disconnected
 - by design, by necessity

Some differences from standard networks

- Nodes can be captured by an attacker
 - all secrets can be extracted from unprotected nodes
 - and returned back as malicious node
- How to detect malicious node?
- How to react on detected malicious node?

When detection/reaction is hard, focus on prevention

Main topics in WSNs (network security)

- Establishing network
 - Deployment, redeployment
 - Neighbor discovery, clustering
- Using and maintaining network
 - Sensing, data collection, data aggregation
 - Routing and reliable communication
 - Energy efficiency of all tasks (running on battery)
- Supporting security functions
 - Key management (pre-distribution, establishment, use)
 - Secure communication, authentication
 - Partially compromised network

Network lifetime

Wireless Networks – Attacker Models

ATTACKER MODELS

Attacker models - capabilities

- Passive attacker
 - Does not inject/modify messages and does not jam
- Active attacker
 - May inject/modify messages or perform jamming
- External attacker
 - Not a legitimate member of a network
 - Not compromised any node or used key (yet)
- Internal attacker
 - Legitimate member of a network
 - compromised a single/few static/mobile sensor node(s) and/or possesses a single/few key(s)

Attacker models – capabilities (cont.)

- Local attacker
 - Can overhear only a local area: single or few hop(s)
 - Depending on antenna, transmission signal strength...
- Global attacker
 - Can overhear most/all node-to-node and node-to-base station communication simultaneously for all the time

Wireless Networks – Routing

ROUTING

Target network topology

Sensor node

Base station

Routing influenced by data reporting model

- Time-driven
 - Periodic, continuous

How models compares?

- Routing requirements
- Attacker perspective
- E.g., "send current temperature every 10 seconds"
- Event-driven
 - when event happens
 - E.g., "report if temperature is more than 80°C"
- Query-driven
 - When someone (base station) asks
 - E.g., "send me the current temperature on node 42"
- Hybrid (combination)

Example: static fixed routing tree

- Every node is preloaded with ID of parent node closer to BS
 - Received message is forwarded to parent node
- Advantages
 - Simple, low-memory consumption
 - Reduced attack surface (no route discovery)
- Disadvantages
 - Disconnect on node's failure
 - Non-uniform battery consumption
 - Not adapting to network changes

Example: Collection Tree Protocol (CTP)

- Collection Tree Protocol (CTP), default in TinyOS
 - Many-to-one collection data collection protocol (nodes to BS)
 - Address-free routing (only route towards BS)
- Routing metric is number of steps to BS (sink node)
 - Number of expected transmissions (ETX) to reach sink node
 - Each node keeps only smallest ETX to nearest sink node
 - Routes with lower metric are preferred
 - Message is send only from higher ETX to lower ETX
- Routing loops prevention
 - In case of message with lower ETX then own => update path
- Possibility to periodically refresh routing metric
 - Continuous adaptation to network changes

CTP – resulting routing tree

Powernet Deployment map

CTP Routing Topology on Powernet

Source: http://sing.stanford.edu/gnawali/ctp/

Basic topology with single sink node

Wormhole attack

- Artificially short path(s)
- Perception of locality
- Influences routing metrics

Sinkhole attack

Messages not delivered to legitimate sink

Messages selectively forwarded to legitimate sink

HELLO flood attack

- Strong transmission of neigh. discovery or route establishment packet
- Nodes will try to contact malicious sender

CR©CS

Sybil attack

 Attacker pretends to have additional nodes connected behind him

 Creates perception of multiple nodes sensing same forged event, influences
 majority voting...

Collection Tree Protocol - security?

- How would you attack CTP-enabled network?
- Bogus routing information
 - Manipulate propagated ETX values
- Selective forwarding
 - No control of delivery
- Sinkhole
 - Advertise itself as base station (sink hole)
- Wormhole attack
 - Shortcut path between two nodes via different medium (=> preferred path)
- HELLO flood attack
 - Flood network with CTP beacons, corrupt paths and drain energy
- •

Wireless Networks – Secure Routing

SECURE ROUTING

Why we need special routing for WSN?

- MANY existing routing schemes for ad-hoc networks
- Should have low packet overhead and node state
 - Energy efficiency
 - But: CPU/radio efficiency improves
- Should not be based on public key cryptography
 - Increases cost of hardware / transmission
 - But: ECC or pairing-based crypto?
- Should omit unnecessary complexity "any two nodes"
 - Data-centric routing
 - Energy-aware routing
 - But: depends on usage scenario

Security and efficiency tradeoff

- There is tradeoff between security and efficiency
- Q: Should I require packet/message confirmations?
 - Or just hope to be delivered to save energy?
- Q: Should I require cryptographically signed ACKs?
 - Or just detect discrepancies on base station?
- Q: Should I use multiple paths to deliver?
 - Or just one to save energy? Aggregate data?
- Always confront to your expected attacker model and usage scenario

Multipath routing algorithms

- Targets improved reliability, security and load balance
 - Reliability probabilistically bypassing unrealiable path
 - Security limits localized sinkhole (by bypassing it)
 - Load balance spread of communication load (energy)
- Nature of algorithms
 - Infrastructure-based (more stable paths, infrastructure help)
 - Non-infrastructure-based (paths discovered adhoc)
 - Coding based (message split into parts via different routes)

Summary

- WSNs specifics: Limited communication, local knowledge, partial compromise
- Many factors influence resulting network settings
 - Usage scenario
 - Available hardware parameters => network topology
 - Sensitivity and nature of data processed => attacker model
- Area is currently flooded with different protocols
 - Have good understanding of basic principles
 - Be critical in judging various proposal
 - Have clear definition of usage scenario & attacker model

Mandatory reading

 Ch. Karlof, D. Wagner, Secure routing in wireless sensor networks: attacks and countermeasures (2003)