


Basic wireless networking

Lukáš Němec

Laboratory

- Jammer attack
- Simple static routing via one intermediate node
 - Sender→Transmitter (receive, send)→Receiver (blink)
 - Single parent for routing towards "BS" (e.g., CTP)
- Node-to-node routing
 - Simple flooding routing with multiple neighbours
 - Packet with target ID, retransmitted to all neighbours

- C = CTL, D = DST, A = ACK, 5-bit node ID
 - A bit (ACK) indicates if sender wants to get ACK back
 - D bit (DST) indicates if node ID bits specify destination or source node
 - C bit (CTL) 1 if packet is ACK (and A must be 0)
- http://jeelabs.org/2011/06/09/rf12-packet-format-and-design/index.html

Jammer

Write your own jammer

Non-discriminative jammer

- Occupies/distorts whole channel
 - Sending packets all the time without waiting for clear channel
 - No need to send correctly formatted packets or use same type of radio
- How to detect non-discriminative jammer?
 - Abnormally high number of lost packets
 - Abnormally high send waiting time (clear channel)
 - Abnormally low RSSI
 - Detection by whole channel monitoring (e.g., SDR)

Selective jammer

- Not jamming continuously, bursts to corrupt particular message
- Disturb next message that is expected to be send
 - Attacker in promiscuous mode, receives message;
 - Prevents transmission of message_{i+1} (occupies channel...)
- 2. Disturb rest of a currently transmitted message based on initial part
 - Requires high speed processing of radio channel and low latency decision
 - Not possible with our RF12 module (whole packet only)
 - Disturb only part of a message (e.g., CRC checksum)
 - Message is dropped upon reception
- How to detect selective jammer?
 - Detection of abnormally high number of corrupted or lost packets
 - Sensing of channel with different radio and detection of burst transmissions

Simple static routing via one intermediate

- Pair together with two other colleagues
 - Same as previous one-hop exercise
 - Output message with counter to serial port (monitor packet loss)
- Use one intermediate node (fixed routing topology)
 - Sender→Transmitter (receive, send)→Receiver (blink)
- Test on distance (hall space, other floors...)
 - How far you can extend coverage?
- Straightforward extension to fixed routing to BS
 - Every one has single parent for routing towards BS
 - e.g., The Collection Tree Protocol (CTP)
- Think about advantages and disadvantages
 - Flexibility, robustness, malicious passive/active attacker

Any node to any node routing - flooding

- What are options for any-to-any routing?
 - Think about limitations in context of ad-hoc/WSNs
- Node-to-node routing
 - Simple flooding routing with multiple neighbours
 - Establish list of neighbouring nodes
 - Packet contains target node ID (data section)
 - Locally retransmitted to all neighbours
- How to eventually stop flooding?
 - Time To Live? (TTL decrement after every hop, 0 => drop)
 - Packet Unique ID (seen twice => do not resend, state)

Homework – Attack against routing

- 1. Influence routing discovery phase of laboratory testbed to create sink-hole attack
 - messages routed towards your malicious node
 - Route discovery phase runs for 5 minutes (LEDs are blinking fast)
- 2. Capture packets during message exchange phase
 - 5 minutes, no blinking
 - Capture all packets routed to you, format: #num1#num2
 - E.g., #3289#893756
 - Replace second number after # with your UCO
 - E.g., #3289#394036
- 3. Send modified captured packet to BS
 - BS will reply, store all responses into file to be submitted as solution

Homework – Attack against routing

- Produce short (1xA4) text description of solution
 - How routing discovery phase is done
 - How were packets analyzed
 - Describe in detail the attack on routing.
 - How resend was done to maximize number of captured packets
- Try to maximize number of captured/resend packets
- Submit before: 26.4. 23:59