PA199
Advanced Game Design

Dr. Fotis Liarokapis

18th March 2019

[r——

Rough Approximations Example

e

Collision Detection .

* A better solution
—Projectile and target move over time
—See if collides with object during trajectory

3/18/2019

IS e— V
Motivation

* Techniques for collision detection depend on
the type of game

* For many games rough approximations are fine
—i.e. Arcade-style games

* For more complex games need to be familiar
with a variety of techniques ranging from
simple to complex
—i.e. 3D games

4 Hooe— *4

Collision Detection

* Do objects collide/intersect?
— Static
— Dynamic

* Picking is simple special case of general collision
detection problem

— Check if ray cast from cursor position collides with
any object in scene

— Simple shooting

* Projectile arrives instantly, zero travel time

\74 e
Collision Detection Applications

*/

* Determining if player hit
wall/floor/obstacle and stop them walking
through it

—Terrain following (floor)
—Maze games (walls)
* Determining if projectile has hit target
* Determining if player has hit target
—Punch/kick (desired)
—Car crash (not desired)

([HESa \74
Collision Detection Applications .

* Detecting points at which behavior should
change
—Car in the air returning to the ground
* Cleaning up animation
—Making sure a motion-captured character’s
feet do not pass through the floor
* Simulating motion
—Physics, or cloth, or something else

e \7

Why it is Hard?

¢ Complicated for two reasons
— Geometry is typically very complex
« Potentially requiring expensive testing
— Naive solution is O(n2) time complexity

* Since every object can potentially collide with every
other object

HEl e \4
Basic Concepts

HISSe—

Simulating Motion

HISSe—

Why it is Hard - Example

[[H S

From Simple to Complex

* Boundary check
— Perimeter of world vs. viewpoint or objects
* 2D/3D absolute coordinates for bounds
* Simple point in space for viewpoint/objects
* Set of fixed barriers
—Walls in maze game

* 2D/3D absolute coordinate system

3/18/2019

\~4

\~4

*/

CHRISe—
From Simple to Complex .

* Set of moveable objects
—One object against set of items
* Missile vs. several tanks
—Multiple objects against each other

* Punching game: arms and legs of players
* Room of bouncing balls

[Ee— *4

Fundamental Design Principles

* Fast simple tests first, eliminate many
potential collisions

—Test bounding volumes before testing
individual triangles
* Exploit locality, eliminate many potential
collisions

—Use cell structures to avoid considering
distant objects

bl — *4

Example: Player-Wall Collisions

* ‘First person’ games must prevent the player
from walking through walls and other obstacles
* Most general case
— Player and walls are polygonal meshes
* Each frame, player moves along path not known
in advance
— Assume piecewise linear
* Straight steps on each frame
— Assume player’s motion could be fast

3/18/2019

\"J

Naive General Collision Detection

* For each object i containing polygons p
— Test for intersection with object j containing
polygons g
* For polyhedral objects, test if object i penetrates
surface of j

— Test if vertices of i straddle polygon g of j
« If straddle, then test intersection of polygon q with
polygon p of object i

* Very expensive! O(n2)

\"J

Fundamental Design Principles .

¢ Use as much information as possible about
geometry

—Spheres have special properties that speed
collision testing

* Exploit coherence between successive

—Things don’t typically change much between
two frames

Simple Approach

* On each step, do a general mesh-to-mesh
intersection test to find out if the player
intersects the wall

If they do, refuse to allow the player to move
Problems with this approach? how can we

—Inresponse?

Collision Response

* Frustrating to just stop

— For player motions, often best thing to do is move

player tangentially to obstacle
¢ Do recursively to ensure all collisions caught
— Find time and place of collision
— Adjust velocity of player

— Repeat with new velocity, start time, start position

(reduced time interval)

* Handling multiple contacts at same time
— Find a direction that is tangential to all contacts

Collision Detection Approaches

* Two basic techniques:
—Overlap testing
* Detects whether a collision has already occurred
—Intersection testing

* Predicts whether a collision will occur in the
future

L v

Overlap Testing: Useful Results

* Useful results of detected collision
—Time collision took place

— Collision normal vector

3/18/2019

Siosse— \/

Typical Approaches

Siosse— \/

Overlap Testing

* Facts
—Most common technique used in games
—Exhibits more error than intersection testing
* Concept

—For every simulation step, test every pair of
objects to see if they overlap

—Easy for simple volumes like spheres, harder
for polygonal models

e \"4
Overlap Testing: Collision Time

* Collision time calculated by moving object
back in time until right before collision
— Bisection is an effective technique

\
%
" “‘ | fum ’mu
rus

Oy larsin w3
i P

s eeagiz

3/18/2019

'f‘H‘ﬂIp-cCc* "4 ".I.liﬂlp-cca\:* \74
Overlap Testing: Limitations Intersection Testing
* Fails with objects that move too fast ¢ Predict future collisions
— Unlikely to catch time slice during overlap « When predicted'
* Possible solutions —Move simulation to time of collision
— Design constraint on speed of objects L.
]) . —Resolve collision
— Reduce simulation step size
—Simulate remaining time step
CHRISe— *4 -‘."lim,fﬁ?{ . .
. . ersection Testing: Sphere-Sphere
Intersection Testing: Swept Geometry . g P P
Collision
* Extrude geometry in direction of movement -(a-A)-Ja By -F -G A-P-Q
r= - - . B=(®-P)-Q-Q)
* Swept sphere turns into a ‘capsule’ shape B PrmoRRee
.‘/_\
) ;]\13'7
t - —
I/ /
G
I \ I \"4
Intersection Testing: Limitations

Complexity Issues
* Issue with networked games

—Future predictions rely on exact state of world
at present time

—Due to packet latency, current state not
always coherent

* Assumes constant velocity and zero
acceleration over simulation step

—Has implications for physics model and choice
of integrator

CHRISe— *4

Dealing with Complexity

* Two common issues when dealing with
complexity:
—Complex geometry must be simplified
* Not so easy!

—Reduce number of object pair tests
* Varies depending on the types of objects

CHRISe— *4

Minkowski Sum

¢ By taking the Minkowski Sum of two complex
volumes and creating a new volume then
overlap can be found

— By testing if a single point is within the new volume

X@®Y={4+B: AEX and BEY}

@ @ Y = Xey = XeyY

L r——— \74

Bounding Volumes

* Bounding volume is a simple geometric
shape
—Completely encapsulates object
—If no collision with bounding volume, no more
testing is required
* Most common bounding volumes is box
—More later on...

3/18/2019

".I.Iiﬂlp-cca\:* \74

Simplified Geometry

* Approximate complex objects with simpler
geometry

—i.e. Ellipsoid shown below

".I.Iiﬂlp-cCa:* \~4
Minkowski Sum Example

fbissc— v

Box Bounding Volumes

Axis-Aligned Bounding Box Oriented Bounding Box

3/18/2019

RIS *4 "m:lpoc-_—— \~4
Achieving O(n) Time Complexity Partition Space Solution

* Possible solutions for O(n) time complexity

— Partition space .“m /. .\‘

—Plane sweep algorithm 4 » ‘I

f./’\ '\..\t
d’o\

oy ¢

Y
) N o | 9
".H.[:Ipoc-:* "4 ..“ﬂlpoc-\:* \74
Plane Sweep Algorithm Solution Terrain Collision Detection
y
B
A'.
Ry
By
Ay
CI— Top-Down View Top-Down View (heights added)
Ry
c | SN %%
G -4 Perspective View Perspective View (heights added)
Hese— A oSS \"4
Locate Triangle on Height Field Collision Resolution: Examples
* Two billiard balls strike
— Calculate ball positions at time of impact
) — Impart new velocities on balls
°C +Q — Play “clinking” sound effect
* Rocket slams into wall
Re — Rocket disappears
Re qu >Q, [E R.>1-R, — Explosion spawned and explosion sound effect
— Wall charred and area damage inflicted on nearby
]Z[Qz =Q E& =1-R characters

* Character walks through wall
— Magical sound effect triggered
— No trajectories or velocities affected

3/18/2019

':IH.[:Ichc* "4 ...“Elpocac* \74
Collision Resolution Components Prologue Stage
* Resolution has three parts: ¢ Collision known to have occurred
—Prologue * Check if collision should be ignored
—Collision

* Other events might be triggered

—Epilogue —Sound effects
—Send collision notification messages
':IH.[:Ichc* "4 ...“Elpocac* \74
Collision Stage Epilogue Stage
* Place objects at point of impact * Propagate post-collision effects
* Assign new velocities using either * Possible effects
—Physics —Destroy one or both objects
—Some other decision logic —Play sound effect
—Inflict damage
* Many effects can be done either in the
prologue or epilogue
s — A oSS A/
Resolving Overlap Testing Extract Collision Normal
* Four common stages: * Find position of objects before impact
—Extract collision normal * Use two closest points to construct the
—Extract penetration depth collision normal vector

—Move the two objects apart
—Compute new velocities

3/18/2019

[Ee— *4 -"."linlpoc{ \~4
Extract Collision Normal . Resolving Intersection Testing
* Sphere collision normal vector * Simpler than resolving overlap testing
— Difference between centers at point of —No need to find penetration depth or move
collision objects apart
* Simply just
— Extract collision normal
—Compute new velocities
[Ee— *4 -"."linlpoc{ \~4
Accelerating Collision Detection

Acceleration Techniques

* Two kinds of approaches (many others also)
— Collision proxies / bounding volumes hierarchies
— Spatial data structures to localize

* Used for both 2D and 3D

* Accelerates many things, not just collision
detection
— Raytracing
— Culling geometry before using standard

rendering pipeline

HE==<t5llision Proxies vs Spatial data v Je==<t5llision Proxies vs Spatial data \/
Structures Structures .

Spatial data Structures:
- Space centric
- Object redundancy

Spatial data Structures:
- Space centric
- Object redundancy

Collision Proxies:
- Object centric
- Spatial redundancy

Collision Proxies:
- Object centric
- Spatial redundancy

—~ ~®

Collision Proxies Example 1

3/18/2019

NSy . . \74 HISSeTy: . . \/
“Collision Proxies vs Spatial data “Collision Proxies vs Spatial data
Structures .. Structures ...
Collision Proxies: Spatial data Structures: Collision Proxies: Spatial data Structures:
- Object centric - Space centric - Object centric - Space centric
- Spatial redundancy - Object redundancy - Spatial redundancy - Object redundancy
s .
= za) &l
0 o~ -® v ® Chan
HOlooe— "4 IS — \74
Collision Proxies Collision Proxies .
. Proxy hd GOOd prOXV
—Something that takes place of real object —Cheap to compute collisions for, tight fit to
— Cheaper than general mesh-mesh intersections the real geometry
* Collision proxy (bounding volume) is piece of » Common proxies
geometry used to represent complex object —Sphere, cylinder, box, ellipsoid
for purposes of finding collision .
. o . * Consider
— If proxy collides, object is said to collide .
— Collision points mapped back onto original —Fat player, thin player, rocket, car ...
object
Heloe— *4 Ml */

Collision Proxies Example 2

10

[r—— *4
Collision Proxies Example 3

HElSSe— *4
Trade-off in Choosing Proxies .

* AABB

—Axis aligned bounding box
* OBB

—Oriented bounding box, arbitrary alignment
* k-dops

—Shapes bounded by planes at fixed

orientations
* Discrete orientation

Holooe— \7/
Spatial Data Structures

* Can only hit something that is close
* Spatial data structures tell you what is
close to object
—Uniform grid, octrees, kd-trees, BSP trees
—Bounding volume hierarchies
* OBB trees
—For player-wall problem, typically use same
spatial data structure as for rendering
* BSP trees most common

3/18/2019

iooe— \~4
Trade-off in Choosing Proxies

7
Sphere AABB OBB 6-dop Convex Hull

increasing complexity & tightness of fit

decreasing cost of (overlap tests + proxy update)

IS — \74
Pair Reduction

* Want proxy for any moving object requiring
collision detection

» Before pair of objects tested in any detail,
quickly test if proxies intersect

* When lots of moving objects, even this quick
bounding sphere test can take too long:
— N2 times if there are N objects

* Reducing this N2 problem is called pair
reduction

— Pair testing isn’t a big issue until N>50 or so...

e \=4
Uniform Grids

* Axis-aligned

* Divide space uniformly

3/18/2019

RIS *4 § .'.Iiﬂlp-cCa:* \~4
Quadtrees/Octrees KD Trees
* Axis-aligned * Axis-aligned
* Subdivide until no * Sub-divide in
points in cell alternating
dimensions
AN

1
]
it PN

S \7/ Sisse— *4
BSP Trees Bounding Volume Hierarchies
* Binary Space
Partitioning (BSP)
* Planes at arbitrary
orientation
e A itisse— A/
OBB Trees BSP Trees Main Idea
* Oriented bounding box (OBB) * Binary Space Partition (BSP) Tree:
* Applicable to a wide range of problems —Partition space with binary tree of
planes

—Fuchs, Kedem and Naylor "80
* Main idea:

—Divide space recursively into half-spaces
by choosing splitting planes that
separate objects in scene

12

@EIW V

BSP Trees Methods

* More general, can deal with inseparable
objects
* Automatic, uses as partitions planes
defined by the scene polygons
* Method has two steps:
—Building of the tree independently of
viewpoint
—Traversing the tree from a given viewpoint to
get visibility ordering

@EIW V

Creating BSP Trees: Objects

i}%ﬂl”&@ V i

Creating BSP Trees: Objects ..

3/18/2019

5fﬁi}lpt:ﬂ'-a- 7}

BSP Trees Methods .

* First step
—Preprocessing
* Create binary tree of planes
* Second step
—Runtime

* Correctly traversing this tree enumerates
objects from back to front

5fﬁi}lpt:ﬂ'-a- 7}

Creating BSP Trees: Objects .

% *
S © i ;Q%
e
[Te——— \/

Creating BSP Trees: Objects ...

13

3/18/2019

Slosoc— v [e —— v

Creating BSP Trees: Objects Splitting Objects

* No bunnies were harmed in previous
example

* But what if a splitting plane passes
through an object?

—Split the object; give half to each node

i OUChA
®-¢ %

%Yﬁl'goe.a- V %ﬁhlpoc'-ﬂ‘ V
Traversing BSP Trees Traversing BSP Trees Pseudo Code
* Tree creation independent of viewpoint * Query: given a viewpoint, produce an ordered
— Preprocessing step list of (possibly split) objects from back to
* Tree traversal uses viewpoint front
— Runtime, happens for many different viewpoints
* Each plane divides world into near and far renderBSP (BSPtree *T)
— For given viewpoint, decide which side is near and which BSPtree *near, *far;
is far if (eye on left side of T->plane
* Check which side of plane viewpoint is on independently for near = T->left; far = T->right;
each tree vertex else
* Tree traversal differs depending on viewpoint! near = T—?right; far = T->left;
— Recursive algorithm renderBSP (far) ;

if (T is a leaf node)
renderObject (T)
renderBSP (near) ;

* Recurse on far side
* Draw object
* Recurse on near side

@BIW V @EIW \:/

BSP Trees: Viewpoint A BSP Trees: Viewpoint A .

14

3/18/2019

BSP Trees: Viewpoint A .. BSP Trees: Viewpoint A ...

= Decide independently at
each tree vertex

= Not just left or right child!

BSP Trees: Viewpoint A BSP Trees: Viewpoint A

- A Sosse— \A

BSP Trees: Viewpoint A BSP Trees: Viewpoint A

15

3/18/2019

BSP Trees: Viewpoint A BSP Trees: Viewpoint A

BSP Trees: Viewpoint A BSP Trees: Viewpoint A

- A Sosse— \A

BSP Trees: Viewpoint A BSP Trees: Viewpoint B

16

m:l,oz_\._r \74

BSP Trees: Viewpoint B .

m:l,oz_\._r \74

BSP Tree Traversal: Polygons

* Split along the plane defined by any
polygon from scene

* Classify all polygons into positive or
negative half-space of the plane

—If a polygon intersects plane, split polygon
into two and classify them both

* Recurse down the negative half-space
* Recurse down the positive half-space

flossc— A

Representation of Polyhedra

3/18/2019

Glosse— A4

BSP as a Hierarchy of Spaces

* Each node corresponds to Py
a region of space A

£ \l

—The root is the whole of R"
—The leaves are

homogeneous regions X7
Glosse— A4

Representation of Polygons

4
2 our 2
~/ 34 N
1 3 5
4
51 L{ \a OL{ \lN
£
ot I

BSP Trees for Dynamic Scenes

* When an object moves the planes that
represent it must be removed and re-
inserted

* Some systems only insert static geometry
into the BSP tree

* Otherwise must deal with merging and
fixing the BSP cells

17

GHRISSe— *4

BSP Trees Pos

* Simple, elegant scheme

* Correct version of painter’s algorithm
back-to-front rendering approach

* Popular for video games

GHRISSe— *4

BSP Demo

* http://www.symbolcraft.com/graphics/bsp/

fltsse— "4
Collision Detection Approach

3/18/2019

HE I \74

BSP Trees Cons

* Slow to construct tree
—0(n log n) to split, sort

* Splitting increases polygon count
—0(n2) worst-case

* Computationally intense preprocessing
stage restricts algorithm to static scenes

HE I \74

BSP Videos

* https://www.youtube.com/watch?v=WAd7vzw
knFO

* https://www.youtube.com/watch?v=jF2a4imSu
vl

* http://www.youtube.com/watch?v=JJjyXRvokE4

bisse— v

Introduction to 3D Breakout

* Most important thing is ball-wall collision
detection
* Can be used in:
—Ball-wall collisions
—Ball-bat collisions
* Apart from some cases
—Ball-Well collisions

* Apart from some cases (similarly to ball-bat)

18

http://www.symbolcraft.com/graphics/bsp/
https://www.youtube.com/watch?v=WAd7vzwknF0
https://www.youtube.com/watch?v=WAd7vzwknF0
http://www.youtube.com/watch?v=JJjyXRvokE4
http://www.youtube.com/watch?v=JJjyXRvokE4
http://www.youtube.com/watch?v=JJjyXRvokE4
http://www.youtube.com/watch?v=JJjyXRvokE4

GHRISSe—
A P
o :
o
GHRISSe—
Pythagoras Theorem

* From Pythagoras:

052= 0N+ \52 >
AS2= 032 - ON2 >
AZ =sqrt(0z?2 - ON?) eq. 2

P
Calculate Distance Travelled .

¢ But:
sing = OA/OP >
OA = OPsind
* And:
OA? = OPZsing? eq.5

EitIsse—

Calculate Collision With Wall

* We are interested in finding the
— Distance travelled (PZ)
— Collision time (t.yyision)
— Final velocity (Ugpna)

From the previous diagram:

P2 =AX - AP eq. 1l

"'.:Iilllp-oc<*
Calculate Distance Travelled

* Also:
AP = OPcoso eq.3
* Sofromeq. 1, eq.2andeq. 3:

P2 = sqrt(032 - OA2) - OPcosd eq. 4

e

Calculate Distance Travelled ..

* Fromeg.4andeq. 5

P> = sqrt(032 - OP2%sing?) - OPcosdp eq. 6

* Also from:

sind?+ cosdp? =1 - sindp?=1-cosd? eq.7

3/18/2019

19

GHRISSe— *4

Calculate Distance Travelled ...
* Fromeq.6and eq. 7
PZ = sqrt(032 - OP2 + OP2cos?) - OPcos¢

¢ Since OPeu = (OP)u/|u|cosd, so the above
equation will become:

PZ = sqrt(032 - OP2 + (OPu/|u|cosd)?) -
(OP)u/|u|cosd

GHRISSe— *4
Calculate Collision Time

* From motion equation:

S= Uollision t(:ollisicm

* ButS =Pz, so:

Pr=vu
t

collision tccollision =

collision = Pz/ucollision €q. 10

fltsse— "4
Calculate Final Velocity

v .
inial Uintai$inG |

6

/

/

V

0 [UjmacOSB] 6 /
/

/

/

/

Uinal u,m,sin9||,

3/18/2019

"...Iiﬂlp-ccac* \74
Calculate Distance Travelled

* From the dot product the previous equation will
become

P2 = sqrt(032 - OP2 + (OPeu/|u|)3) - OPeu/|u|
eq. 8

* Must take absolute value in case ¢ > 90

P3 = |(sqrt(O22 - OP% + (OPeu/|u|)?) - OPeu /|u] |
eq.9

"...Iiﬂlp-ccac* \74

T \4
Calculate Final Velocity .

* The change in ball velocity from the collision:

|AUcoIIision| = |Ufina| - Uinitiall €q. 11
* From the above figure:
| AUgision | = 2| Ujniriai€OSB| or eq. 12

|AUcoIIision| = 2Uinitial.(oz/l Ozl) €q. 13

GHRISSe—
Calculate Final Velocity ..

e But Au is anti-parallel to OZ and we want to

make AU gision @ VECtor

* From eq. 12 we do:

Au -2|U;iiaiCOSO | (02)/| OZ | =

collision ~

* From eq. 13 we do:

BU,giion = -2(0) (U 02)/| OZ |2

collision

GHRISSe—
Some Tips

* Important 3D objects for collision detection in
3D Breakout Assignment
— Invisible ground (optional)
— Ball
— Bat
— Well

- e———

Class TBall.h .

// Selectors

double GetBallRadius() const {return _radius;};
TVector GetBallPosition() const {return _position;};
TVector GetBallVelocity() const {return _velocity;};

void DrawBall(); // Draws the ball

void CalculateVelocity(copst TVector& velocity, const double&
seconds); v /}Assigns the bal?a \Xelocity

TVector CalcDistanceTravelled(const double& seconds) const;
// Calculates the distance traveled

void MoveBall(const double& seconds); // Moves the ball

3/18/2019

HE I \74

Assignment Tips

HE I \74

Class TBall.h

class TBall
public:
double _radius; // defines the radius of the ball
TVector _position; // defines the position of the ball
TVector _velocity; // defines the velocity vO of the ball
// Constructors
TBall();

TBall(const double& Radjus, fonst TVector& Position, const
TVector& Velocity)

{_radius=Radius; _position=Position; _velocity=Velocity;};

bisse— v

Default Constructor for the Ball

TBall::TBall()

{
// Assign default values for the attributes
// of the ball
_radius = 4.0;

_position = TVector(0.0, 0.0, 0.0);
_velocity = TVector(1.0, 0.0, 0.0);

21

CHRISe—
Function to Draw the Ball

void TBall::DrawBall()

{
glPushMatrix();
glTranslatef(_position.X(),
_position.Y(), _position.Z());
glutSolidSphere(_radius, 20, 20);
glPopMatrix();
}
CHRISe—

CalculateVelocity Function

void TBall::CalculateVelocity(const TVector&
velocity, const double& seconds)

_velocity = velocity;

e

MoveBall Function

void TBall::MoveBall(const double& seconds)

{

_position = CalcDistanceTravelled(seconds);

3/18/2019

".I.Iiﬂlp-cca\:* \74
More Functions

* Functions for the TBall Class:
—CalculateVelocity
—CalcDistanceTravelled
—MoveBall

* Function for TDisplaylmp
—Idle

* TBat Class

".I.Iiﬂlp-cCa:* \~4
CalcDistanceTravelled Function

TVector TBall::CalcDistanceTravelled(const double&
seconds) const

{

TVector new_velocity, new_position;
new_velocity = _velocity;
new_position = _position +
new_velocity*seconds;

return new_position;

fbissc— v

Idle Function

void TDisplaylmp::idle(void)
{
// Set the time for the simulation

_scene->CalculateSimulations();

glutPostRedisplay();

22

GHRISSe—

Class TBat

class TBat
{
public:

TVector _points[16];
first bat

TVector _normal[15]; // normal of the ground

// points for the

public:
// Default constructor
TBat({}
TBat(double rotation_angle);

GHRISSe—

Class TBat ..

TVector Bat_Faces_Reflection(TBall
&ball, const double& seconds,
const double& distance);

TVector Bat_Left_Side_Reflections(TBall
&ball, constdouble& seconds,
const double& parameter);

. TVector .
Bat_Right_Side_Reflections(TBall &ball
constdouble& seconds, const double&
parameter);

P
TBat Constructor

TBat::TBat(double rotation_angle)

TVector initial_vector, upper_vector,
construction_vector;

// Define a vectar for the construction of the
ground points of the bats

initial_vector = TVector(1.0, 0.0, 0.0);

// Define a vector for the construction of the
upper points of the bats

upper_vector = TVector(0.0, 10.0, 0.0);

3/18/2019

EitIsse—

Class TBat .

void DrawBat(); // Draws the bats
void MoveBatRight(); // Moves bat on the right
void MoveBatLeft(); // Moves the bat on the right

int BatCollisions(const TBall &ball, const double&
seconds);
int BatCollisionsSides(const TBall &ball, const double&
secondsc);

int BatCollisionsEdges(const TBall &ball, const double&
secondsg'

)

EitIsse—

Class TBat ...

TVector Bat_Edge12_Reflections(TBall &ball,
const double& seconds);

TVector Bat_Edgel15_Reflections(TBall &ball,
const double& seconds);

TVector Bat_Edge13_Reflections(TBall &ball,
const double& seconds);

TVector Bat_Edgel11_Reflections(TBall &ball,
const double& seconds);

e

TBat Constructor.

// Define the rotation axis
TVector rotation_axis(0.0,1.0,0.0);

// Define the three rotation matrices for the bats

TMatrix33 bat_construction = TMatrix33(rotation_axis,
rotation_anglej;

// Define the vector used for the construction of the bats
construction_vector = bat_construction*initial_vector;

// Define the rotation matrix for the constuction of the bats
TMatrix33 bat_rotation = TMatrix33(rotation_axis, angle);

23

GHRISSe—
TBat Constructor ..

// Construct the 16 points of the bats
_points[0] = construction_vector*bat_radius1;
_points[1] = bat_rotation*_points[0];
_points[2] = bat_rotation*_points[1];
_points[3] = bat_rotation*_points[2];
_points[7] = construction_vector*bat_radius2;
_points[6] = bat_rotation*_points[7];
_points[5] = bat_rotation*_points[6];
_points[4] = bat_rotation*_points[5];
_points[8] =_points[0] + upper_vector;
_points[9] = _points[1] + upper_vector;
_points[10] = _points[2] + upper_vector;
_points[11] = _points[3] + upper_vector;
_points[15] = _points[7] + upper_vector;
_points[14] = _points[6] + upper_vector;
_points[13] = _points[5] + upper_vector;
_points[12] = _points[4] + upper_vector;

GHRISSe— *4

Drawing Front Side of Bats .

// Construct second quad
glVertex3f(_points[1].X(), _points[1].Y(), _points[1].Z());
glVertex3f(_points[9].X(), _points[9].Y(), _points[9].Z());

// Front face, third surface
_normal[2] = ((_points[10] - _points[2])*(_points[3] - _points[2])).unit();

gINormal3f(_normal[2].X(), _normal[2].Y(), _normal[2].Z());

// Construct third quad

glVertex3f(_points[2].X(), _points[2].Y(), _points[2].Z());
glVertex3f(_points[10].X(), _points[10].Y(), _points[10].Z());
gINormal3f(_normal[2].X(), _normal[2].Y(), _normal[2].Z());

// Construct fourth quad
glVertex3f(_points[3].X(), _points[3].Y(), _points[3].Z());
glVertex3f(_points[11].X(), _points[11].Y(), _points[11].Z());

glEnd();

:;-H.'ﬂlp-oc-c— \"J

Bat Collisions

* At least three checks:

—Check for collisions between the ball and the
three bats like ball-wall

—Check for collisions between the ball and the
side of the bats

—Check for collisions between the ball and the
edges of the bats
* Repeat the same procedure for reflections
of the ball after collisions

Y¥>51culate the reflection of the ball

3/18/2019

HE I \74

Drawing Front Side of Bats

glBegin(GL_QUAD_STRIP);

// Front face, normal of first surface
_normal[0] = ((_points[8] - _points[0])*(_points[1] - _points[0])).unit();
gINormal3f(_normal[0].X(), _normal[0].Y(), _normal[0].Z());

// Construct first quad
glVertex3f(_points[0].X(), _points[0].Y(), _points[0].Z());
glVertex3f(_points[8].X(), _points[8].Y(), _points[8].Z());

// Front face, second surface
_normal[1] = ((_points[9] - _points[1])*(_points[2] - _points[1])).unit();
gINormal3f(_normal[1].X(), _normal[1].Y(), _normal[1].Z());

HE I \74

Drawing the Rest of the Bats

* In the same way you will have to draw the:
—Left side of the bat
—Back side of the bat
—Right side of the bat
—Up side of the bat

A"

after collision
double TBounds::Ball_Reflection(TBall &ball, const
double& seconds)
{

TVector ball_velocity_after_collision,
previous_ball_position, collision_vector, final_velocity;

// Perform calculations for the previous time step

previous_ball_position = ball.GetBallPosition() -
ball.GetBallVelocity()*seconds;

double absBallVelocity =
sqrt(ball.GetBallVelocity().dot(ball.GetBallVelocity()));

24

e Calculate the reflection of the ball ¥

after collision .
// Calculate the Ri*V to calculate the collision
time
double RV =

revious_ball_position.dot(ball.GetBallVelocity()
?absBaIIT/eIouty,

// Absolute RV
double abs_RV = abs(RV);

// Define the initial distance = 100 -4 = 96

double initial_distance = 100.0 -
ball.GetBallRadius();

"""’"Taléulate the reflection of the ball ¥

after collision ...

Define velocity by: Vreflected =
/Glnltl gNormalyunylt)*Normal unit

baII velocity_after_collision =
unit_collision_ vector*(ball.GetBallVelocity().dot(unit_col
lision_vector)J;

/ﬁ CaIcuIate the veIOC|ty of the ball after collision with
e invisible wall

final_velocity = ball.GetBallVelocity() -
ball_velocity_after_collision*2.0;

ball.CalculateVelocity(final_velocity, collision_time);

return collision_time;

flossc— v

Links

¢ http://en.wikipedia.org/wiki/Bounding_volume

* http://nehe.gamedev.net/data/lessons/lesson.asp?
lesson=30

* http://web.cs.wpi.edu/~matt/courses/cs563/talks/
bsp/bsp.html

* http://www.devmaster.net/articles/bsp-trees/

* http://maven.smith.edu/~mcharley/bsp/createbspt
ree.html

* http://www.cs.unc.edu/~geom/

* http://www.cs.ox.ac.uk/stephen.cameron/distances/

W5 “Calculate the reflection of the ball

3/18/2019

\"J

after collision ..

// Calculate the determlnant

double Determinant = ((RV*RV) -
previous_ball position. dot(prewous ball_position) +
initial_distance*initial_distance);

// Calculate the collision time

double collision abs
sqrt(D etermmaﬁtSf%bsBallVelocTt

/4§Zalculate the collision vector (normal vector) from: R=r +
v

collision vector = preyio s_ball_position +
ball. GetB‘aIIVeIouty() co | sion_time;

// Make the collision vector (normal vector) unit vector
TVector unit_collision_vector = TVector::unit(collision_vector);

-ifﬁnlm— \~4

References

http://www.cs.wisc.edu/~schenney/courses/c
s679-f2003/lectures/cs679-22.ppt

http://graphics.ucsd.edu/courses/cse169 w05
/CSE169 17.ppt

ftsse— \74

Questions

25

http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt
http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt
http://en.wikipedia.org/wiki/Bounding_volume
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=30
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=30
http://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/bsp.html
http://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/bsp.html
http://www.devmaster.net/articles/bsp-trees/
http://www.devmaster.net/articles/bsp-trees/
http://www.devmaster.net/articles/bsp-trees/
http://maven.smith.edu/~mcharley/bsp/createbsptree.html
http://maven.smith.edu/~mcharley/bsp/createbsptree.html
http://www.cs.unc.edu/~geom/
http://web.comlab.ox.ac.uk/oucl/work/stephen.cameron/
http://web.comlab.ox.ac.uk/oucl/work/stephen.cameron/

