
3/18/2019

1

PA199
Advanced Game Design

Lecture 5

Collision Detection

Dr. Fotis Liarokapis

18th March 2019

Motivation

• Techniques for collision detection depend on
the type of game

• For many games rough approximations are fine

– i.e. Arcade-style games

• For more complex games need to be familiar
with a variety of techniques ranging from
simple to complex

– i.e. 3D games

Rough Approximations Example Collision Detection

• Do objects collide/intersect?

– Static

– Dynamic

• Picking is simple special case of general collision
detection problem

– Check if ray cast from cursor position collides with
any object in scene

– Simple shooting

• Projectile arrives instantly, zero travel time

Collision Detection .

• A better solution

–Projectile and target move over time

– See if collides with object during trajectory

Collision Detection Applications

• Determining if player hit
wall/floor/obstacle and stop them walking
through it
– Terrain following (floor)

–Maze games (walls)

• Determining if projectile has hit target

• Determining if player has hit target
–Punch/kick (desired)

–Car crash (not desired)

3/18/2019

2

Collision Detection Applications .

• Detecting points at which behavior should
change

–Car in the air returning to the ground

• Cleaning up animation

–Making sure a motion-captured character’s
feet do not pass through the floor

• Simulating motion

–Physics, or cloth, or something else

Simulating Motion

Why it is Hard?

• Complicated for two reasons

– Geometry is typically very complex

• Potentially requiring expensive testing

– Naïve solution is O(n2) time complexity

• Since every object can potentially collide with every
other object

Why it is Hard - Example

Basic Concepts

From Simple to Complex

• Boundary check

–Perimeter of world vs. viewpoint or objects

• 2D/3D absolute coordinates for bounds

• Simple point in space for viewpoint/objects

• Set of fixed barriers

–Walls in maze game

• 2D/3D absolute coordinate system

3/18/2019

3

From Simple to Complex .

• Set of moveable objects

–One object against set of items

• Missile vs. several tanks

–Multiple objects against each other

• Punching game: arms and legs of players

• Room of bouncing balls

Naive General Collision Detection

• For each object i containing polygons p

– Test for intersection with object j containing
polygons q

• For polyhedral objects, test if object i penetrates
surface of j

– Test if vertices of i straddle polygon q of j

• If straddle, then test intersection of polygon q with
polygon p of object i

• Very expensive! O(n2)

Fundamental Design Principles

• Fast simple tests first, eliminate many
potential collisions

– Test bounding volumes before testing
individual triangles

• Exploit locality, eliminate many potential
collisions

–Use cell structures to avoid considering
distant objects

Fundamental Design Principles .

• Use as much information as possible about
geometry

– Spheres have special properties that speed
collision testing

• Exploit coherence between successive
tests

– Things don’t typically change much between
two frames

Example: Player-Wall Collisions

• ‘First person’ games must prevent the player
from walking through walls and other obstacles

• Most general case
– Player and walls are polygonal meshes

• Each frame, player moves along path not known
in advance
– Assume piecewise linear

• Straight steps on each frame

– Assume player’s motion could be fast

Simple Approach

• On each step, do a general mesh-to-mesh
intersection test to find out if the player
intersects the wall

• If they do, refuse to allow the player to move

• Problems with this approach? how can we
improve:

– In response?

– In speed?

3/18/2019

4

Collision Response

• Frustrating to just stop
– For player motions, often best thing to do is move

player tangentially to obstacle

• Do recursively to ensure all collisions caught
– Find time and place of collision

– Adjust velocity of player

– Repeat with new velocity, start time, start position
(reduced time interval)

• Handling multiple contacts at same time
– Find a direction that is tangential to all contacts

Typical Approaches

Collision Detection Approaches

• Two basic techniques:

–Overlap testing

• Detects whether a collision has already occurred

– Intersection testing

• Predicts whether a collision will occur in the
future

Overlap Testing

• Facts

–Most common technique used in games

– Exhibits more error than intersection testing

• Concept

– For every simulation step, test every pair of
objects to see if they overlap

– Easy for simple volumes like spheres, harder
for polygonal models

Overlap Testing: Useful Results

• Useful results of detected collision

– Time collision took place

–Collision normal vector

Overlap Testing: Collision Time

• Collision time calculated by moving object
back in time until right before collision

– Bisection is an effective technique

3/18/2019

5

Overlap Testing: Limitations

• Fails with objects that move too fast

– Unlikely to catch time slice during overlap

• Possible solutions

– Design constraint on speed of objects

– Reduce simulation step size

Intersection Testing

• Predict future collisions

• When predicted:

–Move simulation to time of collision

–Resolve collision

– Simulate remaining time step

Intersection Testing: Swept Geometry

• Extrude geometry in direction of movement

• Swept sphere turns into a ‘capsule’ shape

Intersection Testing: Sphere-Sphere
Collision

Intersection Testing: Limitations

• Issue with networked games

– Future predictions rely on exact state of world
at present time

–Due to packet latency, current state not
always coherent

• Assumes constant velocity and zero
acceleration over simulation step

–Has implications for physics model and choice
of integrator

Complexity Issues

3/18/2019

6

Dealing with Complexity

• Two common issues when dealing with
complexity:

–Complex geometry must be simplified
• Not so easy!

–Reduce number of object pair tests
• Varies depending on the types of objects

Simplified Geometry

• Approximate complex objects with simpler
geometry

– i.e. Ellipsoid shown below

Minkowski Sum

• By taking the Minkowski Sum of two complex
volumes and creating a new volume then
overlap can be found

– By testing if a single point is within the new volume

Minkowski Sum Example

Bounding Volumes

• Bounding volume is a simple geometric
shape

–Completely encapsulates object

– If no collision with bounding volume, no more
testing is required

• Most common bounding volumes is box

–More later on…

Box Bounding Volumes

3/18/2019

7

Achieving O(n) Time Complexity

• Possible solutions for O(n) time complexity

–Partition space

–Plane sweep algorithm

Partition Space Solution

Plane Sweep Algorithm Solution Terrain Collision Detection

Locate Triangle on Height Field Collision Resolution: Examples

• Two billiard balls strike
– Calculate ball positions at time of impact
– Impart new velocities on balls
– Play “clinking” sound effect

• Rocket slams into wall
– Rocket disappears
– Explosion spawned and explosion sound effect
– Wall charred and area damage inflicted on nearby

characters

• Character walks through wall
– Magical sound effect triggered
– No trajectories or velocities affected

3/18/2019

8

Collision Resolution Components

• Resolution has three parts:

–Prologue

–Collision

– Epilogue

Prologue Stage

• Collision known to have occurred

• Check if collision should be ignored

• Other events might be triggered

– Sound effects

– Send collision notification messages

Collision Stage

• Place objects at point of impact

• Assign new velocities using either

–Physics

– Some other decision logic

Epilogue Stage

• Propagate post-collision effects

• Possible effects

–Destroy one or both objects

–Play sound effect

– Inflict damage

• Many effects can be done either in the
prologue or epilogue

Resolving Overlap Testing

• Four common stages:

– Extract collision normal

– Extract penetration depth

–Move the two objects apart

–Compute new velocities

Extract Collision Normal

• Find position of objects before impact

• Use two closest points to construct the
collision normal vector

3/18/2019

9

Extract Collision Normal .

• Sphere collision normal vector

–Difference between centers at point of
collision

Resolving Intersection Testing

• Simpler than resolving overlap testing

–No need to find penetration depth or move
objects apart

• Simply just

– Extract collision normal

–Compute new velocities

Acceleration Techniques

Accelerating Collision Detection

• Two kinds of approaches (many others also)
– Collision proxies / bounding volumes hierarchies

– Spatial data structures to localize

• Used for both 2D and 3D

• Accelerates many things, not just collision
detection
– Raytracing

– Culling geometry before using standard
rendering pipeline

Collision Proxies vs Spatial data
Structures

Collision Proxies: Spatial data Structures:

- Object centric - Space centric

- Spatial redundancy - Object redundancy

Collision Proxies vs Spatial data
Structures .

Collision Proxies: Spatial data Structures:

- Object centric - Space centric

- Spatial redundancy - Object redundancy

3/18/2019

10

Collision Proxies vs Spatial data
Structures ..

Collision Proxies: Spatial data Structures:

- Object centric - Space centric

- Spatial redundancy - Object redundancy

Collision Proxies vs Spatial data
Structures …

Collision Proxies: Spatial data Structures:

- Object centric - Space centric

- Spatial redundancy - Object redundancy

Collision Proxies

• Proxy

– Something that takes place of real object

– Cheaper than general mesh-mesh intersections

• Collision proxy (bounding volume) is piece of
geometry used to represent complex object
for purposes of finding collision

– If proxy collides, object is said to collide

– Collision points mapped back onto original
object

Collision Proxies .

• Good proxy

–Cheap to compute collisions for, tight fit to
the real geometry

• Common proxies

– Sphere, cylinder, box, ellipsoid

• Consider

– Fat player, thin player, rocket, car …

Collision Proxies Example 1 Collision Proxies Example 2

3/18/2019

11

Collision Proxies Example 3 Trade-off in Choosing Proxies

 increasing complexity & tightness of fit

 decreasing cost of (overlap tests + proxy update)

AABB OBB Sphere Convex Hull 6-dop

Trade-off in Choosing Proxies .

• AABB

–Axis aligned bounding box

• OBB

–Oriented bounding box, arbitrary alignment

• k-dops

– Shapes bounded by planes at fixed
orientations

• Discrete orientation

Pair Reduction

• Want proxy for any moving object requiring
collision detection

• Before pair of objects tested in any detail,
quickly test if proxies intersect

• When lots of moving objects, even this quick
bounding sphere test can take too long:
– N2 times if there are N objects

• Reducing this N2 problem is called pair
reduction
– Pair testing isn’t a big issue until N>50 or so…

Spatial Data Structures

• Can only hit something that is close

• Spatial data structures tell you what is
close to object
–Uniform grid, octrees, kd-trees, BSP trees

–Bounding volume hierarchies
• OBB trees

– For player-wall problem, typically use same
spatial data structure as for rendering
• BSP trees most common

Uniform Grids

• Axis-aligned

• Divide space uniformly

3/18/2019

12

Quadtrees/Octrees

• Axis-aligned

• Subdivide until no
points in cell

KD Trees

• Axis-aligned

• Sub-divide in
alternating
dimensions

BSP Trees

• Binary Space
Partitioning (BSP)

• Planes at arbitrary
orientation

Bounding Volume Hierarchies

OBB Trees

• Oriented bounding box (OBB)

• Applicable to a wide range of problems

BSP Trees Main Idea

• Binary Space Partition (BSP) Tree:

–Partition space with binary tree of
planes

–Fuchs, Kedem and Naylor `80

• Main idea:

–Divide space recursively into half-spaces
by choosing splitting planes that
separate objects in scene

3/18/2019

13

BSP Trees Methods

• More general, can deal with inseparable
objects

• Automatic, uses as partitions planes
defined by the scene polygons

• Method has two steps:

–Building of the tree independently of
viewpoint

– Traversing the tree from a given viewpoint to
get visibility ordering

BSP Trees Methods .

• First step

–Preprocessing

• Create binary tree of planes

• Second step

–Runtime

• Correctly traversing this tree enumerates
objects from back to front

Creating BSP Trees: Objects Creating BSP Trees: Objects .

Creating BSP Trees: Objects .. Creating BSP Trees: Objects …

3/18/2019

14

Creating BSP Trees: Objects …. Splitting Objects

• No bunnies were harmed in previous
example

• But what if a splitting plane passes
through an object?

– Split the object; give half to each node

Ouch

Traversing BSP Trees

• Tree creation independent of viewpoint
– Preprocessing step

• Tree traversal uses viewpoint
– Runtime, happens for many different viewpoints

• Each plane divides world into near and far
– For given viewpoint, decide which side is near and which

is far
• Check which side of plane viewpoint is on independently for

each tree vertex
• Tree traversal differs depending on viewpoint!

– Recursive algorithm
• Recurse on far side
• Draw object
• Recurse on near side

Traversing BSP Trees Pseudo Code

• Query: given a viewpoint, produce an ordered
list of (possibly split) objects from back to
front

renderBSP(BSPtree *T)

 BSPtree *near, *far;

 if (eye on left side of T->plane)

 near = T->left; far = T->right;

 else

 near = T->right; far = T->left;

 renderBSP(far);

 if (T is a leaf node)

 renderObject(T)

 renderBSP(near);

BSP Trees: Viewpoint A BSP Trees: Viewpoint A .

F N

F

N

3/18/2019

15

BSP Trees: Viewpoint A ..

F N F

N

F N

 Decide independently at
each tree vertex

 Not just left or right child!

BSP Trees: Viewpoint A …

F N

F

N

N F

F N

BSP Trees: Viewpoint A ….

F N

F

N

N F

F N

BSP Trees: Viewpoint A …..

F N

F N

F

N

N F

1

1

BSP Trees: Viewpoint A ……

F N

F
N

F N

F N N F

1

2

1 2

BSP Trees: Viewpoint A …….

F N
F

N

F N

F N

N F

N F

1

2

1 2

3/18/2019

16

BSP Trees: Viewpoint A ……..

F N

F

N

F N

F N

N F

N F

1

2

1 2

BSP Trees: Viewpoint A ………

F N
F

N

F N

F N

N F

N F

1

2

3

1 2

3

BSP Trees: Viewpoint A ……….

F N

F N

F N

N F

N F

1

2

3

4

F
N

1 2

3 4

BSP Trees: Viewpoint A ………..

F N

F N

F N

N F

N F

1

2

3

4 5

F
N

1 2

3 4

5

BSP Trees: Viewpoint A …………

F N

F N

F N

N F

N F

1

2

3

4 5

1 2

3 4

5

6

7 8

9 6

7

8

9

F N

F N

F N

BSP Trees: Viewpoint B

N F

F

N
F

N

F N

F N

F N F N

N F

3/18/2019

17

BSP Trees: Viewpoint B .

N F

F

N
F

N

F N

1

3 4

2

F N

F N F N

N F 5

6

7

8 9 1

2

3

4

5

6

7

9

8

BSP as a Hierarchy of Spaces

• Each node corresponds to
a region of space

– The root is the whole of Rn

– The leaves are
homogeneous regions

BSP Tree Traversal: Polygons

• Split along the plane defined by any
polygon from scene

• Classify all polygons into positive or
negative half-space of the plane

– If a polygon intersects plane, split polygon
into two and classify them both

• Recurse down the negative half-space

• Recurse down the positive half-space

Representation of Polygons

Representation of Polyhedra BSP Trees for Dynamic Scenes

• When an object moves the planes that
represent it must be removed and re-
inserted

• Some systems only insert static geometry
into the BSP tree

• Otherwise must deal with merging and
fixing the BSP cells

3/18/2019

18

BSP Trees Pos

• Simple, elegant scheme

• Correct version of painter’s algorithm
back-to-front rendering approach

• Popular for video games

BSP Trees Cons

• Slow to construct tree

–O(n log n) to split, sort

• Splitting increases polygon count

–O(n2) worst-case

• Computationally intense preprocessing
stage restricts algorithm to static scenes

BSP Demo

• http://www.symbolcraft.com/graphics/bsp/

BSP Videos

• https://www.youtube.com/watch?v=WAd7vzw
knF0

• https://www.youtube.com/watch?v=jF2a4imSu
vI

• http://www.youtube.com/watch?v=JJjyXRvokE4

Collision Detection Approach

Introduction to 3D Breakout

• Most important thing is ball-wall collision
detection

• Can be used in:

–Ball-wall collisions

–Ball-bat collisions

• Apart from some cases

–Ball-Well collisions

• Apart from some cases (similarly to ball-bat)

http://www.symbolcraft.com/graphics/bsp/
https://www.youtube.com/watch?v=WAd7vzwknF0
https://www.youtube.com/watch?v=WAd7vzwknF0
http://www.youtube.com/watch?v=JJjyXRvokE4
http://www.youtube.com/watch?v=JJjyXRvokE4
http://www.youtube.com/watch?v=JJjyXRvokE4
http://www.youtube.com/watch?v=JJjyXRvokE4

3/18/2019

19

Ρ

Σ

Ο

Λ

φ
υ

Calculate Collision With Wall

• We are interested in finding the

– Distance travelled (ΡΣ)

– Collision time (tcollision)

– Final velocity (υfinal)

From the previous diagram:

 ΡΣ = ΛΣ – ΛΡ eq. 1

Pythagoras Theorem

• From Pythagoras:

 ΟΣ2 = ΟΛ2 + ΛΣ2 →

 ΛΣ2 = ΟΣ2 - ΟΛ2 →

 ΛΣ = sqrt(ΟΣ2 - ΟΛ2) eq. 2

Calculate Distance Travelled

• Also:

 ΛΡ = ΟΡcosφ eq. 3

• So from eq. 1, eq. 2 and eq. 3:

 ΡΣ = sqrt(ΟΣ2 - ΟΛ2) - ΟΡcosφ eq. 4

Calculate Distance Travelled .

• But:

 sinφ = ΟΛ/ΟΡ →

 ΟΛ = ΟΡsinφ

• And:

 ΟΛ2 = ΟΡ2sinφ2 eq. 5

Calculate Distance Travelled ..

• From eq. 4 and eq. 5

ΡΣ = sqrt(ΟΣ2 - ΟΡ2sinφ2) - ΟΡcosφ eq. 6

• Also from:

sinφ2 + cosφ2 = 1 → sinφ2 = 1 - cosφ2 eq. 7

3/18/2019

20

Calculate Distance Travelled …

• From eq. 6 and eq. 7

ΡΣ = sqrt(ΟΣ2 - ΟΡ2 + ΟΡ2cosφ2) - ΟΡcosφ

• Since ΟΡ•υ = (ΟΡ)υ/|υ|cosφ, so the above
equation will become:

ΡΣ = sqrt(ΟΣ2 - ΟΡ2 + (ΟΡυ/|υ|cosφ)2) -
(ΟΡ)υ/|υ|cosφ

Calculate Distance Travelled ….

• From the dot product the previous equation will
become

ΡΣ = sqrt(ΟΣ2 - ΟΡ2 + (ΟΡ•υ/|υ|)2) - ΟΡ•υ/|υ|
eq. 8

• Must take absolute value in case φ > 90

ΡΣ = |(sqrt(ΟΣ2 - ΟΡ2 + (ΟΡ•υ/|υ|)2) - ΟΡ•υ /|υ| |
eq. 9

Calculate Collision Time

• From motion equation:

 S = υcollision tcollision

• But S = ΡΣ, so:

 ΡΣ = υcollision tcollision →

 tcollision = ΡΣ/υcollision eq. 10

Ρ

Σ

Ο

Λ

φ θ

Calculate Final Velocity

θ

θ

|υinitialsinθ|

|υfinalsinθ|

|υinitialcosθ|

υinitial

υfinal

Ο
Σ

Δυcollision

Calculate Final Velocity .

• The change in ball velocity from the collision:

 |Δυcollision| = |υfinal - υinitial| eq. 11

• From the above figure:

 |Δυcollision| = 2|υinitialcosθ| or eq. 12

 |Δυcollision| = 2υinitial•(ΟΣ/|ΟΣ|) eq. 13

3/18/2019

21

Calculate Final Velocity ..

• But Δυ is anti-parallel to ΟΣ and we want to
make Δυcollision a vector

• From eq. 12 we do:

 Δυcollision = -2|υinitialcosθ|(ΟΣ)/|ΟΣ|→

• From eq. 13 we do:

 Δυcollision = -2(ΟΣ) (υinitial•ΟΣ)/|ΟΣ|2

Assignment Tips

Some Tips

• Important 3D objects for collision detection in
3D Breakout Assignment

– Invisible ground (optional)

– Ball

– Bat

– Well

Class TBall.h

class TBall
{
 public:
 double _radius; // defines the radius of the ball
 TVector _position; // defines the position of the ball
 TVector _velocity; // defines the velocity v0 of the ball

 // Constructors
 TBall();
 TBall(const double& Radius, const TVector& Position, const

 TVector& Velocity)
 {_radius=Radius; _position=Position; _velocity=Velocity;};

Class TBall.h .

 // Selectors
 double GetBallRadius() const {return _radius;};
 TVector GetBallPosition() const {return _position;};
 TVector GetBallVelocity() const {return _velocity;};

 void DrawBall(); // Draws the ball

 void CalculateVelocity(const TVector& velocity, const double&

 seconds); // Assigns the ball a velocity

 TVector CalcDistanceTravelled(const double& seconds) const;
 // Calculates the distance traveled

 void MoveBall(const double& seconds); // Moves the ball
};

Default Constructor for the Ball

TBall::TBall()

{

 // Assign default values for the attributes
 // of the ball

 _radius = 4.0;

 _position = TVector(0.0, 0.0, 0.0);

 _velocity = TVector(1.0, 0.0, 0.0);

}

3/18/2019

22

Function to Draw the Ball

void TBall::DrawBall()

{

 glPushMatrix();

 glTranslatef(_position.X(),
 _position.Y(), _position.Z());

 glutSolidSphere(_radius, 20, 20);

 glPopMatrix();

}

More Functions

• Functions for the TBall Class:

–CalculateVelocity

–CalcDistanceTravelled

–MoveBall

• Function for TDisplayImp

– Idle

• TBat Class

CalculateVelocity Function

void TBall::CalculateVelocity(const TVector&
velocity, const double& seconds)

{

 _velocity = velocity;

}

CalcDistanceTravelled Function

TVector TBall::CalcDistanceTravelled(const double&
seconds) const

{
 TVector new_velocity, new_position;

 new_velocity = _velocity;
 new_position = _position +

new_velocity*seconds;

 return new_position;
}

MoveBall Function

void TBall::MoveBall(const double& seconds)

{

 _position = CalcDistanceTravelled(seconds);

}

Idle Function

void TDisplayImp::idle(void)

{

 // Set the time for the simulation

 _scene->CalculateSimulations();

 glutPostRedisplay();

}

3/18/2019

23

Class TBat

class TBat
{
 public:
 TVector _points[16]; // points for the

first bat
 TVector _normal[15]; // normal of the ground

 public:
 // Default constructor
 TBat(){};
 TBat(double rotation_angle);

Class TBat .

 void DrawBat(); // Draws the bats

 void MoveBatRight(); // Moves bat on the right

 void MoveBatLeft(); // Moves the bat on the right

 int BatCollisions(const TBall &ball, const double&

 seconds);

 int BatCollisionsSides(const TBall &ball, const double&
 seconds);

 int BatCollisionsEdges(const TBall &ball, const double&
 seconds);

Class TBat ..

 TVector Bat_Faces_Reflection(TBall
&ball, const double& seconds,
const double& distance);

 TVector Bat_Left_Side_Reflections(TBall
&ball, const double& seconds,
const double& parameter);

 TVector
Bat_Right_Side_Reflections(TBall &ball,
 const double& seconds, const double&
 parameter);

Class TBat …

 TVector Bat_Edge12_Reflections(TBall &ball,
 const double& seconds);

 TVector Bat_Edge15_Reflections(TBall &ball,
 const double& seconds);

 TVector Bat_Edge13_Reflections(TBall &ball,
 const double& seconds);

 TVector Bat_Edge11_Reflections(TBall &ball,
 const double& seconds);

};

TBat Constructor

TBat::TBat(double rotation_angle)
{
 TVector initial_vector, upper_vector,

construction_vector;

 // Define a vector for the construction of the

ground points of the bats
 initial_vector = TVector(1.0, 0.0, 0.0);

 // Define a vector for the construction of the

upper points of the bats
 upper_vector = TVector(0.0, 10.0, 0.0);

TBat Constructor .

 // Define the rotation axis
 TVector rotation_axis(0.0,1.0,0.0);

 // Define the three rotation matrices for the bats
 TMatrix33 bat_construction = TMatrix33(rotation_axis,

rotation_angle);

 // Define the vector used for the construction of the bats
 construction_vector = bat_construction*initial_vector;

 // Define the rotation matrix for the constuction of the bats
 TMatrix33 bat_rotation = TMatrix33(rotation_axis, angle);

3/18/2019

24

TBat Constructor ..

 // Construct the 16 points of the bats
 _points[0] = construction_vector*bat_radius1;
 _points[1] = bat_rotation*_points[0];
 _points[2] = bat_rotation*_points[1];
 _points[3] = bat_rotation*_points[2];
 _points[7] = construction_vector*bat_radius2;
 _points[6] = bat_rotation*_points[7];
 _points[5] = bat_rotation*_points[6];
 _points[4] = bat_rotation*_points[5];
 _points[8] = _points[0] + upper_vector;
 _points[9] = _points[1] + upper_vector;
 _points[10] = _points[2] + upper_vector;
 _points[11] = _points[3] + upper_vector;
 _points[15] = _points[7] + upper_vector;
 _points[14] = _points[6] + upper_vector;
 _points[13] = _points[5] + upper_vector;
 _points[12] = _points[4] + upper_vector;
}

Drawing Front Side of Bats

 glBegin(GL_QUAD_STRIP);

 // Front face, normal of first surface
 _normal[0] = ((_points[8] - _points[0])*(_points[1] - _points[0])).unit();
 glNormal3f(_normal[0].X(), _normal[0].Y(), _normal[0].Z());

 // Construct first quad
 glVertex3f(_points[0].X(), _points[0].Y(), _points[0].Z());
 glVertex3f(_points[8].X(), _points[8].Y(), _points[8].Z());

 // Front face, second surface
 _normal[1] = ((_points[9] - _points[1])*(_points[2] - _points[1])).unit();
 glNormal3f(_normal[1].X(), _normal[1].Y(), _normal[1].Z());

Drawing Front Side of Bats .

 // Construct second quad
 glVertex3f(_points[1].X(), _points[1].Y(), _points[1].Z());
 glVertex3f(_points[9].X(), _points[9].Y(), _points[9].Z());

 // Front face, third surface
 _normal[2] = ((_points[10] - _points[2])*(_points[3] - _points[2])).unit();

 glNormal3f(_normal[2].X(), _normal[2].Y(), _normal[2].Z());

 // Construct third quad
 glVertex3f(_points[2].X(), _points[2].Y(), _points[2].Z());
 glVertex3f(_points[10].X(), _points[10].Y(), _points[10].Z());
 glNormal3f(_normal[2].X(), _normal[2].Y(), _normal[2].Z());

 // Construct fourth quad
 glVertex3f(_points[3].X(), _points[3].Y(), _points[3].Z());
 glVertex3f(_points[11].X(), _points[11].Y(), _points[11].Z());

glEnd();

Drawing the Rest of the Bats

• In the same way you will have to draw the:

– Left side of the bat

–Back side of the bat

–Right side of the bat

–Up side of the bat

Bat Collisions

• At least three checks:

–Check for collisions between the ball and the
three bats like ball-wall

–Check for collisions between the ball and the
side of the bats

–Check for collisions between the ball and the
edges of the bats

• Repeat the same procedure for reflections
of the ball after collisions

Calculate the reflection of the ball
after collision

double TBounds::Ball_Reflection(TBall &ball, const
double& seconds)

{
 TVector ball_velocity_after_collision,

previous_ball_position, collision_vector, final_velocity;

 // Perform calculations for the previous time step
 previous_ball_position = ball.GetBallPosition() -

ball.GetBallVelocity()*seconds;

 double absBallVelocity =

sqrt(ball.GetBallVelocity().dot(ball.GetBallVelocity()));

3/18/2019

25

Calculate the reflection of the ball
after collision .

 // Calculate the Ri*V to calculate the collision
time

 double RV =
previous_ball_position.dot(ball.GetBallVelocity()
)/absBallVelocity;

 // Absolute RV
 double abs_RV = abs(RV);

 // Define the initial distance = 100 - 4 = 96
 double initial_distance = 100.0 -

ball.GetBallRadius();

Calculate the reflection of the ball
after collision ..

 // Calculate the determinant
 double Determinant = ((RV*RV) -

previous_ball_position.dot(previous_ball_position) +
initial_distance*initial_distance);

 // Calculate the collision time
 double collision_time = abs(-abs_RV +

sqrt(Determinant))/absBallVelocity;

 // Calculate the collision vector (normal vector) from: R = r +

v*t
 collision_vector = previous_ball_position +

ball.GetBallVelocity()*collision_time;

 // Make the collision vector (normal vector) unit vector
 TVector unit_collision_vector = TVector::unit(collision_vector);

Calculate the reflection of the ball
after collision …

 // Define velocity by: Vreflected =
(Vinitial*Normal.unit)*Normal.unit

 ball_velocity_after_collision =
unit_collision_vector*(ball.GetBallVelocity().dot(unit_col
lision_vector));

 // Calculate the velocity of the ball after collision with

the invisible wall
 final_velocity = ball.GetBallVelocity() -

ball_velocity_after_collision*2.0;

 ball.CalculateVelocity(final_velocity, collision_time);

 return collision_time;
}

References

• http://www.cs.wisc.edu/~schenney/courses/c
s679-f2003/lectures/cs679-22.ppt

• http://graphics.ucsd.edu/courses/cse169_w05
/CSE169_17.ppt

Links

• http://en.wikipedia.org/wiki/Bounding_volume

• http://nehe.gamedev.net/data/lessons/lesson.asp?
lesson=30

• http://web.cs.wpi.edu/~matt/courses/cs563/talks/
bsp/bsp.html

• http://www.devmaster.net/articles/bsp-trees/

• http://maven.smith.edu/~mcharley/bsp/createbspt
ree.html

• http://www.cs.unc.edu/~geom/

• http://www.cs.ox.ac.uk/stephen.cameron/distances/

Questions

http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt
http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt
http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt
http://en.wikipedia.org/wiki/Bounding_volume
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=30
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=30
http://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/bsp.html
http://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/bsp.html
http://www.devmaster.net/articles/bsp-trees/
http://www.devmaster.net/articles/bsp-trees/
http://www.devmaster.net/articles/bsp-trees/
http://maven.smith.edu/~mcharley/bsp/createbsptree.html
http://maven.smith.edu/~mcharley/bsp/createbsptree.html
http://www.cs.unc.edu/~geom/
http://web.comlab.ox.ac.uk/oucl/work/stephen.cameron/
http://web.comlab.ox.ac.uk/oucl/work/stephen.cameron/

