

(a)

 (\mathbf{A})

PA199 Advanced Game Design

Lecture 9 Serious Games and Virtual Environments

Dr. Fotis Liarokapis

29th April 2019

Essential Game Elements

- Huizinga (1950)
 - Free activity, outside "ordinary" life, not "serious"
 - Absorbs the player
 - No material interest or profit
 - Distinct Boundaries of time and space
- Caillois (1961)
 - Free (voluntary), separate (time and space)
 - uncertain, unproductive, governed by rules, makebelieve
- Salen and Zimmerman (2003)
 - A system in which players engage in an artificial conflict, defined by rules, that results in a quantifiable outcome

Serious Games

HCISSO

Serious Games - A Definition

 Describes computer games that are not limited to the aim of providing entertainment that allow for collaborative use of 2D/3D spaces but are also used for different purposes in a number of application domains

Anderson, E.F., McLoughlin, L., Liarokapis, F., Peters, C., Petridis, P., Virtual Reality, Springer, 14(4): 255-275, 2010. (ISSN: 1359-4338)

Multimedia

 Bergeron, (2006): "a serious game is an interactive computer application, with or without a significant hardware component, that: has a challenging goal, is fun to play and/or engaging, incorporates some concept of scoring, and imparts to the user a skill, knowledge, or attitude that can be applied in the real world." (pg. xvii)

Seriou game

Compute game

narti, F., Eid, M., El Saddik, A. An Overview of Serious Games. International Journal of Computer Games Technology. Article ID 358152, 2014

Entertainment

HCI Milestones in the History of SG

Year	Serious game	Application Academic book	
1970	Serious Games book by C. Abt		
1972	Magnavox Odyssey	Education	
1973	The Oregon Trail	Education	
1980	BattleZone	Training	
1981	The Bradley Trainer	Training	
1982/1983	Pole Position/Atari VCS 2600 console	Training	
1996	Marine Doom	Military	
2002	America's Army	Military	
2003	DARWARS	Military	
2005	VBS1	Military	
2006	BiLAT	Interpersonal communication	
2009	VBS2/Game After Ambush	Military	
2012	X-Plane 10	Training	

 (\mathbf{A})

 (\mathbf{A})

 \forall

Advantages of Games

(a)

- Motivation/Engagement
- Interactivity

HCI

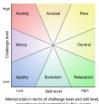
- Mechanic is the Learning
 - To beat the game is to learn the message/skill
 - But only when done right, very difficult
 - Beyond content to problem solving/systems learning
- · Adaptive to the Learner
- **Real-Time Assessment**
 - Analytics/Data/Log Files

Simulations and Games

arti, F., Eid, M., El Saddik, A. An Overview of Serious Games. International Journal of Computer Games Technology. Article ID 358152, 2014

- Squire (2003) examples of uses:
 - Manipulate otherwise unalterable variables
 - Enable students to view phenomena from new perspectives
 - Observe systems behavior over time
 - Pose hypothetical questions to a system
 - Visualize a system in three dimensions
 - Compare simulations with their understanding of the system

(\mathbf{A})


Goals of Serious Games

- Flow (Csikszentmihalyi) - Balancing challenge See next slides
- Scaffolding
- "Transfer" Knowledge
- System Understanding
- Attitude/behavior change

inedia org/wiki/Flow (or

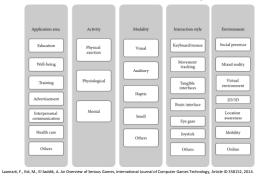
FLOW

- · FLOW is the mental state of operation in which a person performing an activity is fully immersed in a feeling of energized focus, full involvement, and enjoyment in the process of the activity
 - Characterized by complete absorption in what one does

FLOW Components

- Six factors are encompassing a FLOW experience: - Intense and focused concentration on the present
 - moment
 - Merging of action and awareness
 - A loss of reflective self-consciousness A sense of personal control or agency over the situation or activity
 - A distortion of temporal experience, one's subjective experience of time is altered
 - Experience of the activity as intrinsically rewarding, also referred to as autotelic experience

(a)


Serious Games Taxonomy

	Serious Gai				GENRE	GENRE			
		Games for Health	Advergames	Games for Training	Games for Education	Games for Science & Research	Production	Games as Work	
	Government & NGO	Public Health Education & Mass Casualty Response	Political Games	Employee Training	Inform Public	Data Collection/ Planning	Strategic & Policy Planning	Public Diplomacy, Opinion Research	
	Defense	Rehab & Wellness	Recruitment & Propaganda	Soldier Support Training	School House Education	War Games & Planning	War planning & weapons research	Command & Control	
SECTOR	Healthcare	Cybertherapy/ Exergaming	Public Health Policy & Social Awareness Campaigns	Training Games for Health Professionals	Games for Patient	Visualization/ Epidemiology	Biotech manufacturing & design	Public Health Response Planning & Logistics	
	Marketing & Communications	Advertising Treatment	Advertising, Marketing with games, product placement	Product Use	Product Information	Opinion Research	Machinima	Opinion Research	
	Education	Inform about disease/ risks	Social issue games	Train teachers/ Train workforce skills	Learning	Corporate Science & Recruitment	Documentary?	Teaching Distance Learning	
	Corporate	Employee Health Information & Wellness	Customer Education & Awareness	Employee Training	Continuing Education & Certification	Advertising/ Visualization	Strategic Planning	Command & Control	
	Industry	Occupational Safety	Sales & Recruitment	Employee Training	Workforce Education	Process, Optimization, Simulation	Nano/Bio-Tech Design	Command & Control	

 $\overline{\nabla}$

 (\mathbf{A})

Another Taxonomy

Prensky's Classification

Content	Learning activities	Possible Game Styles
Facts	Questions, memorization	Game show, competitions
Skills	Imitation, coaching, practice	Role-play, adventure
Judgment	Reviewing cases, asking questions, making choices	Role play, strategy
Behaviours	Imitation, feedback, practice	Role playing games
Theories	Logic, experiment, questioning	Simulation, game creation
Reasoning	Problems, examples	Puzzles
Process	Analysis, deconstruction, practice	Strategy, adventure
Procedures	Imitation, practice	Timed, reflex games
Creativity	Play	Puzzles, invention games
Language	Imitation, practice, immersion	Role play, reflex games
Systems	principles, tasks, simulation	Simulation games
Observation	Observing, feedback	Concentration, adventure
Communication	Imitation, practice	Role playing, reflex games

HCI 2000

More Than Just Games

- A trend towards the development of more complex, serious games, which are informed by both pedagogical and game-like, fun elements
 - Application area of game engines and online virtual environments

Early Example of Serious Games

Serious Games Forms

- Serious games can exist in the form of:
 - Simple web-based solutions
 - Online virtual environmentsMore complex 'mashup'
 - applications – 'Grown-up' computer games
 - Mixed reality games

 - Mobile applications

 (\forall)

Serious Games Uses

- Learning & Education
- Health Sciences
- Advertising
- Training
- Science and Research
- Art/Statement
- Journalism

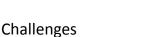
 (\mathbf{A})

Serious Games Strengths

- The main strengths could be generalised as being in the areas of:
 - Communication
 - Visual expression of information
 - Collaboration mechanisms
 - Interactivity
 - Entertainment

 (\mathbf{A})

Requirements Gathering


 Need to work with Subject Matter Experts (SME's) to define learning/training content versus simply creating gameplay out of thin air

 (\mathbf{A})

- Game designers must work with instructional designers
- Developers must effectively become SME's themselves

Access to SME's

- Access to environments
- Access to equipment
- Finding SME's fully knowledgeable in training content
- · Creating SGs without simply creating a simulation

 (\mathbf{A})

 (\mathbf{A})

Serious Games Views

- Entertainment is more important!
 - While pedagogy is an implicit component of a SG it should be secondary to entertainment
- Education and pedagogy is more important!

 \forall

 (\mathbf{A})

 (\mathbf{A})

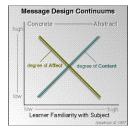
 Design methodologies for the development of games incorporating pedagogic elements

CILITICITUS Inderson, E.F., McLoughlin, L., Liarokapis, F., Peters, C., Petridis, P., de Freitas, S. Developing serious games for cultural heritage: a state-of-the-art review Virtual Reality, Springer, 14(4): 255-275, 2010. (ISSN: 1359-4338)

Engagement / Fun

- ... with what & why?
- In Traditional Teaching:
 Engagement with Content is Primary
- In Entertainment Games:
 Engagement with Tasks are Primary
- To a Professional Educator: – Learning is Predictable

To a Professional Game Developer:
 – Fun is Predictable


Serious Game Design

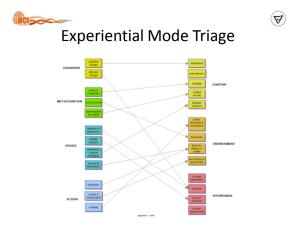
- · The Context and Needs determine objectives
- The Learning Objectives need to be stated
- · The Player Motivation needs to be defined
- The Ideal Learning Environment for this context, objectives, and desired outcomes must be defined
- The Learning Environment must dictate % game play and % authentic simulation

Affective/Cognitive Balance

- Affective presentation (game) effective when content knowledge is low and content density is also low
- As content knowledge goes up then content density may rise but authenticity and functionality (Sim) must also rise

The Player Experience

- Cognition changes in cognitive and affective domains
- Metacognition –all that the player is aware of including:
 Vision, audio, olfactory, kinesthetic, and haptic senses, plus an awareness of time, objects, & content
- Choice perception of:
 - Degree of control, and access to variables and information during game play
- Action perception that they can do things such as:
 - Interact with objects and elements within the game, have control of objects, elements, and own identity, have mobility to move through the environment, manipulate control interface to effect change


(A)

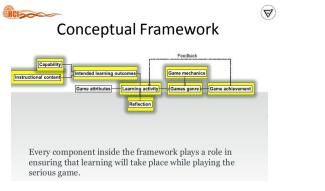
Game Structure

Content

 The story, the context, the amount of information available, the degree of concreteness or abstraction of the content, the authenticity, and its variability

- Environment
 - The virtual spaces and boundaries, the objects within these spaces and their functionality capabilities, plus any time limits imposed by the game
- Affordances
 - The abilities made for the player to change, manipulate, the objects, information, environment, their identity & capabilities, and/or to seek alternative information

Four Dimensional Framework


Four Dimensional Framework			
Learner Specifics Profile	Pedagogy Associative		
Role	Cognitive		
Competencies	Social/Situative		
Representation	Context		
Fidelity	Environment		
Interactivity	Access to learning		
Immersion	Supporting resources		

our elements that can be used as design and evaluation criteria for the creation of ser games

Academic Impact

Serious games growth in the research field based on surveyed papers in ACM digital library and IEEE Xplore

narti, F., Eid, M., El Saddik, A. An Overview of Serious Games. International Journal of Computer Games Technology. Article ID 358152, 2014

 (∇)

Gamification

- Gamification is the application of game-design elements and game principles in non-game contexts
 - Gamification commonly employs:
 - Game design elements
 - Organizational productivity
 - Flow

HCISSO

•

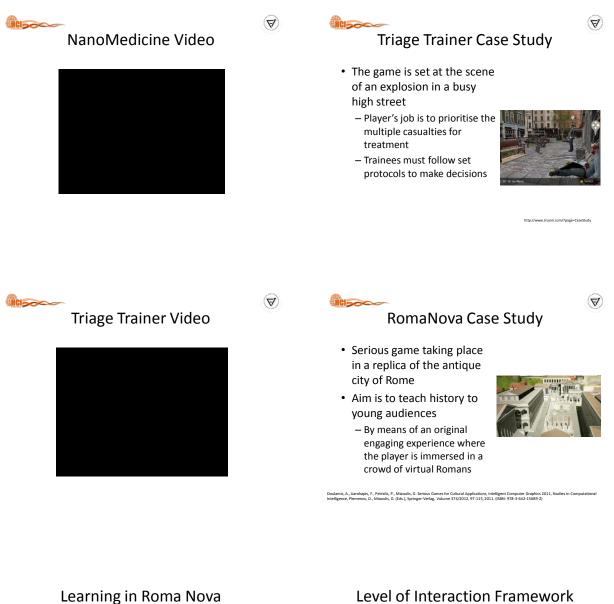
- Learning
- Employee recruitment and evaluation
- Ease of use and usefulness of systems
- Physical exercise
- Etc

https://en.wikipedia.org/wiki/Gamification

 (∇)

Gamification vs Serious Games

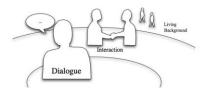
Game Thinking, Broken down by design goal.


HCI

 (\mathbf{A})

Case Studies

Serious Games in Health



- · Levels of detail and levels of simulation for:
 - Crowd modelling
 - Animation techniques for cultu heritage
 - Pedagogical embedded conversational agents
- Seeking to advance information transfer through immersive 'living background'

Level of Interaction Framework

• The LoI is a framework designed to model the interactions between the player and virtual characters, in a serious games perspective

Virtual Environments (VEs)

- VEs are synthetic representations of reality
 - Focused on the experience that the users of these worlds have
 - Can be used by distributed groups of large numbers of players, and are immersive and interactive
- Many types exist
 - Focus is on Online Virtual Environments
 - Sometimes called 'Collaborative Virtual Environments'

Wirtual Environments Experience

- Sensory Feedback information about the virtual world is presented to the participant's senses
 - Visual (most common)
 - Audio
 - Touch
 - Smell
- Interactivity the virtual world responds to the user's actions
 Computer makes this possible
 - Real-time

 (\mathbf{A})

Walking Experiment at UNC – Chapel Hill

Online VEs

- New ways of exploring webbased applications
 - Evolution of telecommunication technologies, web-services and software engineering
- Great range of different online virtual environments
 - More than 100 different ones

 (\mathbf{A})

- "Collaborative Virtual Environments (CVEs) are online digital places and spaces where we can be in touch, play together and work together, even when we are, geographically speaking, worlds apart...
- In CVEs we can share the experience of worlds beyond the physical" [Churchill/Snowdon/Munro 2001]

 (\mathbf{A})

HCIDOCO

Key Components

- Graphic engines
- Displays
 - Monitors, HMDs, etc
- Interaction devices
 - Keyboard, mouse, trackers, etc
- Processing Systems
- Data Network

$\overline{\mathbf{A}}$

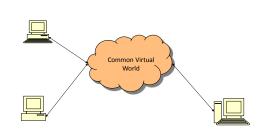
 (\mathbf{A})

 (\mathbf{A})

Types of VEs

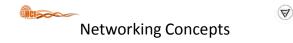
 High realism online virtual gaming platforms

- Custom, more experimental prototypes
- Online game engines
- Alternative online virtual environments
 - Second Life, Active Worlds, OLIVE platform, etc



Typical Issues

- Some common research issues include:
 - What is the best virtual environment
 - What is the level of realism and interaction required
 - How best to design activities and experiences for learners



Basic Architecture

Current Challenges

- Network Bandwidth/Latency
- Heterogeneity
- Distributed Interaction (real-time)
- Resource Management Scalability

- Latency
 - Amount of time to transfer a bit of data from one point to another
 - Latency has a direct impact on interaction inside the virtual world
 - The designer cannot really reduce latency
 It is possible to hide it or reduce its impact

 (\mathbf{A})

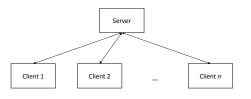
Networking Concepts .

- c
- Latency causes:
 - Physical limitations: speed of electromagnetic waves in the transmission material
 Approximately 8.25 msec per time zone
 - Delays introduced by the endpoint computers
 - Delays introduced by the network itself
 - Routers

HCISSO

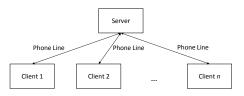
 (\mathbf{A})

Networking Concepts ..


ТСР	Small number of users		
	Limited data requirements		
	Typically client-server		
	configuration		
UDP	Higher data requirements		
	Used both in client-server and		
	peer-to-peer configurations.		
IP Broadcasting	Small peer-to-peer Net VEs with high data requirements and time sensitive delivery.		
IP Multicasting	Large peer-to-peer NetVEs, be careful with routers.		

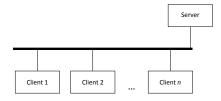
Architectures

Client-Server Systems

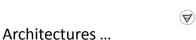


 (\mathbf{A})

- Client-Server Systems
 - Physical architecture with phone lines

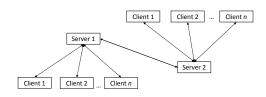


Architectures.


Architectures ..

- Client-Server Systems
 - Physical architecture on a LAN

- Client-Server Systems
 - The Server can become a bottleneck.
 - What are the advantages? The server can decide::
 - Which clients should receive a message.
 - What protocol to use with different clients.
 - Sub-sample messages to slow users.
 Keep statistics

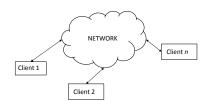

(a)

 (\mathbf{A})

Architectures

• Multiple-Server Architectures

$\overline{\mathbf{A}}$



- Multiple-Server Architectures
 - Several servers have the following advantages:
 - System scales better
 - Communication between clients attached to different servers takes longer
 - Key issue: how to assign clients to servers?

Architectures

• Peer-to-peer

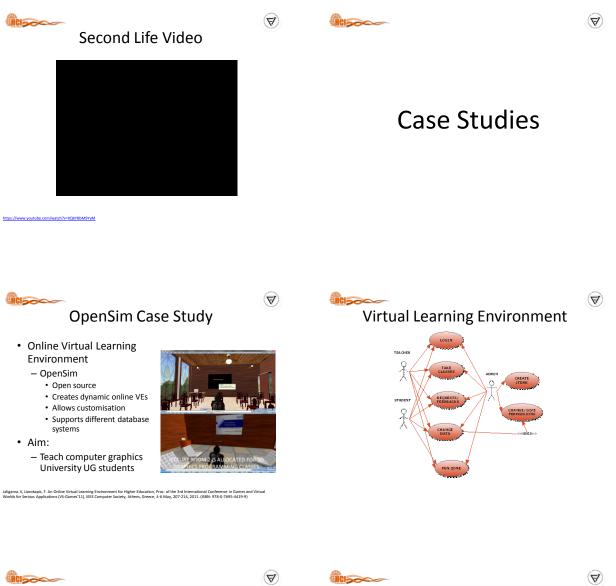
 \blacksquare

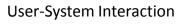
 (\mathbf{A})

Architectures

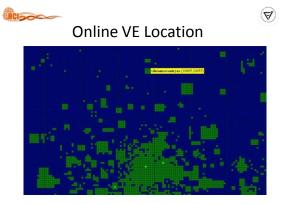
- Peer-to-peer
 - "Network" will be:
 - Broadcast
 - One or multiple multicast groups
 - In the case of multicast groups:
 - Area of Interest Management: assign different users to different multicast groups, based on some criteria

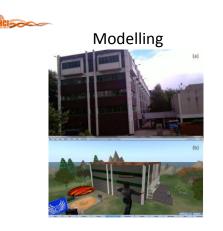
HCI


Technology Comparison


Technology	Speed (Kbps)	Min # players	Max # players
Modem	56	1	6
DSL	1500	39	163
T-1	1500	39	163
10BT	10,000	263	1085
100BT	100,000	2630	10851

- A typical illustration of online virtual environments is Second Life
- 13 million registered accounts worldwide
- An open source approach exists
 - OpenSim



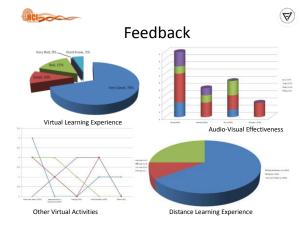


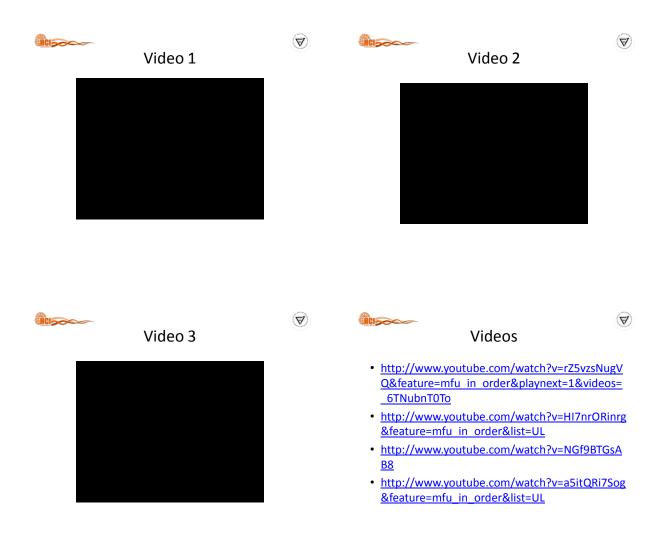
 (\forall)

 (\forall)

Online Teaching

- A 2nd year computer science undergraduate module has been ported into our online virtual learning environment
 - Called '3D Graphics Programming' and introduces 3D computer games graphic programming fundamentals to the students
- The theoretical part covers issues such as textures, global illumination and the simulation of physical phenomena


User Evaluation


- Two-stage evaluation with 20 participants was performed and qualitative and quantitative feedback was recorded
 - Participants ranged from students to business professionals
 - Evaluation lasted for approximately 1 hour per participant
- All end-users had some experience with computer games, console games or online virtual environments

Qualitative Evaluation

- On the positive side, most participants noted that the platform is quite enjoyable and has a lot of potential for remote learning
- On the negative side, some participants did not like the idea of spending some time to familiarise with the platform

HCIDOCO

(\mathbf{A})

 (\mathbf{A})

VS-Games Conferences

- VS-Games 2009, Coventry, UK
 - <u>http://ieeexplore.ieee.org/xpl/mostRecentIssue.js</u> <u>p?punumber=5116537</u>
- VS-Games 2010, Braga, Portugal

 <u>http://ieeexplore.ieee.org/xpl/mostRecentIssue.js</u> p?punumber=5458389
- VS-Games 2011, Athens, Greece

 <u>http://ieeexplore.ieee.org/xpl/mostRecentIssue.js</u> p?reload=true&punumber=5962074

HCI

 (\mathbf{A})

 (\mathbf{A})

IEEE VS-Games 2018

- Dates:
 - Submission: 30th April 2018
 - Conference: 5-7 September 2018
- Location: Würzburg, Germany
- Website: <u>https://vsgames.org/2018/</u>

Conclusions

- Serious games are becoming more and more popular
 - Expected to get 'serious' profits in the games industry
- Computer graphics technology is the same – For games and serious games
- More research is required in many areas
 - HCI, personalisation and pedagogy

Bibliography

- de Freitas, S. & Maharg, P. (Eds) (2011) Digital Games and Learning. London and New York: Continuum Press
- de Freitas, S. & Oliver, M. (2006). How can exploratory learning with games and simulations within the curriculum be most effectively evaluated? Computers and Education, 46 (3): 249-264
- Michael, D. & Chen, S. (2006) Serious Games: Games that Educate, Train and Inform. Boston, MA: Course Technology PTR
- Salen, K & Zimmerman, E. (2003) Rules of Play, MIT Press
- Bergeron, B. (2006) Developing Serious Games, Thomson

 $\overline{\nabla}$

Questions