
May 7, 2019

Binary Analysis and Disassembly

Petr Ročkai and Lukáš Korenčik

Binary Analysis and Disassembly 2/211 May 7, 2019

Organisation
• theory: 30-50 minutes every week
• remaining time: coding and discussions
• there will be 6 bi-weekly assignments
∘ together, they will form a project
∘ each assignment is a milestone

Binary Analysis and Disassembly 3/211 May 7, 2019

Grading
• you need 7 points to pass the subject
• each assignment is worth 1 point
• showing up 10 times is worth 1 point
• up to 2 points for writing code reviews
• up to 2 points for meeting deadlines

Binary Analysis and Disassembly 4/211 May 7, 2019

Deadlines and Feedback
• the deadline for each assignment is 14 days
• beating the deadline gives you 1/3 of a point
∘ the solution must be of sufficient quality

• feedback will be given on the off weeks
∘ i.e. 7 days after the deadline

Binary Analysis and Disassembly 5/211 May 7, 2019

Programming Language
• C or C++ is up to you
• you can use up to C11 and up to C++17
• only the standard library and POSIX
• no boost, no libelf or BFD

Binary Analysis and Disassembly 6/211 May 7, 2019

Repositories
• make a repository for your homeworks
∘ git, hg or whatever works for you
∘ make it public and email me the URL

• write a simple Makefile (inc. dependencies)
∘ you will only have a few source files
∘ cmake is acceptable but discouraged

Binary Analysis and Disassembly 7/211 May 7, 2019

Assignment Submission
• tag your repository with hw1, etc.
∘ use hw1.1 etc. for resubmissions

• tag dates are what counts for deadlines
• we will not look at master head
∘ you can break stuff freely there

Binary Analysis and Disassembly 8/211 May 7, 2019

Semester Plan (part 1)
date

1. introduction & preliminaries 19.2.
2. instruction sets 26.2.
3. static control flow 5.3.
4. dynamic control flow 12.3.
5. executable files, ELF 19.3.
6. dynamic linking 26.3.

Binary Analysis and Disassembly 9/211 May 7, 2019

Semester Plan (part 2)
date

7. debug info 2.4.
8. DWARF 9.4.
9. function calls and frames 16.4.
10. advanced instructions 23.4.
11. debugger basics 30.4.
12. decompilation basics 7.5.

Binary Analysis and Disassembly 10/211 May 7, 2019

Assignment Schedule
given due

1. decoding instructions 26.2. 12.3.
2. basic blocks & branching 12.3. 26.3.
3. making sense of ELF 26.3. 9.4.
4. parsing symbol tables 9.4. 23.4.
5. reconstructing functions 23.4. 7.5.
6. a complete disassembler 7.5. 21.5.

Binary Analysis and Disassembly 11/211 May 7, 2019

Part 1: Preliminaries

Binary Analysis and Disassembly 12/211 May 7, 2019

Machine Code
• consists of individual instructions
• encoded in a tightly-packed binary format
∘ may be fixed or variable length

• stored program architecture
∘ instructions live in addressable memory

Binary Analysis and Disassembly 13/211 May 7, 2019

Assembly
• symbolic language one level above machine code
∘ abstracts away from numeric addresses
∘ replaces them with symbolic labels

• instructions are encoded in a text format
• designed for humans (but rarely used nowadays)

Binary Analysis and Disassembly 14/211 May 7, 2019

C and Compilers
• another layer of abstraction over assembly
• abstracts away the specifics of hardware architecture
∘ registers, stack management, opcodes
∘ provides structured control flow

• still a low-level language, mostly OS-level programs

Binary Analysis and Disassembly 15/211 May 7, 2019

Compiled High-Level Languages
• another abstraction rung above C
∘ algebraic or class-based type systems
∘ abstract data structures
∘ extensive standard libraries
∘ late dispatch, lexical closures, ...

• e.g. C++, Rust, ML, Haskell, (Java)

Binary Analysis and Disassembly 16/211 May 7, 2019

Interpreters
• typically the highest rung of the abstraction tower
∘ dynamic types, garbage collectors
∘ powerful, high-level libraries or APIs

• often realized as JIT compilers / virtual machines
∘ usually implemented in C or C++

• e.g. JavaScript, Python, Ruby, bash, R

Binary Analysis and Disassembly 17/211 May 7, 2019

Disassembly
• going from machine code to assembly
∘ decode instruction
∘ recover control flow structure

• print the program in human-readable format
• re-assembling should give identical machine code

Binary Analysis and Disassembly 18/211 May 7, 2019

Decompilation
• attempt to reconstruct high-level code
∘ recovery of structured control flow (if, while)
∘ identification of local variables
∘ recovery of addresses

• decompile→ compile is not idempotent

Binary Analysis and Disassembly 19/211 May 7, 2019

Exercise 1.1: objdump
• read the objdumpmanpage
• try objdump -x on some binaries
∘ /usr/bin/gzip

∘ your own test program (hello world style)
∘ try -static, -fPIC &c.
∘ try both the .o file and the executable

• also try objdump -x --disassemble

Binary Analysis and Disassembly 20/211 May 7, 2019

Exercise 1.2: gdb
• compile your test program with -g

• gdb [--args] ./a.out

• start

• stepi, disassemble, print $rax

• break

• for more user friendliness: layout

Binary Analysis and Disassembly 21/211 May 7, 2019

Exercise 1.3: reading binary data
$ printf "\x03\x12\x01\x00\x00\x00" > file.bin

read the above data into the following structure
struct __attribute__((packed)) d

{

short x;

int y;

}

expected result: x = 4611, y = 1

Binary Analysis and Disassembly 22/211 May 7, 2019

Part 2: Instruction Sets

Binary Analysis and Disassembly 23/211 May 7, 2019

Instruction Anatomy
• opcode: what to do
• operands
∘ immediate values (part of instruction)
∘ register references
∘ memory references (immediate or via register)

• modifiers (e.g. lock)

Binary Analysis and Disassembly 24/211 May 7, 2019

Opcode Classes
• control flow
• integer arithmetic
• bit operations
• memory access
• floating point arithmetic
• special instructions

Binary Analysis and Disassembly 25/211 May 7, 2019

Register Classes
• GPR: General Purpose Register
∘ hold a single word: integers, addresses

• SIMD (vector) and/or floating point registers
• pointers: stack, instruction, frame (base)
• machine control registers

Binary Analysis and Disassembly 26/211 May 7, 2019

Control Flow
• conditional & unconditional jumps
∘ direct (fixed address)
∘ indirect unconditional (computed address)
∘ conditional on results of arithmetic

• subroutine calls and returns
∘ use the stack for return addresses

Binary Analysis and Disassembly 27/211 May 7, 2019

Arithmetic
• addition, subtraction
• signed+unsigned division, multiplication
• integer comparison (signed/unsigned)
• standard instructions up to word size (64b)
∘ 128b operations are available too

Binary Analysis and Disassembly 28/211 May 7, 2019

Bit Operations
• bitwise and, or, xor, negate
• shifts and rotations
• bit field packing/unpacking
• bit counting, endianity conversion

Binary Analysis and Disassembly 29/211 May 7, 2019

Memory Access
• load from and store into memory
• various address computation modes
∘ part of the access instruction
∘ special-purpose arithmetic (lea)
∘ general-purpose arithmetic

Binary Analysis and Disassembly 30/211 May 7, 2019

Addressing Modes
• scalars: base register + offset
∘ especially useful for stack variables
∘ also globals (relative to program counter)

• arrays: base register + immediate * index register
• ‘far’ addressing for segmented memory (obsolete)

Binary Analysis and Disassembly 31/211 May 7, 2019

Floating Point Arithmetic
• separate instruction set
• separate registers (distinct from GPRs)
• variable precision (usually 32b, 64b, 80b)
• governed by IEEE 754

Binary Analysis and Disassembly 32/211 May 7, 2019

Specials: Synchronisation
• atomic memory access
∘ read-modify-write (add, sub, xor, ...)
∘ compare + exchange

• memory fences / barriers
• on amd64 encoded using the lock prefix

Binary Analysis and Disassembly 33/211 May 7, 2019

Specials: Vector Instructions
• SIMD: single instruction (opcode), multiple data
• integer and floating-point arithmetic
• 4-8 values packed in 128b or 256b register
• speeds up number crunching considerably
• on top of usual superscalar execution

Binary Analysis and Disassembly 34/211 May 7, 2019

Specials: User Mode
• checksums (e.g. crc32)
• symmetric crypto (aes-ni)
• random numbers (rdrand, rdseed)
• processor capabilities (cpuid)
• timers (rdtsc)

Binary Analysis and Disassembly 35/211 May 7, 2019

Specials: Privileged Mode
• CPU management opcodes and registers
• interrupt handling
• system calls
• cache control
• debugging and monitoring
• virtualisation

Binary Analysis and Disassembly 36/211 May 7, 2019

Exercise 2.1
• learn a bit more about assembly
• use gcc -S to produce examples
∘ you can also try -fverbose-asm

• write a recursive factorial (in C)
∘ use gdb instruction stepping
∘ try an iterative version too

Binary Analysis and Disassembly 37/211 May 7, 2019

Exercise 2.2
• write a simple assembly program
• borrow the prologue/epilogue from gcc

• sum an arithmetic/geometric sequence
∘ use formulas first (just arithmetic)
∘ try using a summing loop

Binary Analysis and Disassembly 38/211 May 7, 2019

Instruction Encoding
• how to encode opcodes and operands into bytes
• fixed-length or variable-length
• fixed: e.g. VLIW (very long instruction word)
∘ often employs instruction combining
∘ variant: fixed opcodes, trailing immediate operands

Binary Analysis and Disassembly 39/211 May 7, 2019

Variable-Length Coding
• saves space compared to fixed-width coding
• often much harder to decode
• usually decoded from left to right
• first byte affects what second byte means, &c.
• already-decoded prefix tells you whether to continue

Binary Analysis and Disassembly 40/211 May 7, 2019

Encoding on AMD64
• programmer’s manual in study materials
• variable length (even opcodes)
• very long history of extensions
• different meaning in different CPU modes
• not a very clean encoding of a messy instruction set

Binary Analysis and Disassembly 41/211 May 7, 2019

Assignment 1
• write an instruction decoder for amd64
• have make decode build the binary
• invocation ./decode 74 1a

∘ prints: je 0x1a(%rip)

• we will only decode a small subset of instructions
• print unknown instruction if that is the case

Binary Analysis and Disassembly 42/211 May 7, 2019

Assignment 1: Required
• branching: jmp, je, jne, jb
∘ operands: rel8off, rel32off

• stack: push, pop (64b only)
• calls: near call (rel32off) and ret

• mov in 64b mem/reg versions (details later)
• a few arithmetic and bitwise ops, nop, int3

Binary Analysis and Disassembly 43/211 May 7, 2019

Assignment 1: Arithmetic & Bitwise
• xor eax imm32 and xor rax imm32
• add eax imm32 and add rax imm32
• mulwith 2 64b registers (rax – rdx)
• cmp eax imm32 and cmp rax imm32
• cmpwith 2 64b registers (rax – rdx)

Binary Analysis and Disassembly 44/211 May 7, 2019

Assignment 1: mov
• only the 89 and 8B opcodes
∘ with 2 64b registers (rax – rdx)
∘ from memory to a 64b register
∘ from a 64b register to memory

• memory: address in rax or rbx
∘ rip and rbp + 32b displacement

Binary Analysis and Disassembly 45/211 May 7, 2019

Assignment 1: Not Required
• anything in the VEX maps
• memory operands other than
∘ movwith address in rax or rbx
∘ movwith rip and rbp + disp32

• prefixes other than the REX range

Binary Analysis and Disassembly 46/211 May 7, 2019

Assignment 1: Hints
• most 64b instructions need a REX prefix (0x40-0x4F)
• exceptions: call, ret, jmp, branching
∘ some of the push/pop (those of ‘named’ GPRs)

• look for complete decoded examples in objdump

Binary Analysis and Disassembly 47/211 May 7, 2019

Part 3: Static Control Flow

Binary Analysis and Disassembly 48/211 May 7, 2019

Control Flow
• answers the question ‘what to do next?’
• normally, instructions run in a sequence
• just like statements in C
• how about conditionals and loops?

Binary Analysis and Disassembly 49/211 May 7, 2019

Structured Control Flow
• used in high-level languages
• if statements or expressions
• structured loops: while, for
• not available in machine code

Binary Analysis and Disassembly 50/211 May 7, 2019

Goto
• also known as unstructured control flow
• goto jumps from one place to another
∘ the destination is called a label
∘ the jump is unconditional (always taken)

• if + goto→ any loop

Binary Analysis and Disassembly 51/211 May 7, 2019

Goto: Example
int f(int x)

{

int i = x;

loop:

x = x * --i;

if (i > 1)

goto loop;

return ~x;

}

Binary Analysis and Disassembly 52/211 May 7, 2019

Machine Code
• goto is basically a jump instruction
• there are no labels in machine code
• assembler computes label offsets
• there is also a conditional jump instruction
∘ perform the goto only if a condition holds

Binary Analysis and Disassembly 53/211 May 7, 2019

Simplified if

• in C, if can guard arbitrary statements
• what if it could only guard exactly 1 goto?
∘ and there is no else either

• we can still do everything

if (x) { foo(); bar(); }

else baz();

Binary Analysis and Disassembly 54/211 May 7, 2019

Reinventing if

if_begin:

if (!x)

goto if_false;

foo(); bar();

goto if_end;

if_false:

baz();

if_end:

Binary Analysis and Disassembly 55/211 May 7, 2019

Conditional Jump
• recall if (x > 0) goto loop

• this is basically 2 instructions
• first is cmp, the second is jg
• conditional goto is conditional jump
• used to encode all control flow in machine code

Binary Analysis and Disassembly 56/211 May 7, 2019

Basic Blocks
• abstraction used by compilers
• starts with a label
• followed by a sequence of non-jump instructions
∘ no labels or jumps in the sequence

• with a single jump/branch at the end

Binary Analysis and Disassembly 57/211 May 7, 2019

Control Flow Graph
• take instructions as nodes
• control flow as edges
• extremely useful for code analysis
• using basic blocks makes the graph much smaller

Binary Analysis and Disassembly 58/211 May 7, 2019

Exercise 3.1
• rewrite this program with conditional gotos

while (x < 1000)

{

x *= 5;

if (x % 7 == 0)

break;

x --;

}

Binary Analysis and Disassembly 59/211 May 7, 2019

int fib(int n) /* exercise 3.2 */

{

if (n <= 2)

return 1;

else

{

int a = fib(n - 1);

int b = fib(n - 2);

return a + b;

}

}

Binary Analysis and Disassembly 60/211 May 7, 2019

Exercise 3.3
• take the goto version of program from 3.2
• change it to only have one return statement
• draw the control flow graph of both versions

Binary Analysis and Disassembly 61/211 May 7, 2019

Exercise 3.4
• write an iterative version of fib
• you can use the argument + 3 variables
• change it into goto form
• draw the control flow graph

Binary Analysis and Disassembly 62/211 May 7, 2019

Exercise 3.5
• compile all above programs into object files
• disassemble them using objdump

• recover control flow from the assembly
∘ only add labels that are required
∘ identify basic blocks

Binary Analysis and Disassembly 63/211 May 7, 2019

Exercise 3.6
• rewrite program from 3.4 into assembly by hand
• only use registers for computation
• start from an empty int fib(int) skeleton
• check that the program does the right thing

Binary Analysis and Disassembly 64/211 May 7, 2019

Part 4: Dynamic Control Flow

Binary Analysis and Disassembly 65/211 May 7, 2019

Last Time
• direct conditional + unconditional jumps
• basic blocks, control flow graph

Today
• direct & indirect function calls, returns
• indirect jumps and jump tables

Binary Analysis and Disassembly 66/211 May 7, 2019

Function Calls
• call is usually static (fixed address)
• but ret jumps to a dynamic address
∘ also known as return address

• arguments are passed in registers or on stack
• local variables are stored on the stack

Binary Analysis and Disassembly 67/211 May 7, 2019

Call Frame
• each function uses up a section of the stack
∘ known as a frame, holds automatic local variables
∘ though some of those might only live in registers

• there’s also stuff in-between frames
∘ arguments, register spills, return address

Binary Analysis and Disassembly 68/211 May 7, 2019

Indirect Jump
• jump to a dynamic address (i.e. not constant)
• often arises from switch statements (in C)
• either computed or via a jump table
• looks like jmp *%rax (if the address is in rax)

Binary Analysis and Disassembly 69/211 May 7, 2019

Ex 4.1
• write a simple C function with a switch

• use consecutive integer cases (i.e. 1, 2, 3, ...)
• put different code in each branch (e.g. return N)
• compile with gcc and clangwith different -O
∘ compare the assembly output

Binary Analysis and Disassembly 70/211 May 7, 2019

Detour: Graphviz
• a simple but powerful tool to draw graphs
• accepts plain-text input that looks like this

digraph G {

1 [shape=rectangle label="box"]

2 [shape=rectangle label="another\lbox\l"]

1 -> 2 [label="arrow"]

}

Binary Analysis and Disassembly 71/211 May 7, 2019

Ex 4.2
• draw the CFG from 3.3 or 3.4 using dot

• see https://graphviz.org for docs
• to look at the result, use dot -Tx11 < cfg.dot

∘ dot -Tpdf > cfg.pdf also works
• put instructions into the boxes

Binary Analysis and Disassembly 72/211 May 7, 2019

Assignment 2
• extend your decoder to allow multiple instructions
• print each instruction on a separate line
• assume the code starts at address 0
• decompose the code into basic blocks
• use graphviz dot to generate a CFG

Binary Analysis and Disassembly 73/211 May 7, 2019

Assignment 2: Input
• continue to allow ascii/hex bytes in argv[]

• if no args given, read a raw binary from stdin

• you can assume there are only known instructions
• and the input will be at most 2KB (for now)

Binary Analysis and Disassembly 74/211 May 7, 2019

Assignment 2: Output
• generate ‘maximal’ basic blocks
∘ print # <label> after jump instructions

• make a separate binary for CFG output (./cfg)
∘ print the dot source to stdout

∘ use boxes for BB’s in dot output
∘ put decoded instructions into the boxes as labels

Binary Analysis and Disassembly 75/211 May 7, 2019

Part 5: Executable Files, ELF

Binary Analysis and Disassembly 76/211 May 7, 2019

ELF
• Executable and Linkable format
a. a container for machine code and static data
b. relocation tables and other linking info
c. debug information and other metadata

• used on all modern UNIX systems
∘ except macOS (which is only half UNIX)

Binary Analysis and Disassembly 77/211 May 7, 2019

Basic Concepts
• ELF files start with an executable header
∘ class: machine word size (32 or 64 bits)
∘ endianness: either MSB (big) or LSB (little endian)
∘ version number (in case the layout changes)

• programheader tables and section header tables follow

Binary Analysis and Disassembly 78/211 May 7, 2019

Reading ELF Files
• ELF contains a number of data structures
∘ those are described as C struct

∘ elf.h contains the definitions
• probably easiest way is to use mmap

∘ look up how mmapworks with man mmap

∘ we will assume the file uses native format

Binary Analysis and Disassembly 79/211 May 7, 2019

Example: 64b Header
typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf64_Quarter e_type;

Elf64_Quarter e_machine;

Elf64_Half e_version;

/* elided */

Elf64_Quarter e_shnum;

Elf64_Quarter e_shstrndx;

} Elf64_Ehdr;

Binary Analysis and Disassembly 80/211 May 7, 2019

Native ELF Files
• elf.h has both Elf64_* and Elf32_*

• but you can skip the number
∘ i.e. use Elf_Ehdr

∘ this will select the native format at compile time
• if we cared about portability, we’d use libelf

∘ that would also take care of endianness &c.

Binary Analysis and Disassembly 81/211 May 7, 2019

Sections
• ELF files are made of sections
• each section has a header in the section table
∘ sections contain actual data
∘ what data it is depends on the section

• important sections: .text, .data, .rodata

Binary Analysis and Disassembly 82/211 May 7, 2019

Additional Sections
• .text, .data, .rodata are of type SHT_PROGBITS

• .symtab the symbol table, type SHT_SYMTAB

• .dynsym symbols for the dynamic linker, SHT_DYNSYM
• .rel.text the relocation table for program text, SHT_REL
• .init, .fini ‘global’ constructors and destructors

Binary Analysis and Disassembly 83/211 May 7, 2019

Ex 5.1: mmap
• open a binary file (e.g. /usr/bin/gzip)
• mmap it into memory
• print the first 4 bytes of the file

Binary Analysis and Disassembly 84/211 May 7, 2019

Ex 5.2: elf.h
• extend the program from previous exercise
• print out info from the executable header
∘ the type of the file (as a human-readable string)
∘ machine type (as 4 hexadecimal digits)
∘ the address of the entry point
∘ the number of section headers present in the file

Binary Analysis and Disassembly 85/211 May 7, 2019

Program Headers
• represented by struct Elf_Phdr (see man elf)
• contains information about the entire program
∘ dynamic linker path (PT_INTERP, ELF ‘hashbang’)
∘ which parts of the file to load (PT_LOAD)
∘ info for the runtime linker (PT_DYNAMIC)

Binary Analysis and Disassembly 86/211 May 7, 2019

Ex 5.3: Program Headers
• again, extend the program from previous exercise
• read all program headers (Elf_Phdr)
• print the interpreter for the program (PT_INTERP)
• print the notes (PT_NOTE), if any

Binary Analysis and Disassembly 87/211 May 7, 2019

Part 6: Dynamic Linking

Binary Analysis and Disassembly 88/211 May 7, 2019

Linking
• putting multiple object files together
• and resolving relocations within them

When?
• static / build time (system linker, ld)
• dynamic / run time (runtime linker, ld.so)

Binary Analysis and Disassembly 89/211 May 7, 2019

Build-time Linking
• read in one object at a time
• assign addresses to sections in the file
• merge and update the symbol tables
• resolve all applicable relocations

Binary Analysis and Disassembly 90/211 May 7, 2019

Relocations
• the compiler leaves space for unknown addresses
∘ each gets an entry in the relocation table
∘ saying which symbol and where in the file

• objdump -rd shows the relocations
• resolving relocations means altering instructions

Binary Analysis and Disassembly 91/211 May 7, 2019

Aside: Text Sharing
• a program may run in multiple processes
• in that case, the text is loaded only once
∘ same goes for .rodata
∘ of course the code must be read-only

• this is quite important for memory consumption

Binary Analysis and Disassembly 92/211 May 7, 2019

Relocations vs Sharing
• dynamic relocations could ruin everything
• we want to confine those to a small area
∘ this is the global offset table (GOT)
∘ holds both data and code relocations

• for calls, PLT stubs are used

Binary Analysis and Disassembly 93/211 May 7, 2019

Position-Independent Code
• uses %rip-relative addressing extensively
∘ both for calls and for data

• the GOT is also at a fixed relative address
∘ each object file has its own GOT
∘ they are merged by the system linker
∘ in the end only one GOT per shared object

Binary Analysis and Disassembly 94/211 May 7, 2019

Procedure Linkage Table
• the caller object has a foo@plt stub
∘ calls to foo go through foo@plt

∘ such calls are direct (and unconditional)
∘ happens for all external functions

• the stub consults the GOT entry for foo
∘ and performs an indirect jump to that

Binary Analysis and Disassembly 95/211 May 7, 2019

Lazy Binding
• initially, the GOT points into ld.so

• the ld.so code patches the GOT entry
• then jumps on to the resolved address
• next call will go directly to the right address

Binary Analysis and Disassembly 96/211 May 7, 2019

Interface to ld.so

• a family of C functions to call into ld.so

• most important: dlopen and dlsym

∘ see the manpages for details
∘ dlopen loads shared libraries

• allows programs to call functions by name
∘ including names only known at runtime

Binary Analysis and Disassembly 97/211 May 7, 2019

Ex 6.1
• create a shared library from C code
∘ provide a function and a global variable
∘ cc -fPIC to build, cc -shared to link

• add an executable which uses the lib
∘ build as usual, link with -L. -lmylib

∘ inspect the result with ldd

Binary Analysis and Disassembly 98/211 May 7, 2019

Ex 6.2
• also build the executable with -fPIC

∘ and link it with -pie

• disassemble both and compare the result
• compare to the code in the library

Binary Analysis and Disassembly 99/211 May 7, 2019

Ex 6.3
• add a second shared library
• use the first library in the second
∘ both the variable and the function
∘ use -shared -lmylibwhen linking

• inspect the disassembly
∘ compare to the executables

Binary Analysis and Disassembly 100/211 May 7, 2019

Ex 6.4
• write a program that dlopens the second lib
∘ use dlsym to find and call the function
∘ do not link to either of your libs

• check that both libraries got loaded
∘ you can use e.g. global constructors
∘ and/or attach with gdb

Binary Analysis and Disassembly 101/211 May 7, 2019

Ex 6.5
• use gdb to trace the PLT stub
∘ call e.g. puts 2× in the test program

• reminder: stepi steps one instruction
∘ disass shows the current function
∘ fin runs until current frame returns
∘ start gets you to the start of main
∘ p /x *(long*)some_address

Binary Analysis and Disassembly 102/211 May 7, 2019

Assignment 3
• add decode.elf and cfg.elf

∘ the input file is the first argument
∘ if it is ELF, process .text
∘ otherwise assume raw machine code

• print the address of each instruction
∘ only applies to decode.elf

Binary Analysis and Disassembly 103/211 May 7, 2019

Assignment 3 (cont’d)
• try to write a simple test program
∘ only use instructions you can decode
∘ you will need to write it in assembly

• extend output of mov to/from memory
∘ add # section + offset (akin to jmp)

• add labels for call targets & print them

Binary Analysis and Disassembly 104/211 May 7, 2019

Part 7: Debuggers & Debug Info

Binary Analysis and Disassembly 105/211 May 7, 2019

Debugging
• machine code is a lot simpler than C
• the relationship between them is less than clear
• but machine code is what gets executed
• and what we, ultimately, debug

Binary Analysis and Disassembly 106/211 May 7, 2019

Debuggers
• originally, a debugger only knew about assembly
• you could step through the instructions
∘ like what stepi does in gdb

∘ and set a breakpoint at an address
• you could read register values and memory content

Binary Analysis and Disassembly 107/211 May 7, 2019

Symbolic Debuggers
• the first thing we can do is work with symbols
∘ functions have names and addresses

• from looking at the instruction pointer, we can
∘ check in which function the instruction resides
∘ print information about it (cf. objdump)

Binary Analysis and Disassembly 108/211 May 7, 2019

Stack Trace
• also known as a backtrace (e.g. in gdb)
• it tells us where in the program we are
• obtained by walking the call frames
• and printing the instruction pointer from each

Binary Analysis and Disassembly 109/211 May 7, 2019

Stack Frames
• how do we know how big the stack frames are?
• the compiler can embed this info in the binary
∘ alternatively, we could use the base pointer
∘ but the base pointer must live in an agreed position
∘ in our case, this would be rbp

Binary Analysis and Disassembly 110/211 May 7, 2019

Ex 7.1
• write a C program that crashes
∘ e.g. division by zero, null dereference
∘ in a recursive function
∘ hide the crash at least 3 calls deep

• run the program in gdb

∘ look at backtrace and bt full

∘ build without -g (for now)

Binary Analysis and Disassembly 111/211 May 7, 2019

Line Information
• we would like line information for debugging
∘ which instruction belongs to which source line
∘ then we can show where in the C code we are

• line-stepping becomes possible with this info
∘ for a simple compiler, this is not hard to track

Binary Analysis and Disassembly 112/211 May 7, 2019

Ex 7.2
• out of the box, compilers do not emit debug info
• build the program from 7.1 with -g

∘ this tells gcc or clang to emit debug info
∘ it contains (among other things) line information

• compare the info in bt and bt fullwith 7.1

Binary Analysis and Disassembly 113/211 May 7, 2019

Local Variables
• function names and source lines were easy
• (local) variables are actually much harder
∘ the value of a given variable moves around
∘ mostly a fixed address on the stack
∘ but gets loaded into registers and altered there

Binary Analysis and Disassembly 114/211 May 7, 2019

Global Variables
• global variables are usually easier
• they cannot stay in registers across calls
∘ the callee would not know where to look for them
∘ their stays in registers are usually shorter

• but in general, they are just as hard as locals

Binary Analysis and Disassembly 115/211 May 7, 2019

Variable Info
• the first thing we need is just a list of variable names
∘ this is not reflected in the program (unlike functions)
∘ only available in debug metadata

• for each variable, debuginfo can provide its address
∘ absolute for globals, frame-relative for locals

Binary Analysis and Disassembly 116/211 May 7, 2019

Registers
• variables ‘at rest’ live in memory
• but they can move into registers for considerable time
• some variables only ever appear in registers
• which register holds which variable changes in time

Binary Analysis and Disassembly 117/211 May 7, 2019

Register Info
• possible to solve in theory
∘ to each instruction, attach a variable→ register map

• the debugger could then look at this map
∘ when we say, e.g., print foo

∘ and read the correct register to get foo
• in practice: $1 = <optimized out>

Binary Analysis and Disassembly 118/211 May 7, 2019

Ex 7.3
void foo(int a, double b)

{

int c = a * b;

c += a / b;

printf("foo: %d, %lf, %d\n", a, b, c);

}

• compile with -g, run in gdb, break foo

• try print c and print $rbp - (void*)&c

Binary Analysis and Disassembly 119/211 May 7, 2019

Function Arguments
• where arguments live is given by a calling convention
• but the machine code does not tell us their names
∘ and on some platforms, even their order

• debug info can (and does) provide this information
∘ in C, arguments mostly behave like local variables

Binary Analysis and Disassembly 120/211 May 7, 2019

void foo(int a, double b)

{

printf("foo: %d, %lf\n", a, b);

}

void bar(double a, int b) { /* analogous */ }

int main()

{

foo(14, 3.14);

bar(3.14, 14);

}

Binary Analysis and Disassembly 121/211 May 7, 2019

Ex 7.4
• load up the previous program in gdb (no -g)
• break on foo and bar

• print $rdi and $xmm0.v2_double in both
• compare with -g

∘ pay attention to the breakpoint notice

Binary Analysis and Disassembly 122/211 May 7, 2019

Assignment Time
• you can work on your assignment(s)
• ask questions and/or discuss

Binary Analysis and Disassembly 123/211 May 7, 2019

Part 8: DWARF

Binary Analysis and Disassembly 124/211 May 7, 2019

Today’s Lecture
• documentation is in study materials
• we won’t read/write DWARF in C
• instead we’ll look with readelf

• and decode/interpret things by hand

Binary Analysis and Disassembly 125/211 May 7, 2019

Debug Format History
• stabs: text-based, ‘symbol tables’
∘ many incompatible extensions

• COFF: actually an object file format (like ELF)
∘ again a number of semi-compatible variants
∘ also used in some versions of Windows

• OMF, IEEE-695: similar story

Binary Analysis and Disassembly 126/211 May 7, 2019

DWARF History
• created in 1988 for SVR4
∘ standardized and adopted as DWARF Version 1

• DWARF 2 was never finished
∘ proprietary extensions started to appear

• DWARF 3 released in 2005
• DWARF 4 in 2010, with major extensions
• DWARF 5 is the current version

Binary Analysis and Disassembly 127/211 May 7, 2019

DWARF and ELF
• DWARF is not particularly tied to ELF
∘ but they usually appear together

• DWARF data is spread out across multiple sections
∘ .debug_info contains DIEs
∘ .debug_loc contains location data
∘ .debug_line line number information
∘ .debug_str strings used in other sections

Binary Analysis and Disassembly 128/211 May 7, 2019

Basic Structure
• block-structured format (for lexical scoping)
∘ arranged in a tree

• tree nodes are called DIE
∘ short for Debugging Information Entry
∘ describe data, data types, subprograms

Binary Analysis and Disassembly 129/211 May 7, 2019

DIEs
• different types for different data
∘ compilation unit
∘ data types
∘ subprograms, variables

• a list of attributes and children

Binary Analysis and Disassembly 130/211 May 7, 2019

Compilation Unit DIEs
• usually one source file / object file
• describes what is contained/used in the CU
∘ data types
∘ global data
∘ subprograms

Binary Analysis and Disassembly 131/211 May 7, 2019

Data Type DIEs
• basic types (int, short)
∘ describes size and encoding

• derived types (pointers, references)
• aggregate types (struct, arrays)
∘ children: list of members (fields)

Binary Analysis and Disassembly 132/211 May 7, 2019

Subprogram DIEs
• represent both procedures and functions
∘ in C, this is void and ‘normal’ functions

• range(s) of memory addresses occupied
• ‘canonical’ frame address (CFA)
• formal parameters, local variables

Binary Analysis and Disassembly 133/211 May 7, 2019

Canonical Frame Address
• special section: .debug_frame or .eh_frame
• tells the debugger how to compute CFA
• abstractly, described by a huge table
∘ how to compute CFA for each %rip value

Binary Analysis and Disassembly 134/211 May 7, 2019

CFA Encoding
• a bytecode program that generates the table
• each row can contain another small program
∘ called a location expression
∘ computes the CFA using current register values
∘ can branch, look into memory

Binary Analysis and Disassembly 135/211 May 7, 2019

Variable DIEs
• gives the name and type of the variable
• and a location expression
∘ again a small program that can branch
∘ it can use the CFA address
∘ it can output an address or a register

Binary Analysis and Disassembly 136/211 May 7, 2019

Line Number Table
• assigns (file, line, column) to each instruction
• encoded (again) as a bytecode program
∘ increment the line number
∘ jump to a particular file
∘ increment the instruction counter

Binary Analysis and Disassembly 137/211 May 7, 2019

Data Encoding
• most numbers use LEB128 encoding
∘ can be signed or unsigned

• a variable-length, base-128 number
∘ least-significant digits first
∘ each byte is a digit
∘ top bit says whether more digits follow

Binary Analysis and Disassembly 138/211 May 7, 2019

Ex 8.1
• write an empty main

• compile with cc -g

• check readelf -w a.out

∘ find the type DIE for int
∘ find the subprogram DIE for main

Binary Analysis and Disassembly 139/211 May 7, 2019

Ex 8.2
• add a structwith 2 integer fields
• create a local variable of this type in main

• find DIE for the user-defined data type
• find the DIE for the variable in main

Binary Analysis and Disassembly 140/211 May 7, 2019

Ex 8.3
• use objdump -xd a.out to print the program
• cross-reference with the line number program
∘ you can use readelf -wl a.out to get it

• try to construct the actual line table

Binary Analysis and Disassembly 141/211 May 7, 2019

Ex 8.4
• get the CFA program with readelf -wf a.out

• cross-reference again with disassembly
• notice the exact instructions where the CFA changes
∘ pay specific attention to prolog & epilog
∘ that is, push %rbp; mov %rsp,%rbp

Binary Analysis and Disassembly 142/211 May 7, 2019

Ex 8.5
• write a decoder for LEB128
• for both signed and unsigned numbers
• see also dwarf4.pdf in study materials

Binary Analysis and Disassembly 143/211 May 7, 2019

Assignment 4: Symtab
• this is an ELF data structure
∘ stored in section .symtab

∘ see nm a.out or readelf -s a.out

• write a symtab parser
∘ we only care about functions

Binary Analysis and Disassembly 144/211 May 7, 2019

Assignment 4: Invocation
• add a binary called symtab

∘ make symtab should work
• gets a single file name as an argument
• prints the symbol table in nm format
∘ see man nm for details

Binary Analysis and Disassembly 145/211 May 7, 2019

Assignment 4: Hints
• actual strings are stored in .strtab

• .symtab is an array of Elf_Sym structures
• the st_info field is packed
∘ use ELF64_ST_BIND and ELF64_ST_TYPE

∘ remember we only care about functions

Binary Analysis and Disassembly 146/211 May 7, 2019

Part 9: Function calls and frames

Binary Analysis and Disassembly 147/211 May 7, 2019

Function in Assembly
• start address
• bunch of basic blocks
∘ instructions

• where and what are
∘ local variables?
∘ arguments?
∘ returned value?

Binary Analysis and Disassembly 148/211 May 7, 2019

ABI
• application binary interface
• per pair of OS and CPU architecture
∘ size of alligment, data types
∘ exceptions
∘ format of object files
∘ calling convention

Binary Analysis and Disassembly 149/211 May 7, 2019

Stack Frame
• each function has a frame on the stack
• stack grows downwards
• stack pointer %rsp
∘ top of the stack

• frame pointer %rbp
∘ beginning (lowest address) of the frame

Binary Analysis and Disassembly 150/211 May 7, 2019

Ex 9.1
• try to call alloca in a C program
• look into the binary (objdump)
• what happens?

Binary Analysis and Disassembly 151/211 May 7, 2019

Ex 9.2
• write a C function that prints its return address
∘ you may need to look into the binary

• hint: think about addresses of local variables

Binary Analysis and Disassembly 152/211 May 7, 2019

Ex 9.3
• write a C function that rewrites its own return address
∘ use an address of another function in the program
∘ also try via a buffer overflow (strcpy)

• compile without optimizations
• and with -fno-stack-protector

Binary Analysis and Disassembly 153/211 May 7, 2019

Protecting the stack
• -fstack-protector, -fstack-protector-all
• changing direction of stack growth is insufficient
• canaries
∘ terminator
∘ random XOR

• non-executable stack

Binary Analysis and Disassembly 154/211 May 7, 2019

Ex 9.4
• try to compile some code with -fstack-protector-all
• notice the difference
• try to run program from previous exercise
• check what fails and what works

Binary Analysis and Disassembly 155/211 May 7, 2019

Preserved Registers
• some registers must be preserved across function calls
∘ %rsp, %rbp, %rbx, %r12 - %r15

• saved in function prologue
• the rest must be saved by the caller on its frame

Binary Analysis and Disassembly 156/211 May 7, 2019

Argument Classes
• integer: bool, char, int, long long, pointers ...
• sse: float, double, ...
• x87: long double, ...
• memory: more than four eightbytes, unaligned fields ...
• aggregate types: split into multiple categories by fields

Binary Analysis and Disassembly 157/211 May 7, 2019

Arguments
• integer: %rdi, %rsi, %rdx, %rcx, %r8, %r9
• sse: %xmm0 - 7

• x87: stack
• memory: stack
• ellipsis(...): %al = upper bound of vector registers used

Binary Analysis and Disassembly 158/211 May 7, 2019

Return
• integer: %rax, %rdx
• sse: %xmm0, %xmm1
• x87: %st0
• memory: space provided by the caller
∘ passed in a hidden first parameter (%rdi)

Binary Analysis and Disassembly 159/211 May 7, 2019

Ex 9.5
• write assembly which calls external functions
∘ standard library
∘ printf with floats

• write a C function with a complex type
∘ try to call it from assembly
∘ pass different structures by value

Binary Analysis and Disassembly 160/211 May 7, 2019

Part 10: Advanced Instructions

Binary Analysis and Disassembly 161/211 May 7, 2019

Today
• atomic memory access
• sysenter / syscall
• floating point, AVX, SIMD
• random numbers, timers
• CRC, AES

Binary Analysis and Disassembly 162/211 May 7, 2019

Atomic Instructions
• perform complex operation in memory
• must be all in a single instruction
• optionally performed atomically
∘ no other CPU core can observe intermediate state
∘ atomic instructions are ordered

Binary Analysis and Disassembly 163/211 May 7, 2019

The lock Prefix
• tells the CPU to perform an atomic operation
∘ single instruction does not mean atomicity

• originally caused the memory bus to be locked
∘ currently much more involved than that

• syntax: lock; opcode...

Binary Analysis and Disassembly 164/211 May 7, 2019

Compare & Exchange
• 2 operands: addr, new
∘ newmust be a register

• read a value from memory at addr
• compare the value to %RAX, set ZF
∘ if equal, write new to memory @ addr

∘ else load memory from addr into %RAX

Binary Analysis and Disassembly 165/211 May 7, 2019

Spinlock
mov $1, %rdx

retry: # address in %rbx

mov $0, %rax

lock; cmpxchg %rdx, (%rbx)

jne retry

locked

Binary Analysis and Disassembly 166/211 May 7, 2019

Ex 10.1: Reminder
• implement a max function in assembly
∘ takes 2 64b integers, returns one

• write a C program to test it
• link and run the executable

Binary Analysis and Disassembly 167/211 May 7, 2019

Ex 10.2: Using pthreads
• write a C program with 2 threads
• use pthread_create

• and pthread_join

• print 2 messages in each thread
∘ observe the behaviour
∘ maybe add sleep(1) between them

Binary Analysis and Disassembly 168/211 May 7, 2019

Ex 10.3: Spinlocks
• implement spin_lock and spin_unlock

∘ in assembly, using 64b cmpxchg

• put a critical section around each thread
∘ both messages and the sleep inside 1 section
∘ a section starts with spin_lock

∘ and ends with spin_unlock

Binary Analysis and Disassembly 169/211 May 7, 2019

Arithmetic in Memory
• memory operands in add, sub &c.
• atomic if a lock prefix is specified
• usually much faster than a spinlock

Binary Analysis and Disassembly 170/211 May 7, 2019

Fetch and Add
• also returns the original value
∘ unlike a ‘normal’ addition

• lock; xadd %eax, 0(%rsp)

∘ mnemonic is for exchange and add
∘ available as xadd on amd64

Binary Analysis and Disassembly 171/211 May 7, 2019

System Calls
• instruction sysenter or syscall
∘ very similar semantics
∘ one comes from Intel, the other from AMD

• switches the CPU into privileged mode
∘ jumps into the kernel (fixed address)

Binary Analysis and Disassembly 172/211 May 7, 2019

SSE, xmm registers
• 8 128b registers
• each can hold (since SSE2):
∘ four 32b float values
∘ two 64b double-precision values
∘ four 32b integers
∘ eight 16b integers
∘ sixteen 8b integers

Binary Analysis and Disassembly 173/211 May 7, 2019

SSE Operation
• multiple operations in a single instruction
• always the same operation on all values
• 2 operands, rewrites one of the inputs
• packing mode indicated by the opcode

Binary Analysis and Disassembly 174/211 May 7, 2019

SSE Scalar Arithmetic
• supersedes x87 instructions
• uses (parts of) the xmm registers
∘ x87 had a register stack

• e.g. mulsd (multiply double-precision scalars)

Binary Analysis and Disassembly 175/211 May 7, 2019

AVX, ymm registers
• extends the SSE registers to 256b
• adds 8 more registers (total of 16)
• three-operand format (2 operands, result)
• not entirely compatible with SSE
∘ needs to switch between SSE and AVX

Binary Analysis and Disassembly 176/211 May 7, 2019

AVX Integer Ops
• vector add, multiply
• carry-less multiplication
∘ multiply 2 64b numbers
∘ obtaining a single 128b result

• vector shifts, bitwise operations
• conditional/masked loads and stores

Binary Analysis and Disassembly 177/211 May 7, 2019

AVX-512, zmm
• further doubles the register file
∘ doubles width to 512b
∘ doubles count to 32

• fused multiply-add: 𝑎 + 𝑏 ⋅ 𝑐

• dot products

Binary Analysis and Disassembly 178/211 May 7, 2019

AVX-512 Ternary Logic
• 3 vector register operands (?mmN)
• bitwise operation on all the bits
• an 8-bit immediate encoding the operation
∘ arbitrary bitwise operation
∘ encodes the boolean truth table

Binary Analysis and Disassembly 179/211 May 7, 2019

Randomness
• rdrand stores a random number in a register
• rdseed obtains entropy (into a register)
∘ useful for seeding software PRNGs

• rdrand is much faster
∘ produces cryptographic-quality numbers

Binary Analysis and Disassembly 180/211 May 7, 2019

Timers
• each CPU core has a local timer
• those timers are not synchronised
• rdtsc stores its current value
∘ result in edx:eax (clobbers both)

• mainly useful for benchmarking
∘ and for timing side-channel attacks

Binary Analysis and Disassembly 181/211 May 7, 2019

CRC32
• implements cyclic redudancy check
• polynomial division in hardware
∘ but only with a fixed divisor
∘ much faster than software implementation

• added as part of SSE4

Binary Analysis and Disassembly 182/211 May 7, 2019

AES
• a fairly complicated block cipher
∘ runs in multiple rounds

• each round = 1 aesenc (or aesdec)
∘ 128b operands stored in xmm registers
∘ last round uses aesenclast

• also speeds up round key generation
∘ instruction aeskeygenassist

Binary Analysis and Disassembly 183/211 May 7, 2019

Assignment 5: Invocation
• add a make recfun target
• the input is an ELF file
∘ specified like this: ./recfun a.out

• start disassembling at the entry point
∘ this is part of the file header

Binary Analysis and Disassembly 184/211 May 7, 2019

Assignment 5: Requirements
• recursively disassemble jump/call targets
∘ detect jumps into middle of an instruction
∘ print # [broken] instead of a label

• identify basic blocks
• identify functions
∘ assume each BB belongs to 1 function

Binary Analysis and Disassembly 185/211 May 7, 2019

Assignment 5: Functions
• assume 1 entry BB per function
• use symtab names if possible
∘ look up the address of the entry label
∘ use sub_100f02 otherwise
∘ 100f02 is the address of the entry label

Binary Analysis and Disassembly 186/211 May 7, 2019

Assignment 5: Output
• like decode.elf but with function info
• give names to basic blocks (labels)
∘ <fun>_<id>where
∘ <fun> is the function name (see previous slide)
∘ <id> is either entry or a number

Binary Analysis and Disassembly 187/211 May 7, 2019

Part 11: Debuggers

Binary Analysis and Disassembly 188/211 May 7, 2019

Breakpoints
• stops execution at a given instruction
• can be set manually or automatically
∘ to implement e.g. instruction stepping
∘ or line stepping

Binary Analysis and Disassembly 189/211 May 7, 2019

Software Breakpoints
• remember the int3 instruction?
∘ it traps – can divert control
∘ conveniently encoded as a single byte

• temporarily rewrite the address with 0xCC

∘ swap it back before executing the address

Binary Analysis and Disassembly 190/211 May 7, 2019

Hardware Breakpoints
• addresses held in CPU registers
∘ DR0-3 on x86

• stop on different access types
∘ read, read+write, execute

• virtually no overhead

Binary Analysis and Disassembly 191/211 May 7, 2019

Software vs Hardware
• SW can only detect execution of an address
∘ but not a read or a write

• you can have unlimited SW breakpoints
∘ but only 4 hardware (on x86)

Binary Analysis and Disassembly 192/211 May 7, 2019

Stepping with Breakpoints
• instructions: use a temporary breakpoint
∘ when it triggers, move it forward

• how about source lines?
∘ either set breakpoints at all exits
∘ or just use instruction stepping

Binary Analysis and Disassembly 193/211 May 7, 2019

ptrace

• Process Trace (a system call)
• allows one process to trace another process
∘ observe and control execution
∘ examine and change the memory and registers

Binary Analysis and Disassembly 194/211 May 7, 2019

ptrace (cont’d)
• one function to do everything
∘ declared in sys/ptrace.h

long ptrace(enum __ptrace_request req, pid_t pid,

void *addr, void *data)

• first argument specifies the action
∘ remainder is interpreted depending on the action

Binary Analysis and Disassembly 195/211 May 7, 2019

Tracing
• tracee is always only one thread
• fork()with PTRACE_TRACEME

∘ request is done by tracee
∘ special ptrace flag is set
∘ control transfered to parent after execve

Binary Analysis and Disassembly 196/211 May 7, 2019

Tracing
• PTRACE_ATTACH

∘ start tracing specified pid
∘ ptrace flag is set, SIGSTOP the tracee

• PTRACE_DETACH

∘ stop tracing
∘ tracer may kill the tracee

Binary Analysis and Disassembly 197/211 May 7, 2019

When to Notice the Tracer?
• every time syscall is executed
∘ PTRACE_SYSCALL

• continue the tracee
∘ PTRACE_CONT

• stepping every instruction
∘ PTRACE_SINGLESTEP

Binary Analysis and Disassembly 198/211 May 7, 2019

Examine Registers
• PTRACE_GETREGS

∘ read registers of the tracee
∘ sys/reg.hmacros with register offsets
∘ struct user_regs_struct from sys/user.h

• PTRACE_SETREGS

∘ changes the registers of the tracee

Binary Analysis and Disassembly 199/211 May 7, 2019

Examine Memory
• read the memory of the tracee
∘ PTRACE_PEEK* family

• set the memory of the tracee
∘ PTRACE_POKE* family

Binary Analysis and Disassembly 200/211 May 7, 2019

Exercise 10.1
• write a program that forks
• use ptrace to attach to the child
• print every syscall the child performs
∘ use ptrace to do this
∘ the child can e.g. open & read a file

Binary Analysis and Disassembly 201/211 May 7, 2019

Part 12: Decompilation Basics

Binary Analysis and Disassembly 202/211 May 7, 2019

Compilation
• source code - C++, Rust, ...
• LLVM IR
• object file
• ELF or other binary format
∘ platform dependent

Binary Analysis and Disassembly 203/211 May 7, 2019

Aside: LLVM IR
• intermediate representation used by compilers
∘ partial SSA

• assembly-like, but:
∘ virtual registers
∘ simple type system
∘ functions made of basic blocks

Binary Analysis and Disassembly 204/211 May 7, 2019

Motivation for Decompiling
• analysis
• LLVM passes, security patches
• sometimes there is no source code available
• binary is actually being executed

Binary Analysis and Disassembly 205/211 May 7, 2019

Binary
• code sections: .text
∘ functions
∘ blocks
∘ instructions

• data sections: .data, .rodata, ...
• .eh_frame, .debug_* and others

Binary Analysis and Disassembly 206/211 May 7, 2019

McSema
• tool to ‘lift’ binaries into LLVM
• two phases
∘ recovery of information about binary
∘ actual decompilation / lifting

Binary Analysis and Disassembly 207/211 May 7, 2019

Disassembly
• external disassembler to retrieve information
• functions, sections, externals
• references
∘ important and tricky
∘ instructions
∘ data sections

Binary Analysis and Disassembly 208/211 May 7, 2019

Lifting
• simulation of the original code
• state structure with all registers
• sections lifted as global variables
∘ the data is (almost) preserved
∘ references replaced by pointers

Binary Analysis and Disassembly 209/211 May 7, 2019

Remill
• lifts single instructions
• provides semantic functions
∘ must be implemented for every instruction

• cannot lift entire binary alone

Binary Analysis and Disassembly 210/211 May 7, 2019

External Calls
• how to call externals?
∘ they do not share the lifted state

• synchronization with native cpu state (using asm)
• execute the external
• synchronize back (using asm)
• works fine for recompilation

Binary Analysis and Disassembly 211/211 May 7, 2019

Analysis mode
• everything needs to be done in the IR
• state as global variable
• stack as huge global array of bytes
• external calls
∘ call reconstruction using ABI

