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Organisation
• theory: 30-50 minutes every week
• remaining time: coding and discussions
• there will be 6 bi-weekly assignments
∘ together, they will form a project
∘ each assignment is a milestone
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Grading
• you need 7 points to pass the subject
• each assignment is worth 1 point
• showing up 10 times is worth 1 point
• up to 2 points for writing code reviews
• up to 2 points for meeting deadlines
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Deadlines and Feedback
• the deadline for each assignment is 14 days
• beating the deadline gives you 1/3 of a point
∘ the solution must be of sufficient quality

• feedback will be given on the off weeks
∘ i.e. 7 days after the deadline
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Programming Language
• C or C++ is up to you
• you can use up to C11 and up to C++17
• only the standard library and POSIX
• no boost, no libelf or BFD
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Repositories
• make a repository for your homeworks
∘ git, hg or whatever works for you
∘ make it public and email me the URL

• write a simple Makefile (inc. dependencies)
∘ you will only have a few source files
∘ cmake is acceptable but discouraged
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Assignment Submission
• tag your repository with hw1, etc.
∘ use hw1.1 etc. for resubmissions

• tag dates are what counts for deadlines
• we will not look at master head
∘ you can break stuff freely there



Binary Analysis and Disassembly 8/211 May 7, 2019

Semester Plan (part 1)
date

1. introduction & preliminaries 19.2.
2. instruction sets 26.2.
3. static control flow 5.3.
4. dynamic control flow 12.3.
5. executable files, ELF 19.3.
6. dynamic linking 26.3.
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Semester Plan (part 2)
date

7. debug info 2.4.
8. DWARF 9.4.
9. function calls and frames 16.4.
10. advanced instructions 23.4.
11. debugger basics 30.4.
12. decompilation basics 7.5.
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Assignment Schedule
given due

1. decoding instructions 26.2. 12.3.
2. basic blocks & branching 12.3. 26.3.
3. making sense of ELF 26.3. 9.4.
4. parsing symbol tables 9.4. 23.4.
5. reconstructing functions 23.4. 7.5.
6. a complete disassembler 7.5. 21.5.
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Part 1: Preliminaries
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Machine Code
• consists of individual instructions
• encoded in a tightly-packed binary format
∘ may be fixed or variable length

• stored program architecture
∘ instructions live in addressable memory
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Assembly
• symbolic language one level above machine code
∘ abstracts away from numeric addresses
∘ replaces them with symbolic labels

• instructions are encoded in a text format
• designed for humans (but rarely used nowadays)
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C and Compilers
• another layer of abstraction over assembly
• abstracts away the specifics of hardware architecture
∘ registers, stack management, opcodes
∘ provides structured control flow

• still a low-level language, mostly OS-level programs
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Compiled High-Level Languages
• another abstraction rung above C
∘ algebraic or class-based type systems
∘ abstract data structures
∘ extensive standard libraries
∘ late dispatch, lexical closures, ...

• e.g. C++, Rust, ML, Haskell, (Java)



Binary Analysis and Disassembly 16/211 May 7, 2019

Interpreters
• typically the highest rung of the abstraction tower
∘ dynamic types, garbage collectors
∘ powerful, high-level libraries or APIs

• often realized as JIT compilers / virtual machines
∘ usually implemented in C or C++

• e.g. JavaScript, Python, Ruby, bash, R
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Disassembly
• going from machine code to assembly
∘ decode instruction
∘ recover control flow structure

• print the program in human-readable format
• re-assembling should give identical machine code
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Decompilation
• attempt to reconstruct high-level code
∘ recovery of structured control flow (if, while)
∘ identification of local variables
∘ recovery of addresses

• decompile→ compile is not idempotent
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Exercise 1.1: objdump
• read the objdumpmanpage
• try objdump -x on some binaries
∘ /usr/bin/gzip

∘ your own test program (hello world style)
∘ try -static, -fPIC &c.
∘ try both the .o file and the executable

• also try objdump -x --disassemble
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Exercise 1.2: gdb
• compile your test program with -g

• gdb [--args] ./a.out

• start

• stepi, disassemble, print $rax

• break

• for more user friendliness: layout
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Exercise 1.3: reading binary data
$ printf "\x03\x12\x01\x00\x00\x00" > file.bin

read the above data into the following structure
struct __attribute__((packed)) d

{

short x;

int y;

}

expected result: x = 4611, y = 1
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Part 2: Instruction Sets
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Instruction Anatomy
• opcode: what to do
• operands
∘ immediate values (part of instruction)
∘ register references
∘ memory references (immediate or via register)

• modifiers (e.g. lock)
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Opcode Classes
• control flow
• integer arithmetic
• bit operations
• memory access
• floating point arithmetic
• special instructions
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Register Classes
• GPR: General Purpose Register
∘ hold a single word: integers, addresses

• SIMD (vector) and/or floating point registers
• pointers: stack, instruction, frame (base)
• machine control registers
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Control Flow
• conditional & unconditional jumps
∘ direct (fixed address)
∘ indirect unconditional (computed address)
∘ conditional on results of arithmetic

• subroutine calls and returns
∘ use the stack for return addresses
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Arithmetic
• addition, subtraction
• signed+unsigned division, multiplication
• integer comparison (signed/unsigned)
• standard instructions up to word size (64b)
∘ 128b operations are available too
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Bit Operations
• bitwise and, or, xor, negate
• shifts and rotations
• bit field packing/unpacking
• bit counting, endianity conversion
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Memory Access
• load from and store into memory
• various address computation modes
∘ part of the access instruction
∘ special-purpose arithmetic (lea)
∘ general-purpose arithmetic
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Addressing Modes
• scalars: base register + offset
∘ especially useful for stack variables
∘ also globals (relative to program counter)

• arrays: base register + immediate * index register
• ‘far’ addressing for segmented memory (obsolete)



Binary Analysis and Disassembly 31/211 May 7, 2019

Floating Point Arithmetic
• separate instruction set
• separate registers (distinct from GPRs)
• variable precision (usually 32b, 64b, 80b)
• governed by IEEE 754
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Specials: Synchronisation
• atomic memory access
∘ read-modify-write (add, sub, xor, ...)
∘ compare + exchange

• memory fences / barriers
• on amd64 encoded using the lock prefix
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Specials: Vector Instructions
• SIMD: single instruction (opcode), multiple data
• integer and floating-point arithmetic
• 4-8 values packed in 128b or 256b register
• speeds up number crunching considerably
• on top of usual superscalar execution
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Specials: User Mode
• checksums (e.g. crc32)
• symmetric crypto (aes-ni)
• random numbers (rdrand, rdseed)
• processor capabilities (cpuid)
• timers (rdtsc)



Binary Analysis and Disassembly 35/211 May 7, 2019

Specials: Privileged Mode
• CPU management opcodes and registers
• interrupt handling
• system calls
• cache control
• debugging and monitoring
• virtualisation
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Exercise 2.1
• learn a bit more about assembly
• use gcc -S to produce examples
∘ you can also try -fverbose-asm

• write a recursive factorial (in C)
∘ use gdb instruction stepping
∘ try an iterative version too
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Exercise 2.2
• write a simple assembly program
• borrow the prologue/epilogue from gcc

• sum an arithmetic/geometric sequence
∘ use formulas first (just arithmetic)
∘ try using a summing loop
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Instruction Encoding
• how to encode opcodes and operands into bytes
• fixed-length or variable-length
• fixed: e.g. VLIW (very long instruction word)
∘ often employs instruction combining
∘ variant: fixed opcodes, trailing immediate operands
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Variable-Length Coding
• saves space compared to fixed-width coding
• often much harder to decode
• usually decoded from left to right
• first byte affects what second byte means, &c.
• already-decoded prefix tells you whether to continue
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Encoding on AMD64
• programmer’s manual in study materials
• variable length (even opcodes)
• very long history of extensions
• different meaning in different CPU modes
• not a very clean encoding of a messy instruction set
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Assignment 1
• write an instruction decoder for amd64
• have make decode build the binary
• invocation ./decode 74 1a

∘ prints: je 0x1a(%rip)

• we will only decode a small subset of instructions
• print unknown instruction if that is the case
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Assignment 1: Required
• branching: jmp, je, jne, jb
∘ operands: rel8off, rel32off

• stack: push, pop (64b only)
• calls: near call (rel32off) and ret

• mov in 64b mem/reg versions (details later)
• a few arithmetic and bitwise ops, nop, int3
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Assignment 1: Arithmetic & Bitwise
• xor eax imm32 and xor rax imm32
• add eax imm32 and add rax imm32
• mulwith 2 64b registers (rax – rdx)
• cmp eax imm32 and cmp rax imm32
• cmpwith 2 64b registers (rax – rdx)
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Assignment 1: mov
• only the 89 and 8B opcodes
∘ with 2 64b registers (rax – rdx)
∘ from memory to a 64b register
∘ from a 64b register to memory

• memory: address in rax or rbx
∘ rip and rbp + 32b displacement
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Assignment 1: Not Required
• anything in the VEX maps
• memory operands other than
∘ movwith address in rax or rbx
∘ movwith rip and rbp + disp32

• prefixes other than the REX range
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Assignment 1: Hints
• most 64b instructions need a REX prefix (0x40-0x4F)
• exceptions: call, ret, jmp, branching
∘ some of the push/pop (those of ‘named’ GPRs)

• look for complete decoded examples in objdump
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Part 3: Static Control Flow
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Control Flow
• answers the question ‘what to do next?’
• normally, instructions run in a sequence
• just like statements in C
• how about conditionals and loops?
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Structured Control Flow
• used in high-level languages
• if statements or expressions
• structured loops: while, for
• not available in machine code
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Goto
• also known as unstructured control flow
• goto jumps from one place to another
∘ the destination is called a label
∘ the jump is unconditional (always taken)

• if + goto→ any loop
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Goto: Example
int f( int x )

{

int i = x;

loop:

x = x * --i;

if ( i > 1 )

goto loop;

return ~x;

}
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Machine Code
• goto is basically a jump instruction
• there are no labels in machine code
• assembler computes label offsets
• there is also a conditional jump instruction
∘ perform the goto only if a condition holds
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Simplified if

• in C, if can guard arbitrary statements
• what if it could only guard exactly 1 goto?
∘ and there is no else either

• we can still do everything

if ( x ) { foo(); bar(); }

else baz();
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Reinventing if

if_begin:

if ( !x )

goto if_false;

foo(); bar();

goto if_end;

if_false:

baz();

if_end:
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Conditional Jump
• recall if ( x > 0 ) goto loop

• this is basically 2 instructions
• first is cmp, the second is jg
• conditional goto is conditional jump
• used to encode all control flow in machine code
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Basic Blocks
• abstraction used by compilers
• starts with a label
• followed by a sequence of non-jump instructions
∘ no labels or jumps in the sequence

• with a single jump/branch at the end
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Control Flow Graph
• take instructions as nodes
• control flow as edges
• extremely useful for code analysis
• using basic blocks makes the graph much smaller
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Exercise 3.1
• rewrite this program with conditional gotos

while ( x < 1000 )

{

x *= 5;

if ( x % 7 == 0 )

break;

x --;

}
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int fib( int n ) /* exercise 3.2 */

{

if ( n <= 2 )

return 1;

else

{

int a = fib( n - 1 );

int b = fib( n - 2 );

return a + b;

}

}
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Exercise 3.3
• take the goto version of program from 3.2
• change it to only have one return statement
• draw the control flow graph of both versions
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Exercise 3.4
• write an iterative version of fib
• you can use the argument + 3 variables
• change it into goto form
• draw the control flow graph
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Exercise 3.5
• compile all above programs into object files
• disassemble them using objdump

• recover control flow from the assembly
∘ only add labels that are required
∘ identify basic blocks
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Exercise 3.6
• rewrite program from 3.4 into assembly by hand
• only use registers for computation
• start from an empty int fib( int ) skeleton
• check that the program does the right thing
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Part 4: Dynamic Control Flow
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Last Time
• direct conditional + unconditional jumps
• basic blocks, control flow graph

Today
• direct & indirect function calls, returns
• indirect jumps and jump tables
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Function Calls
• call is usually static (fixed address)
• but ret jumps to a dynamic address
∘ also known as return address

• arguments are passed in registers or on stack
• local variables are stored on the stack
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Call Frame
• each function uses up a section of the stack
∘ known as a frame, holds automatic local variables
∘ though some of those might only live in registers

• there’s also stuff in-between frames
∘ arguments, register spills, return address
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Indirect Jump
• jump to a dynamic address (i.e. not constant)
• often arises from switch statements (in C)
• either computed or via a jump table
• looks like jmp *%rax (if the address is in rax)



Binary Analysis and Disassembly 69/211 May 7, 2019

Ex 4.1
• write a simple C function with a switch

• use consecutive integer cases (i.e. 1, 2, 3, ...)
• put different code in each branch (e.g. return N)
• compile with gcc and clangwith different -O
∘ compare the assembly output
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Detour: Graphviz
• a simple but powerful tool to draw graphs
• accepts plain-text input that looks like this

digraph G {

1 [ shape=rectangle label="box" ]

2 [ shape=rectangle label="another\lbox\l" ]

1 -> 2 [ label="arrow" ]

}
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Ex 4.2
• draw the CFG from 3.3 or 3.4 using dot

• see https://graphviz.org for docs
• to look at the result, use dot -Tx11 < cfg.dot

∘ dot -Tpdf > cfg.pdf also works
• put instructions into the boxes
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Assignment 2
• extend your decoder to allow multiple instructions
• print each instruction on a separate line
• assume the code starts at address 0
• decompose the code into basic blocks
• use graphviz dot to generate a CFG
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Assignment 2: Input
• continue to allow ascii/hex bytes in argv[]

• if no args given, read a raw binary from stdin

• you can assume there are only known instructions
• and the input will be at most 2KB (for now)
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Assignment 2: Output
• generate ‘maximal’ basic blocks
∘ print # <label> after jump instructions

• make a separate binary for CFG output (./cfg)
∘ print the dot source to stdout

∘ use boxes for BB’s in dot output
∘ put decoded instructions into the boxes as labels
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Part 5: Executable Files, ELF
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ELF
• Executable and Linkable format
a. a container for machine code and static data
b. relocation tables and other linking info
c. debug information and other metadata

• used on all modern UNIX systems
∘ except macOS (which is only half UNIX)
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Basic Concepts
• ELF files start with an executable header
∘ class: machine word size (32 or 64 bits)
∘ endianness: either MSB (big) or LSB (little endian)
∘ version number (in case the layout changes)

• programheader tables and section header tables follow
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Reading ELF Files
• ELF contains a number of data structures
∘ those are described as C struct

∘ elf.h contains the definitions
• probably easiest way is to use mmap

∘ look up how mmapworks with man mmap

∘ we will assume the file uses native format
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Example: 64b Header
typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf64_Quarter e_type;

Elf64_Quarter e_machine;

Elf64_Half e_version;

/* elided */

Elf64_Quarter e_shnum;

Elf64_Quarter e_shstrndx;

} Elf64_Ehdr;
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Native ELF Files
• elf.h has both Elf64_* and Elf32_*

• but you can skip the number
∘ i.e. use Elf_Ehdr

∘ this will select the native format at compile time
• if we cared about portability, we’d use libelf

∘ that would also take care of endianness &c.
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Sections
• ELF files are made of sections
• each section has a header in the section table
∘ sections contain actual data
∘ what data it is depends on the section

• important sections: .text, .data, .rodata
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Additional Sections
• .text, .data, .rodata are of type SHT_PROGBITS

• .symtab the symbol table, type SHT_SYMTAB

• .dynsym symbols for the dynamic linker, SHT_DYNSYM
• .rel.text the relocation table for program text, SHT_REL
• .init, .fini ‘global’ constructors and destructors
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Ex 5.1: mmap
• open a binary file (e.g. /usr/bin/gzip)
• mmap it into memory
• print the first 4 bytes of the file
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Ex 5.2: elf.h
• extend the program from previous exercise
• print out info from the executable header
∘ the type of the file (as a human-readable string)
∘ machine type (as 4 hexadecimal digits)
∘ the address of the entry point
∘ the number of section headers present in the file
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Program Headers
• represented by struct Elf_Phdr (see man elf)
• contains information about the entire program
∘ dynamic linker path (PT_INTERP, ELF ‘hashbang’)
∘ which parts of the file to load (PT_LOAD)
∘ info for the runtime linker (PT_DYNAMIC)
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Ex 5.3: Program Headers
• again, extend the program from previous exercise
• read all program headers (Elf_Phdr)
• print the interpreter for the program (PT_INTERP)
• print the notes (PT_NOTE), if any
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Part 6: Dynamic Linking
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Linking
• putting multiple object files together
• and resolving relocations within them

When?
• static / build time (system linker, ld)
• dynamic / run time (runtime linker, ld.so)
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Build-time Linking
• read in one object at a time
• assign addresses to sections in the file
• merge and update the symbol tables
• resolve all applicable relocations



Binary Analysis and Disassembly 90/211 May 7, 2019

Relocations
• the compiler leaves space for unknown addresses
∘ each gets an entry in the relocation table
∘ saying which symbol and where in the file

• objdump -rd shows the relocations
• resolving relocations means altering instructions
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Aside: Text Sharing
• a program may run in multiple processes
• in that case, the text is loaded only once
∘ same goes for .rodata
∘ of course the code must be read-only

• this is quite important for memory consumption
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Relocations vs Sharing
• dynamic relocations could ruin everything
• we want to confine those to a small area
∘ this is the global offset table (GOT)
∘ holds both data and code relocations

• for calls, PLT stubs are used
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Position-Independent Code
• uses %rip-relative addressing extensively
∘ both for calls and for data

• the GOT is also at a fixed relative address
∘ each object file has its own GOT
∘ they are merged by the system linker
∘ in the end only one GOT per shared object
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Procedure Linkage Table
• the caller object has a foo@plt stub
∘ calls to foo go through foo@plt

∘ such calls are direct (and unconditional)
∘ happens for all external functions

• the stub consults the GOT entry for foo
∘ and performs an indirect jump to that
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Lazy Binding
• initially, the GOT points into ld.so

• the ld.so code patches the GOT entry
• then jumps on to the resolved address
• next call will go directly to the right address
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Interface to ld.so

• a family of C functions to call into ld.so

• most important: dlopen and dlsym

∘ see the manpages for details
∘ dlopen loads shared libraries

• allows programs to call functions by name
∘ including names only known at runtime
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Ex 6.1
• create a shared library from C code
∘ provide a function and a global variable
∘ cc -fPIC to build, cc -shared to link

• add an executable which uses the lib
∘ build as usual, link with -L. -lmylib

∘ inspect the result with ldd
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Ex 6.2
• also build the executable with -fPIC

∘ and link it with -pie

• disassemble both and compare the result
• compare to the code in the library
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Ex 6.3
• add a second shared library
• use the first library in the second
∘ both the variable and the function
∘ use -shared -lmylibwhen linking

• inspect the disassembly
∘ compare to the executables
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Ex 6.4
• write a program that dlopens the second lib
∘ use dlsym to find and call the function
∘ do not link to either of your libs

• check that both libraries got loaded
∘ you can use e.g. global constructors
∘ and/or attach with gdb
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Ex 6.5
• use gdb to trace the PLT stub
∘ call e.g. puts 2× in the test program

• reminder: stepi steps one instruction
∘ disass shows the current function
∘ fin runs until current frame returns
∘ start gets you to the start of main
∘ p /x *(long*)some_address
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Assignment 3
• add decode.elf and cfg.elf

∘ the input file is the first argument
∘ if it is ELF, process .text
∘ otherwise assume raw machine code

• print the address of each instruction
∘ only applies to decode.elf
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Assignment 3 (cont’d)
• try to write a simple test program
∘ only use instructions you can decode
∘ you will need to write it in assembly

• extend output of mov to/from memory
∘ add # section + offset (akin to jmp)

• add labels for call targets & print them
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Part 7: Debuggers & Debug Info
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Debugging
• machine code is a lot simpler than C
• the relationship between them is less than clear
• but machine code is what gets executed
• and what we, ultimately, debug
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Debuggers
• originally, a debugger only knew about assembly
• you could step through the instructions
∘ like what stepi does in gdb

∘ and set a breakpoint at an address
• you could read register values and memory content
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Symbolic Debuggers
• the first thing we can do is work with symbols
∘ functions have names and addresses

• from looking at the instruction pointer, we can
∘ check in which function the instruction resides
∘ print information about it (cf. objdump)
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Stack Trace
• also known as a backtrace (e.g. in gdb)
• it tells us where in the program we are
• obtained by walking the call frames
• and printing the instruction pointer from each
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Stack Frames
• how do we know how big the stack frames are?
• the compiler can embed this info in the binary
∘ alternatively, we could use the base pointer
∘ but the base pointer must live in an agreed position
∘ in our case, this would be rbp
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Ex 7.1
• write a C program that crashes
∘ e.g. division by zero, null dereference
∘ in a recursive function
∘ hide the crash at least 3 calls deep

• run the program in gdb

∘ look at backtrace and bt full

∘ build without -g (for now)
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Line Information
• we would like line information for debugging
∘ which instruction belongs to which source line
∘ then we can show where in the C code we are

• line-stepping becomes possible with this info
∘ for a simple compiler, this is not hard to track
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Ex 7.2
• out of the box, compilers do not emit debug info
• build the program from 7.1 with -g

∘ this tells gcc or clang to emit debug info
∘ it contains (among other things) line information

• compare the info in bt and bt fullwith 7.1



Binary Analysis and Disassembly 113/211 May 7, 2019

Local Variables
• function names and source lines were easy
• (local) variables are actually much harder
∘ the value of a given variable moves around
∘ mostly a fixed address on the stack
∘ but gets loaded into registers and altered there
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Global Variables
• global variables are usually easier
• they cannot stay in registers across calls
∘ the callee would not know where to look for them
∘ their stays in registers are usually shorter

• but in general, they are just as hard as locals
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Variable Info
• the first thing we need is just a list of variable names
∘ this is not reflected in the program (unlike functions)
∘ only available in debug metadata

• for each variable, debuginfo can provide its address
∘ absolute for globals, frame-relative for locals
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Registers
• variables ‘at rest’ live in memory
• but they can move into registers for considerable time
• some variables only ever appear in registers
• which register holds which variable changes in time
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Register Info
• possible to solve in theory
∘ to each instruction, attach a variable→ register map

• the debugger could then look at this map
∘ when we say, e.g., print foo

∘ and read the correct register to get foo
• in practice: $1 = <optimized out>
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Ex 7.3
void foo( int a, double b )

{

int c = a * b;

c += a / b;

printf( "foo: %d, %lf, %d\n", a, b, c );

}

• compile with -g, run in gdb, break foo

• try print c and print $rbp - (void*)&c
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Function Arguments
• where arguments live is given by a calling convention
• but the machine code does not tell us their names
∘ and on some platforms, even their order

• debug info can (and does) provide this information
∘ in C, arguments mostly behave like local variables
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void foo( int a, double b )

{

printf( "foo: %d, %lf\n", a, b );

}

void bar( double a, int b ) { /* analogous */ }

int main()

{

foo( 14, 3.14 );

bar( 3.14, 14 );

}
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Ex 7.4
• load up the previous program in gdb (no -g)
• break on foo and bar

• print $rdi and $xmm0.v2_double in both
• compare with -g

∘ pay attention to the breakpoint notice
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Assignment Time
• you can work on your assignment(s)
• ask questions and/or discuss
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Part 8: DWARF
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Today’s Lecture
• documentation is in study materials
• we won’t read/write DWARF in C
• instead we’ll look with readelf

• and decode/interpret things by hand
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Debug Format History
• stabs: text-based, ‘symbol tables’
∘ many incompatible extensions

• COFF: actually an object file format (like ELF)
∘ again a number of semi-compatible variants
∘ also used in some versions of Windows

• OMF, IEEE-695: similar story
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DWARF History
• created in 1988 for SVR4
∘ standardized and adopted as DWARF Version 1

• DWARF 2 was never finished
∘ proprietary extensions started to appear

• DWARF 3 released in 2005
• DWARF 4 in 2010, with major extensions
• DWARF 5 is the current version
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DWARF and ELF
• DWARF is not particularly tied to ELF
∘ but they usually appear together

• DWARF data is spread out across multiple sections
∘ .debug_info contains DIEs
∘ .debug_loc contains location data
∘ .debug_line line number information
∘ .debug_str strings used in other sections
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Basic Structure
• block-structured format (for lexical scoping)
∘ arranged in a tree

• tree nodes are called DIE
∘ short for Debugging Information Entry
∘ describe data, data types, subprograms



Binary Analysis and Disassembly 129/211 May 7, 2019

DIEs
• different types for different data
∘ compilation unit
∘ data types
∘ subprograms, variables

• a list of attributes and children
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Compilation Unit DIEs
• usually one source file / object file
• describes what is contained/used in the CU
∘ data types
∘ global data
∘ subprograms
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Data Type DIEs
• basic types (int, short)
∘ describes size and encoding

• derived types (pointers, references)
• aggregate types (struct, arrays)
∘ children: list of members (fields)
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Subprogram DIEs
• represent both procedures and functions
∘ in C, this is void and ‘normal’ functions

• range(s) of memory addresses occupied
• ‘canonical’ frame address (CFA)
• formal parameters, local variables
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Canonical Frame Address
• special section: .debug_frame or .eh_frame
• tells the debugger how to compute CFA
• abstractly, described by a huge table
∘ how to compute CFA for each %rip value



Binary Analysis and Disassembly 134/211 May 7, 2019

CFA Encoding
• a bytecode program that generates the table
• each row can contain another small program
∘ called a location expression
∘ computes the CFA using current register values
∘ can branch, look into memory
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Variable DIEs
• gives the name and type of the variable
• and a location expression
∘ again a small program that can branch
∘ it can use the CFA address
∘ it can output an address or a register
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Line Number Table
• assigns (file, line, column) to each instruction
• encoded (again) as a bytecode program
∘ increment the line number
∘ jump to a particular file
∘ increment the instruction counter
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Data Encoding
• most numbers use LEB128 encoding
∘ can be signed or unsigned

• a variable-length, base-128 number
∘ least-significant digits first
∘ each byte is a digit
∘ top bit says whether more digits follow
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Ex 8.1
• write an empty main

• compile with cc -g

• check readelf -w a.out

∘ find the type DIE for int
∘ find the subprogram DIE for main
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Ex 8.2
• add a structwith 2 integer fields
• create a local variable of this type in main

• find DIE for the user-defined data type
• find the DIE for the variable in main
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Ex 8.3
• use objdump -xd a.out to print the program
• cross-reference with the line number program
∘ you can use readelf -wl a.out to get it

• try to construct the actual line table
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Ex 8.4
• get the CFA program with readelf -wf a.out

• cross-reference again with disassembly
• notice the exact instructions where the CFA changes
∘ pay specific attention to prolog & epilog
∘ that is, push %rbp; mov %rsp,%rbp
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Ex 8.5
• write a decoder for LEB128
• for both signed and unsigned numbers
• see also dwarf4.pdf in study materials
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Assignment 4: Symtab
• this is an ELF data structure
∘ stored in section .symtab

∘ see nm a.out or readelf -s a.out

• write a symtab parser
∘ we only care about functions
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Assignment 4: Invocation
• add a binary called symtab

∘ make symtab should work
• gets a single file name as an argument
• prints the symbol table in nm format
∘ see man nm for details
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Assignment 4: Hints
• actual strings are stored in .strtab

• .symtab is an array of Elf_Sym structures
• the st_info field is packed
∘ use ELF64_ST_BIND and ELF64_ST_TYPE

∘ remember we only care about functions
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Part 9: Function calls and frames
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Function in Assembly
• start address
• bunch of basic blocks
∘ instructions

• where and what are
∘ local variables?
∘ arguments?
∘ returned value?
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ABI
• application binary interface
• per pair of OS and CPU architecture
∘ size of alligment, data types
∘ exceptions
∘ format of object files
∘ calling convention
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Stack Frame
• each function has a frame on the stack
• stack grows downwards
• stack pointer %rsp
∘ top of the stack

• frame pointer %rbp
∘ beginning (lowest address) of the frame
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Ex 9.1
• try to call alloca in a C program
• look into the binary (objdump)
• what happens?
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Ex 9.2
• write a C function that prints its return address
∘ you may need to look into the binary

• hint: think about addresses of local variables
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Ex 9.3
• write a C function that rewrites its own return address
∘ use an address of another function in the program
∘ also try via a buffer overflow (strcpy)

• compile without optimizations
• and with -fno-stack-protector
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Protecting the stack
• -fstack-protector, -fstack-protector-all
• changing direction of stack growth is insufficient
• canaries
∘ terminator
∘ random XOR

• non-executable stack



Binary Analysis and Disassembly 154/211 May 7, 2019

Ex 9.4
• try to compile some code with -fstack-protector-all
• notice the difference
• try to run program from previous exercise
• check what fails and what works
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Preserved Registers
• some registers must be preserved across function calls
∘ %rsp, %rbp, %rbx, %r12 - %r15

• saved in function prologue
• the rest must be saved by the caller on its frame
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Argument Classes
• integer: bool, char, int, long long, pointers ...
• sse: float, double, ...
• x87: long double, ...
• memory: more than four eightbytes, unaligned fields ...
• aggregate types: split into multiple categories by fields
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Arguments
• integer: %rdi, %rsi, %rdx, %rcx, %r8, %r9
• sse: %xmm0 - 7

• x87: stack
• memory: stack
• ellipsis(...): %al = upper bound of vector registers used
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Return
• integer: %rax, %rdx
• sse: %xmm0, %xmm1
• x87: %st0
• memory: space provided by the caller
∘ passed in a hidden first parameter (%rdi)
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Ex 9.5
• write assembly which calls external functions
∘ standard library
∘ printf with floats

• write a C function with a complex type
∘ try to call it from assembly
∘ pass different structures by value
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Part 10: Advanced Instructions
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Today
• atomic memory access
• sysenter / syscall
• floating point, AVX, SIMD
• random numbers, timers
• CRC, AES
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Atomic Instructions
• perform complex operation in memory
• must be all in a single instruction
• optionally performed atomically
∘ no other CPU core can observe intermediate state
∘ atomic instructions are ordered
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The lock Prefix
• tells the CPU to perform an atomic operation
∘ single instruction does not mean atomicity

• originally caused the memory bus to be locked
∘ currently much more involved than that

• syntax: lock; opcode...
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Compare & Exchange
• 2 operands: addr, new
∘ newmust be a register

• read a value from memory at addr
• compare the value to %RAX, set ZF
∘ if equal, write new to memory @ addr

∘ else load memory from addr into %RAX
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Spinlock
mov $1, %rdx

retry: # address in %rbx

mov $0, %rax

lock; cmpxchg %rdx, (%rbx)

jne retry

# locked
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Ex 10.1: Reminder
• implement a max function in assembly
∘ takes 2 64b integers, returns one

• write a C program to test it
• link and run the executable
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Ex 10.2: Using pthreads
• write a C program with 2 threads
• use pthread_create

• and pthread_join

• print 2 messages in each thread
∘ observe the behaviour
∘ maybe add sleep(1) between them
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Ex 10.3: Spinlocks
• implement spin_lock and spin_unlock

∘ in assembly, using 64b cmpxchg

• put a critical section around each thread
∘ both messages and the sleep inside 1 section
∘ a section starts with spin_lock

∘ and ends with spin_unlock
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Arithmetic in Memory
• memory operands in add, sub &c.
• atomic if a lock prefix is specified
• usually much faster than a spinlock
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Fetch and Add
• also returns the original value
∘ unlike a ‘normal’ addition

• lock; xadd %eax, 0(%rsp)

∘ mnemonic is for exchange and add
∘ available as xadd on amd64
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System Calls
• instruction sysenter or syscall
∘ very similar semantics
∘ one comes from Intel, the other from AMD

• switches the CPU into privileged mode
∘ jumps into the kernel (fixed address)
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SSE, xmm registers
• 8 128b registers
• each can hold (since SSE2):
∘ four 32b float values
∘ two 64b double-precision values
∘ four 32b integers
∘ eight 16b integers
∘ sixteen 8b integers
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SSE Operation
• multiple operations in a single instruction
• always the same operation on all values
• 2 operands, rewrites one of the inputs
• packing mode indicated by the opcode



Binary Analysis and Disassembly 174/211 May 7, 2019

SSE Scalar Arithmetic
• supersedes x87 instructions
• uses (parts of) the xmm registers
∘ x87 had a register stack

• e.g. mulsd (multiply double-precision scalars)
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AVX, ymm registers
• extends the SSE registers to 256b
• adds 8 more registers (total of 16)
• three-operand format (2 operands, result)
• not entirely compatible with SSE
∘ needs to switch between SSE and AVX
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AVX Integer Ops
• vector add, multiply
• carry-less multiplication
∘ multiply 2 64b numbers
∘ obtaining a single 128b result

• vector shifts, bitwise operations
• conditional/masked loads and stores
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AVX-512, zmm
• further doubles the register file
∘ doubles width to 512b
∘ doubles count to 32

• fused multiply-add: 𝑎 + 𝑏 ⋅ 𝑐

• dot products
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AVX-512 Ternary Logic
• 3 vector register operands (?mmN)
• bitwise operation on all the bits
• an 8-bit immediate encoding the operation
∘ arbitrary bitwise operation
∘ encodes the boolean truth table
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Randomness
• rdrand stores a random number in a register
• rdseed obtains entropy (into a register)
∘ useful for seeding software PRNGs

• rdrand is much faster
∘ produces cryptographic-quality numbers



Binary Analysis and Disassembly 180/211 May 7, 2019

Timers
• each CPU core has a local timer
• those timers are not synchronised
• rdtsc stores its current value
∘ result in edx:eax (clobbers both)

• mainly useful for benchmarking
∘ and for timing side-channel attacks
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CRC32
• implements cyclic redudancy check
• polynomial division in hardware
∘ but only with a fixed divisor
∘ much faster than software implementation

• added as part of SSE4
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AES
• a fairly complicated block cipher
∘ runs in multiple rounds

• each round = 1 aesenc (or aesdec)
∘ 128b operands stored in xmm registers
∘ last round uses aesenclast

• also speeds up round key generation
∘ instruction aeskeygenassist
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Assignment 5: Invocation
• add a make recfun target
• the input is an ELF file
∘ specified like this: ./recfun a.out

• start disassembling at the entry point
∘ this is part of the file header
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Assignment 5: Requirements
• recursively disassemble jump/call targets
∘ detect jumps into middle of an instruction
∘ print # [broken] instead of a label

• identify basic blocks
• identify functions
∘ assume each BB belongs to 1 function
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Assignment 5: Functions
• assume 1 entry BB per function
• use symtab names if possible
∘ look up the address of the entry label
∘ use sub_100f02 otherwise
∘ 100f02 is the address of the entry label
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Assignment 5: Output
• like decode.elf but with function info
• give names to basic blocks (labels)
∘ <fun>_<id>where
∘ <fun> is the function name (see previous slide)
∘ <id> is either entry or a number
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Part 11: Debuggers
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Breakpoints
• stops execution at a given instruction
• can be set manually or automatically
∘ to implement e.g. instruction stepping
∘ or line stepping
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Software Breakpoints
• remember the int3 instruction?
∘ it traps – can divert control
∘ conveniently encoded as a single byte

• temporarily rewrite the address with 0xCC

∘ swap it back before executing the address
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Hardware Breakpoints
• addresses held in CPU registers
∘ DR0-3 on x86

• stop on different access types
∘ read, read+write, execute

• virtually no overhead
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Software vs Hardware
• SW can only detect execution of an address
∘ but not a read or a write

• you can have unlimited SW breakpoints
∘ but only 4 hardware (on x86)
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Stepping with Breakpoints
• instructions: use a temporary breakpoint
∘ when it triggers, move it forward

• how about source lines?
∘ either set breakpoints at all exits
∘ or just use instruction stepping
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ptrace

• Process Trace (a system call)
• allows one process to trace another process
∘ observe and control execution
∘ examine and change the memory and registers
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ptrace (cont’d)
• one function to do everything
∘ declared in sys/ptrace.h

long ptrace( enum __ptrace_request req, pid_t pid,

void *addr, void *data )

• first argument specifies the action
∘ remainder is interpreted depending on the action
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Tracing
• tracee is always only one thread
• fork()with PTRACE_TRACEME

∘ request is done by tracee
∘ special ptrace flag is set
∘ control transfered to parent after execve
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Tracing
• PTRACE_ATTACH

∘ start tracing specified pid
∘ ptrace flag is set, SIGSTOP the tracee

• PTRACE_DETACH

∘ stop tracing
∘ tracer may kill the tracee
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When to Notice the Tracer?
• every time syscall is executed
∘ PTRACE_SYSCALL

• continue the tracee
∘ PTRACE_CONT

• stepping every instruction
∘ PTRACE_SINGLESTEP
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Examine Registers
• PTRACE_GETREGS

∘ read registers of the tracee
∘ sys/reg.hmacros with register offsets
∘ struct user_regs_struct from sys/user.h

• PTRACE_SETREGS

∘ changes the registers of the tracee
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Examine Memory
• read the memory of the tracee
∘ PTRACE_PEEK* family

• set the memory of the tracee
∘ PTRACE_POKE* family
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Exercise 10.1
• write a program that forks
• use ptrace to attach to the child
• print every syscall the child performs
∘ use ptrace to do this
∘ the child can e.g. open & read a file
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Part 12: Decompilation Basics
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Compilation
• source code - C++, Rust, ...
• LLVM IR
• object file
• ELF or other binary format
∘ platform dependent
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Aside: LLVM IR
• intermediate representation used by compilers
∘ partial SSA

• assembly-like, but:
∘ virtual registers
∘ simple type system
∘ functions made of basic blocks
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Motivation for Decompiling
• analysis
• LLVM passes, security patches
• sometimes there is no source code available
• binary is actually being executed
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Binary
• code sections: .text
∘ functions
∘ blocks
∘ instructions

• data sections: .data, .rodata, ...
• .eh_frame, .debug_* and others
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McSema
• tool to ‘lift’ binaries into LLVM
• two phases
∘ recovery of information about binary
∘ actual decompilation / lifting
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Disassembly
• external disassembler to retrieve information
• functions, sections, externals
• references
∘ important and tricky
∘ instructions
∘ data sections
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Lifting
• simulation of the original code
• state structure with all registers
• sections lifted as global variables
∘ the data is (almost) preserved
∘ references replaced by pointers
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Remill
• lifts single instructions
• provides semantic functions
∘ must be implemented for every instruction

• cannot lift entire binary alone
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External Calls
• how to call externals?
∘ they do not share the lifted state

• synchronization with native cpu state (using asm)
• execute the external
• synchronize back (using asm)
• works fine for recompilation
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Analysis mode
• everything needs to be done in the IR
• state as global variable
• stack as huge global array of bytes
• external calls
∘ call reconstruction using ABI


