PV204 Security technologies

Cryptographic smartcards, attacks against two-factor

Petr Švenda Svenda@fi.muni.cz S@rngsec Centre for Research on Cryptography and Security, Masaryk University

CR·CS

Centre for Research on Cryptography and Security

www.fi.muni.cz/crocs

Check-in activity: how to stay awake

- Any idea what we can do, prepare, try... to help us stay awake?
- (5 minutes)

Overview

- 1. What smart cards are?
- 2. What smart cards are capable of?
- 3. How to manage smart cards?
- 4. Lightweight secure channel protocols
- 5. Two-factor authentication and some attacks

Smart card basics

What A Smart card is?

| PV204 Smartcards 12.3.2019

Basic types of (smart) cards

- 1. Contactless "barcode"
 - Fixed identification string (RFID, < 5 cents)
- 2. Simple memory cards (magnetic stripe, RFID)
 - Small write memory (< 1KB) for data, (~10 cents)
- 3. Memory cards with PIN protection
 - Memory (< 5KB), simple protection logic (<\$1)

Basic types of (smart) cards (2)

- 4. Cryptographic smart cards
 - Support for (real) cryptographic algorithms
 - Mifare Classic (\$1), Mifare DESFire (\$3)

- 6. User-programmable cryptographic smart cards
 - JavaCard, .NET card, MULTOS cards (\$2-\$30)
- •. Chip manufacturers: NXP, Infineon, Gemalto, G&D, Oberthur, STM, Atmel, Samsung...

CRତCS

Cryptographic smart cards

- SC is quite powerful device
 - 8-32 bit processor @ 5-50MHz
 - persistent memory 32-100s kB (EEPROM)
 - volatile fast RAM, usually <<20kB</p>
 - truly random generator, cryptographic coprocessor (3DES, AES, RSA-2048...)
- ~10 billion units shipped in 2018 (EUROSMART)
 - mostly smart cards, telco, payment and loyalty...
 - ~1.5 billion contactless (EUROSMART)
- Intended for physically unprotected environment
 - NIST FIPS140-2 standard, security Level 4
 - Common Criteria EAL4+/5+

| PV204 Smartcards 12.3.2019

Secure elements shipments from 2010 to 2016 & 2017-18 forecasts (Millions of units)

http://www.eurosmart.com/facts-figures.html

Smartcards used in wider system

| PV204 Smartcards 12.3.2019

Big picture – terminal/reader and card

| PV204 Smartcards 12.3.2019

Group activity: smartcard stack

- (Imagine e.g., digital signature application with private key on smartcard)
- Organize and glue floating items into smartcard stack
- Use internet... (but don't google for my slides from previous years ☺)
- Annotate with own comment (what is the item about)
- (15 minutes)
- Combine results found by groups
- (5 minutes)

sa

CRତCS

APDU (Application Protocol Data Unit)

- APDU is basic logical communication datagram
 - header (5 bytes) and up to ~256 bytes of user data
- Format specified in ISO7816-4
- Header/Data format
 - CLA instruction class
 - INS instruction number
 - P1, P2 optional data
 - Lc length of incoming data
 - Data user data
 - Le length of the expected output data
- Some values of CLA/INS/P1/P2 standardized
- Custom values used by application developer

What values of APDU header are used?

- Standardized values for selected application
 - Improves interoperability
 - <u>https://web.archive.org/web/20180721010834/http://techmeonline.com/most-u</u> <u>sed-smart-card-commands-apdu/</u>
- Custom commands for proprietary application
 - Your own API

Smartcard algorithms and performance

| PV204 Smartcards 12.3.2019

Common algorithms

- Basic cryptographic co-processor
 - Truly random data generator
 - 3DES, AES128/256
 - MD5, SHA1, SHA-2 256/512
 - RSA (up to 2048b common, 4096 possible)
 - ECC (up to 192b common, 384b possible)
 - Diffie-Hellman key exchange (DH/ECDSA)
- Custom code running in secure environment
 - E.g. HMAC, OTP code, re-encryption
 - Might be significantly slower (e.g., SW AES 50x slower)

Cryptographic operations

- Supported algorithms (JCAlgTester, almost 90 cards)
 - <u>https://github.com/crocs-muni/JCAIgTest</u>
 - <u>https://www.fi.muni.cz/~xsvenda/jcsupport.html</u>

ja∿	vacard.security.MessageDigest	introduced in JavaCard version	c0	c1	c2	c 3	c4	c5	C6	c7	C8	C9	c10	c11	c12	c13
AL	_G_SHA	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
AL	_G_MD5	<=2.1	no	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	yes	yes	yes
AL	_G_RIPEMD160	<=2.1	no	no	no	yes	yes	yes	no							
AL	_G_SHA_256	2.2.2	yes	no	no	suspicious yes	yes	no	no	yes	no	no	no	no	no	no
AL	_G_SHA_384	2.2.2	no	no	no	no	no	no	no	yes	no	no	no	no	no	no
AL	_G_SHA_512	2.2.2	no	no	no	no	no	no	no	yes	no	no	no	no	no	no
AL	_G_SHA_224	3.0.1	no	-	-	-	no	no	no	no	-	-	-	-	-	-
jav	vacard.security.RandomData	introduced in JavaCard version	c0	c1	c2	c3	c4	c5	C6	c7	c8	C9	c10	c11	c12	c13
AL	_G_PSEUDO_RANDOM	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no
AL	_G_SECURE_RANDOM	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
jav	vacard.security.KeyBuilder	introduced in JavaCard version	c0	c1	c2	c3	c4	c5	C6	c7	C8	C9	c10	c11	c12	c13
TY	PE_DES_TRANSIENT_RESET	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TY	PE_DES_TRANSIENT_DESELECT	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TY	PE_DES LENGTH_DES	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TY	PE_DES LENGTH_DES3_2KEY	<=2.1	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
TY	PE_DES LENGTH_DES3_3KEY	<=2.1	yes	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
art	PE_ARS_TRANSIENT_PESET	2.2.0	yes	no	suspicious yes	yes	yes	no	yes	yes	yes	yes	no	no	no	no

.cz/rsa

CRତCS

What is the typical performance?

- Hardware differ significantly
 - Clock multiplier, memory speed, crypto coprocessor...
- Typical speed of operation is:
 - Milliseconds (RNG, symmetric crypto, hash)
 - Tens of milliseconds (transfer data in/out)
 - Hundreds of millisecond (asymmetric crypto)
 - Seconds (RSA keypair generation)
- Oper – Tra
- Operation may consists from multiple steps
 - Transmit data, prepare key, prepare engine, encrypt
 - \rightarrow additional performance penalty

Performance tables for common cards

Visit <u>https://jcalgtest.org</u>

Is faster always better?

What influences the speed?

CARD/FUNCTION (ms/op)	SECURE RANDOM (256B)	SHA-1 hash (256B)	SHA2-256 hash (256B)	3DES encrypt (256B)	AES128 encrypt (256B)	AES256 encrypt (256B)	3DES setKey(192b)	AES setKey(128b)
Gemplus GXP R4 72K	2.45	3.69	-	53.71	26.05	31.52	9.4	9.28
NXP JCOP 31 V2.2 36K	6.92	19.84	-	7.27	-	-	26.1	-
NXP JCOP 21 V2.2 36K	7.28	20.91	-	7.68	-	-	25.84	-
NXP JCOP41 v2.2.1 72K	7.58	21.77	-	8.02	-	-	15.44	-
NXP J2D081 80K	10.4	11.73	21.18	7.1	6.73	7.66	20.12	16.31
NXP CJ3A081	13.8	11.45	21.05	12.8	10.33	11.35	11.04	10.9
NXP JCOP CJ2A081	14.14	11.9	22.46	13.3	10.78	11.81	5.39	5.22
NXP J2A080 80K	19.59	31.09	60. 1 6	18.11	18.57	20.12	12.24	11.91
NXP JCOP31 v2.4.1 72K	20.97	34.1	66.02	19.95	20.44	22.24	6.7	6.38
NXP J3A080	21.64	35.78	69.32	20.92	21.41	23.2	15.48	12.28
Infineon CJTOP 80K INF SLJ 52GLA080AL M8.4	24.9	17.42	35.58	61.49	25.53	31.18	6.61	6.08
NXP JCOP21 v2.4.2R3	33.77	12.35	22.39	12.24	11.65	14.02	31.35	23.48
Oberthur ID-ONE Cosmo 64 RSA v5.4	52.49	23.53	-	16.05	-	-	25.31	-
G+D Smart Cafe Expert 4.x V2	322.91	33.66	-	37.19	-	-	3.59	-

PV204 Smartcards 12.3.2019

Performance with variable data lengths

TYPE_DES LENGTH_DES ALG_DES_CBC_NOPAD Cipher_setKeyInitDoFinal()

length of data (bytes)

TYPE_DES LENGTH_DES ALG_DES_CBC_ISO9797_M1 Cipher_doFinal()

TYPE_DES LENGTH_DES ALG_DES_CBC_ISO9797_M2 Cipher_doFinal()

length of data (bytes)

How many cryptographic engines?

Type of object	NXP CJ2A081	NXP CJ2D081 80K	NXP JCOP21 v2.4.2R3 145KB
AESKey 128	877	729	678
AESKey 256	658	607	565
DESKey 196	748	607	565
Cipher AES	79	74	74
Cipher DES	147	136	136
RSA CRT PRIVATE 1024	72	93	86
RSA PRIVATE 1024	203	152	141
RSA CRT PRIVATE 2048	61	51	47
RSA PRIVATE 2048	108	82	77

3E

| PV204 Sma

Smart card management

| PV204 Smartcards 12.3.2019

Motivation

- How to upload, install and remove applications?
- Who should be allowed to upload/remove apps?
- What if multiple mutually distrusting apps on card?
- How to update application in already issued card?
- Need for cross-platform interoperable standard
 - Many manufactures and platform providers

GLOBALPLATFORM

THE STANDARD FOR MANAGING APPLICATIONS ON SECURE CHIP TECHNOLOGY

| PV204 Smartcards 12.3.2019

GlobalPlatform

- Specification of API for card administration
 - Upload/install/delete applications
 - Card lifecycle management
 - Card security management
 - Security mechanisms and protocols
- Newest is GlobalPlatform Card Specification v2.3
 - December 2015
 - Previous versions also frequently used
 - http://www.globalplatform.org/specificationscard.asp

GlobalPlatform – main terms

- Smart card life cycle
 - OP_READY, INITIALIZED (prepared for personalization)
 - SECURED (issued to user, use phase)
 - CARD_LOCKED (temporarily locked (attack), unlock to SECURED)
 - TERMINATED (logically destroyed)
- Card Manager (CM)
 - Special card component responsible for administration and card system service functions (cannot be removed)
- Security Domain (SD)
 - Logically separated area on card with own access control
 - Enforced by different authentication keys

GlobalPlatform – main terms

- Card Content (apps,data) Management
 - Content verification, loading, installation, removal
- Security Management
 - Security Domain locking, Application locking
 - Card locking, Card termination
 - Application privilege usage, Security Domain privileges
 - Tracing and event logging
- Command Dispatch
 - Application selection
 - (Optional) Logical channel management

Card Production Life Cycle (CPLC)

- Manufacturing metadata
- Dates (OS, chip)
- Circuit serial number
- (not mandatory)
- GlobalPlatform APDU
 - 80 CA 9F 7F 00
 - gppro --info
- ISO7816 APDU
 - 00 CA 9F 7F 00

CPLC info

IC Fabricator: 4790 IC Type: 5167 OS ID: 4791 OS Release Date: 2081 OS Release Level: 3b00 IC Fabrication Date ((Y DDD) date in that year): 4126 IC Serial Number: 00865497 IC Batch Identifier: 3173 IC Module Fabricator: 4812 IC Module Packaging Date: 4133 IC Manufacturer: 0000 IC Embedding Date: 0000 IC Pre Personalizer: 1017 IC Pre Personalization Equipment Date: 4230 IC Pre Personalization Equipment ID: 38363534 IC Personalizer: 0000 IC Personalization Date: 0000 IC Personalization Equipment ID: 00000000

Two factor authentication

| PV204 Smartcards 12.3.2019

5. ...

Two-factor authentication

- Two factors with tokens/smart cards
 - Token (smart card, phone) + Knowledge (PIN, Password)
- 1. Authorize transaction with card and PIN
- 2. Authenticate with password and SMS
- 3. Authenticate user with One-Time Password (OTP) generated on mobile phone (stored secret key) after screen unlock (pattern)
- 4. U2F token (password + token + button press)

```
w to attack two-factor?
```

Application uses PC/SC interface (SCardxx)

| PV204 Smartcards 12.3.2019

For attacking two-factor, logging is usually not enough

- Manipulate incoming/outgoing APDUs
 - modify packet content (change receiver account number)
 - replay of previous packets (pay twice)
 - simulate presence of smart card

German banking malware (2009)

- Two-factor authorization of transactions (chipTAN/cardTAN)
- Application code injection
 - modifies info about transaction and balance shown to user in browser
 - intercepts/modifies transaction data for signature by smart card
 - <u>http://www.cio.com/article/2429854/infrastructure/german-police--two-factor-authentication-fa</u> <u>iling.html</u>
- The Fairy Tale of "What You See Is What You Sign" Trojan Horse Attacks on Software for Digital Signatures (2001)
 - <u>http://www.hanno-langweg.de/hanno/research/scits01p.pdf</u>
 - Importance of physical PIN-pad and display of transaction amount independently

German banking malware

PV204 Smartcards 12.3.2019

CRତCS

Win32/Spy.Ranbyus

Analysed by A. Matrosov

Win32/Spy.Ranbyus [Threat Name]

- <u>http://www.welivesecurity.com/2012/06/05/smartcard-vulnerabilities-in-modern-banking-malware/</u>
- Scans for available smart cards, info send to C&C
 - uses PC/SC SmartCard API for scan
 - later redirects communication on USB level (FabulaTech USB for RD installed)

Win32/Spy.Ranbyus

PV204 Smartcards 12.3.2019

Skimmers, PoS hacks

PV204 Smartcards 12.3.2019

Recall U2F how can you attack U2F if PC/SC layer is controlled?

| PV204 Smartcards 12.3.2019

FIDO U2F protocol

https://developers.yubico.com/U2F/Protocol_details/Overview.html

| PV204 Smartcards 12.3.2019

How to authenticate and communicate securely?

Secure channel Protocol (for smartcards)

| PV204 Smartcards 12.3.2019

TLS handshake

Credit: Cloudflare

| PV204 Smartcards 12.3.2019

Why not to use TLS all the time?

- 1. Requires asymmetric cryptography
 - Unsuitable for slower devices
- 2. Requires long keys
 - Unsuitable for devices with small memory
- 3. Requires significant data overhead (~6.5KB)
 - http://netsekure.org/2010/03/tls-overhead/
- 4. More lightweight protocols exist
 - RFID / smartcards / IoT...
- •. Note: TLS can be fully implemented on smartcards (but slow)
 - <u>https://github.com/gilb/smart_card_TLS</u>

Common lightweight SCPs

- OpenPlatform SCP'01,'02 (3DES-based)
- OpenPlatform SCP'10 (RSA-based)
- OpenPlatform SCP'03 (AES-based)
- ISO/IEC 7816-4 Secure Messaging
- ePassports Basic Access Control (3DES-based)
- ePassports Extended Access Control (3DES,RSA,DH,SHA1/2-based)

Example: GlobalPlatform SCP'03

- Mutual authentication (based on symmetric crypto)
- Session key derivation (based on long-term keys)
 NIST SP 800-108
- Message (APDU) confidentiality and integrity MAC
- 1. INITIALIZE UPDATE
 - Random challenge, card's computations
- 2. EXTERNAL AUTHENTICATE
 - Terminal response
- 3. Secure messaging

What are problems with usage of symmetric crypto?

Mandatory reading

- When Organized Crime Applies Academic Results
 - A Forensic Analysis of an In-Card Listening Device
 - https://eprint.iacr.org/2015/963.pdf
- Which academic attacks is of concern?
- What system is targeted?
- How is attack carried out? Is it protocol flaw?
- What can prevent this attack vector?

Conclusions

- Smartcards are highly secure and capable modules
 - Programmable
 - Accessible (cost, API...)
- Protocol stack between PC application and smartcard
 - PC/SC, APDU transfer, GlobalPlatform, JavaCard
- Two-factor authentication is not silver bullet
 - But way better than password alone!

