
May 7, 2019

Multilevel Security

Petr Ročkai



Multilevel Security 2/60 May 7, 2019

Overview
1. Access Control
2. Isolation
3. Covert Channels



Multilevel Security 3/60 May 7, 2019

Part 1: Access Control



Multilevel Security 4/60 May 7, 2019

Access Control
• there are 3 pieces of information
∘ the subject (user)
∘ the verb (what is to be done)
∘ the object (the file or other resource)

• there are many ways to encode this information



Multilevel Security 5/60 May 7, 2019

Subjects
• typically, those are (possibly virtual) users
∘ sub-user units are possible (e.g. programs)
∘ roles and groups could also be subjects

• the subject must be named (names, identifiers)
• processes actually carry out the actions



Multilevel Security 6/60 May 7, 2019

Objects
• anything that can be manipulated by programs
∘ although not everything is subject to access control

• could be files, directories, sockets, shared memory, ...
• object names depend on their type
∘ file paths, i-node numbers, IP addresses, ...



Multilevel Security 7/60 May 7, 2019

Verbs
• the available “verbs” (actions) depend on object type
• a typical object would be a file
∘ files can be read, written, executed
∘ directories can be searched or listed or changed

• network connections can be established &c.



Multilevel Security 8/60 May 7, 2019

Access Control Policy
• decides which actions are allowed
• site- or institution-specific
• dynamic – objects and subjects come and go
• many ways to encode & maintain the policy



Multilevel Security 9/60 May 7, 2019

Security Labels
• an alternative to naming subjects & objects
∘ we attach labels to them instead

• the security policy refers to labels
• how are labels assigned to objects?
∘ labelling each object manually is impractical



Multilevel Security 10/60 May 7, 2019

Labelling Policy
• attach labels based on rules
∘ applies both to subjects and objects

• label transitions for subjects
∘ subjects are active participants
∘ their actions can cause their labels to change



Multilevel Security 11/60 May 7, 2019

Label-Based Access Policies
• based on rules which refer to labels
∘ a small ‘programming language’
∘ writing rules requires expert knowledge

• does not name subjects or objects directly
• but the overall policy includes the labelling



Multilevel Security 12/60 May 7, 2019

Ownership
• subjects can own objects
∘ often by virtue of creating the objects
∘ but ownership can be transferred

• special privileges & responsibilities
∘ owned objects count towards resource limits



Multilevel Security 13/60 May 7, 2019

Mandatory vs Discretionary AC
• discretionary is the ‘traditional’ model
∘ ownership implies control over access rights

• mandatory access control disconnects the two
∘ owners cannot control access rights
∘ management of the policy is a separate role



Multilevel Security 14/60 May 7, 2019

Mandatory + Discretionary
• those types of policies can coexist
∘ e.g. some discretionary control is allowed
∘ but the mandatory policy takes precedence

• purely mandatory access control is impractical
∘ too much communication overhead



Multilevel Security 15/60 May 7, 2019

Policy Management
• centralised – one authority makes policy decisions
∘ usually associated with mandatory systems
∘ inflexible, high latency

• decentralised – multiple parties make decisions
∘ less secure, typical for discretionary systems
∘ more flexible, lower latency



Multilevel Security 16/60 May 7, 2019

Enforcement: Hardware
• all enforcement begins with the hardware
∘ the CPU provides a privileged mode for the kernel
∘ DMAmemory and IO instructions are protected

• the MMU allows the kernel to isolate processes
∘ and protect its own integrity



Multilevel Security 17/60 May 7, 2019

Enforcement: Kernel
• kernel uses hardware facilities to implement security
∘ it stands between resources and processes
∘ access is mediated through system calls

• file systems are part of the kernel
• user abstractions are part of the kernel



Multilevel Security 18/60 May 7, 2019

Enforcement: System Calls
• the kernel acts as an arbitrator
• a process is trapped in its own address space
• processes use system calls to access resources
∘ kernel can decide what to allow
∘ based on its access control model and policy



Multilevel Security 19/60 May 7, 2019

API-Level Access Control
• access control for user-level resources
∘ things like contact lists, calendars, bookmarks
∘ objects not provided by the operating system

• enforcement e.g. via a virtual machine
∘ not applicable to execution of native code



Multilevel Security 20/60 May 7, 2019

Programs as Objects and Subjects
• program: passive (file) vs active (process)
∘ only a process can be a subject
∘ but program identity is attached to the file

• rights of a process may depend on its program
• a process exercises rights on the behalf of a user



Multilevel Security 21/60 May 7, 2019

Trusted vs Untrusted Code
• users perform actions on a computer
∘ but they are always actually done by a program
∘ the user is not directly in control

• the program should do what the user told it to
∘ but how do we ensure this is so?
∘ trust = belief that programs do what they should



Multilevel Security 22/60 May 7, 2019

Trojan Horse
• program designed to abuse misplaced trust
• presents some desirable functionality
• but also performs undesirable hidden actions
∘ usually concealed from the user (see above)

• trojans present a major security risks



Multilevel Security 23/60 May 7, 2019

Security Objectives
• integrity
∘ data must not be tampered with
∘ crucial for programs, communication

• secrecy (confidentiality)
∘ data must not be revealed



Multilevel Security 24/60 May 7, 2019

Metapolicies
• policies about policies
∘ dictates what an access control policy can do

• how to write a secure access policy?
∘ enforce a known secure meta-policy
∘ conformance can be checked automatically



Multilevel Security 25/60 May 7, 2019

Multi-Level Security
• a meta-policy designed for hierarchical institutions
∘ system of user ranks / security clearances
∘ data is stratified too (e.g. by confidentiality)

• two basic types
∘ secrecy-preserving (Bell-LaPadula)
∘ integrity-preserving (Biba)



Multilevel Security 26/60 May 7, 2019

Confidentiality Objectives
• non-interference (stronger)
∘ confidential actions cannot be observed at all

• non-deducibility (weaker)
∘ confidential actions cannot be reliably inferred
∘ only gives a probabilistic guarantee



Multilevel Security 27/60 May 7, 2019

Bell-LaPadula
• MLS meta-policy for confidentiality
• enforces 2 basic security properties
∘ no read up: clearance is required for access
∘ no write down: prevent information leaks

• special rights required for declassification



Multilevel Security 28/60 May 7, 2019

Biba
• MLS meta-policy for integrity
• inverse of Bell-LaPadula:
∘ no write up: integrity is preserved
∘ no read down: prevent confusion



Multilevel Security 29/60 May 7, 2019

Part 2: Isolation



Multilevel Security 30/60 May 7, 2019

Integrity
• isolated units must not influence each other
• prerequisite to all other guarantees
• example integrity violations:
∘ a process overwriting memory of another process
∘ a website in one tab changing text in another tab



Multilevel Security 31/60 May 7, 2019

Secrecy
• units must not observe other units
∘ especially applies to obtaining data

• often much harder than integrity
∘ information leaks are ubiquitous
∘ often due to innocent-looking details



Multilevel Security 32/60 May 7, 2019

Resource Sharing
• resources are costly→ sharing
• shared resources weaken isolation
∘ units can indirectly influence each other
∘ or at least learn something



Multilevel Security 33/60 May 7, 2019

Communication
• a completely isolated system is useless
• but communication channels weaken isolation
∘ both isolation and communication are desirable
∘ there is a trade-off to be found



Multilevel Security 34/60 May 7, 2019

Memory Management Unit
• is a subsystem of the processor
• takes care of address translation
∘ user software uses virtual addresses
∘ the MMU translates them to physical addresses

• the mappings can be managed by the OS kernel



Multilevel Security 35/60 May 7, 2019

Paging
• physical memory is split into frames
• virtual memory is split into pages
• pages and frames have the same size (usually 4KiB)
• frames are places, pages are the content
• page tables map between pages and frames



Multilevel Security 36/60 May 7, 2019

Processes
• process is primarily defined by its address space
∘ address space meaning the valid virtual addresses

• this is implemented via the MMU
• when changing processes, a different page table is loaded
∘ this is called a context switch

• the page table defines what the process can see



Multilevel Security 37/60 May 7, 2019

Memory Maps
• different view of the same principles
• the OS maps physical memory into the process
• multiple processes canhave the sameRAMareamapped
∘ this is called shared memory

• often, a piece of RAM is onlymapped in a single process



Multilevel Security 38/60 May 7, 2019

Page Tables
• the MMU is programmed using translation tables
∘ those tables are stored in RAM
∘ they are usually called page tables

• and they are fully in the management of the kernel
• the kernel can ask the MMU to replace the page table
∘ this is how processes are isolated from each other



Multilevel Security 39/60 May 7, 2019

Kernel Protection
• kernel memory is usually mapped into all processes
∘ this improves performance on many CPUs
∘ (until meltdown hit us, anyway)

• kernel pages have a special ’supervisor’ flag set
∘ code executing in user mode cannot touch them
∘ else, user code could tamper with kernel memory



Multilevel Security 40/60 May 7, 2019

Inter-Process Communication
• punches controlled gaps into process isolation
• different types, different risks
∘ message passing, event handlers (safest)
∘ streams of bytes
∘ shared memory (most risky)



Multilevel Security 41/60 May 7, 2019

File Systems
• those are typically shared between all processes
• easily turned into an IPC mechanism
• usually very good access control coverage
∘ but not perfect (e.g. free space, free i-nodes)
∘ and also easily defeated if discretionary



Multilevel Security 42/60 May 7, 2019

BSD Jails
• a multi-process isolation mechanism
∘ an entire process subtree is isolated as a unit
∘ resource sharing is unrestricted within the group

• restricted view of file systems
∘ but does not cover free space either

• restricted IPC, network capabilities



Multilevel Security 43/60 May 7, 2019

Linux Namespaces
• another resource isolation mechanism
• similar capabilities but finer-grained control
∘ can isolate each subsystem individually

• many different resources
∘ networking, filesystem, IPC
∘ process tables, user tables



Multilevel Security 44/60 May 7, 2019

Virtualisation
• isolation of multiple operating systems on a singe host
• coarse-grained: block devices, network interfaces
∘ access control policy becomes much simpler
∘ simple policy→ fewer bugs and mishaps

• high overhead (multiple operating system copies)



Multilevel Security 45/60 May 7, 2019

Sandboxing Overview
• artificial restriction of program capabilities
∘ e.g. by giving up access rights
∘ done for security reasons

• designed to limit damage in case of compromise
• voluntary (defensive programming), involuntary



Multilevel Security 46/60 May 7, 2019

Language-Based Sandboxing
• isolation at the level of a programming language
• type-based: static isolation guarantees
∘ Safe Haskell, Modula 3, ...

• runtime-based: dynamic enforcement
∘ JVM, JavaScript



Multilevel Security 47/60 May 7, 2019

OS-Level Sandboxing
• file system restrictions (chroot, unveil)
• system call restrictions
∘ systrace – fine-grained, involuntary
∘ pledge – coarse-grained, voluntary
∘ targeted SELinux policies (involuntary)
∘ AppArmor, TOMOYO Linux (also involuntary)



Multilevel Security 48/60 May 7, 2019

Google Native Client
• sandboxing based on dynamic recompilation
• similar to language-level sandboxing
∘ but for native machine code
∘ with a minimal performance penalty

• deprecated in favour of WebAssembly



Multilevel Security 49/60 May 7, 2019

Part 3: Covert Channels



Multilevel Security 50/60 May 7, 2019

Definition
• a mechanism which allows communication
∘ even though it was not designed for that
∘ and hence is not regulated by access control

• can be used for malicious exfiltration of data
∘ the bad actor controls both endpoints



Multilevel Security 51/60 May 7, 2019

Motivation
• covert channels threaten properties of MLS
∘ i.e. they may violate the Bell-LaPadula axioms
∘ not applicable in the integrity (Biba) picture

• can be used to exfiltrate confidential data
∘ using a trojan or some other attack vector



Multilevel Security 52/60 May 7, 2019

Anatomy
• a covert channel has 2 ends: writer & reader
• the writer, which runs with a security clearance
∘ this would be the trojan or other exploit

• the reader, which runs without a clearance
∘ can freely create unclassified files
∘ or even directly send data across the network



Multilevel Security 53/60 May 7, 2019

Comparison to Side Channels
• side channels are information leaks
∘ they work without compromising the target
∘ rely on passive observation alone

• a covert channel relies on cooperation
∘ both ends must be under the control of the attacker



Multilevel Security 54/60 May 7, 2019

Example
• (lack of) free space in the file system
∘ not subject to traditional access control

• the writer can fill up / free up space
• the reader checks if writing files is possible



Multilevel Security 55/60 May 7, 2019

Synchronisation
• covert channels are usually unidirectional
• need opposite channel for synchronisation
∘ may be a regular, open channel, if available
∘ a sufficiently precise clock works too



Multilevel Security 56/60 May 7, 2019

Covert Channel Properties
• bandwidth – amount of data per time unit
∘ varies wildly depending on specific channels

• noise – percentage of bits that get flipped
∘ covert channels are usually not reliable
∘ noise reduces effective bandwidth



Multilevel Security 57/60 May 7, 2019

Shared Resources
• each shared resource is a potential covert channel
• CPU, RAM, filesystem, network, ...
• multiple reasons for sharing
∘ conserve resources (avoidable)
∘ facilitating communication (mostly unavoidable)



Multilevel Security 58/60 May 7, 2019

Further Examples (writer→ reader)
• busy-loop→ detection of slow CPU
• file locks→ unable to open a file
• memory pressure→ page faults (swapping)
• firehose data to disk→ slow disk access



Multilevel Security 59/60 May 7, 2019

Discovery
• covert channels are a property of the system
• basic strategy: manual review / inspection
• better: system modelling and formal analysis
∘ either semi-manual (covert tree flows)
∘ automated – theorem provers / solvers



Multilevel Security 60/60 May 7, 2019

Mitigation / Defence
• reducing sharing
∘ fewer shared resources = fewer channels
∘ increases price

• reduce bandwidth – e.g. query rate limiting
• increase / inject noise


