
Seminar 4
Definition 1 (Inverse document frequency)
Inverse document frequency of a term 𝑡 is defined as

idf𝑡 = log
(︂

𝑁

df𝑡

)︂
where 𝑁 is the number of all documents and df𝑡 (the document frequency of 𝑡) is the
number of documents that contain 𝑡.

Definition 2 (tf-idf weighting scheme)
In the tf-idf weighting scheme, a term 𝑡 in a document 𝑑 has weight

tf-idf𝑡,𝑑 = tf𝑡,𝑑 · idf𝑡

where tf𝑡,𝑑 is the number of tokens 𝑡 (the term frequency of 𝑡) in a document 𝑑.

Definition 3 (ℓ2 (cosine) normalization)
A vector 𝑣 is cosine-normalized by

𝑣𝑗 ←
𝑣𝑗

||𝑣||
= 𝑣𝑗√︁∑︀|𝑣|

𝑘=1 𝑣𝑘
2

where 𝑣𝑗 is the element at the 𝑗-th position in 𝑣.

Definition 4 (Sublinear term frequency scaling)
The weight of a term 𝑡 in a document 𝑑 is determined as

𝑤𝑡,𝑑 =
{︂

1 + log
(︀
tf𝑡,𝑑

)︀
if tf𝑡,𝑑 > 0

0 otherwise

where tf𝑡,𝑑 is the number of tokens 𝑡 (the term frequency of 𝑡) in a document 𝑑.

Algorithm 1 (Levenshtein Distance – imperative approach)
1: function LevenshteinDistance(𝑠1, 𝑠2)
2: for i = 0 to |𝑠1| do
3: 𝑚[𝑖, 0] = 𝑖
4: end for
5: for j = 0 to |𝑠2| do
6: 𝑚[0, 𝑗] = 𝑗
7: end for
8: for i = 1 to |𝑠1| do
9: for j = 1 to |𝑠2| do

10: if 𝑠1[𝑖] == 𝑠2[𝑗] then
11: 𝑚[𝑖, 𝑗] = min{𝑚[𝑖− 1, 𝑗] + 1, 𝑚[𝑖, 𝑗 − 1] + 1, 𝑚[𝑖− 1, 𝑗 − 1]}
12: else
13: 𝑚[𝑖, 𝑗] = min{𝑚[𝑖− 1, 𝑗] + 1, 𝑚[𝑖, 𝑗 − 1] + 1, 𝑚[𝑖− 1, 𝑗 − 1] + 1}
14: end if
15: end for
16: end for
17: return 𝑚[|𝑠1|, |𝑠2|]
18: end function

1

Algorithm 2 (Levenshtein Distance – declarative approach)
Distance between two strings 𝑎 and 𝑏 is given by lev𝑎,𝑏(|𝑎|, |𝑏|) where

lev𝑎,𝑏(𝑖, 𝑗) =

⎧⎪⎪⎨⎪⎪⎩
max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0

min

⎧⎨⎩
lev𝑎,𝑏(𝑖− 1, 𝑗) + 1
lev𝑎,𝑏(𝑖, 𝑗 − 1) + 1
lev𝑎,𝑏(𝑖− 1, 𝑗 − 1) + 1(𝑎𝑖 ̸=𝑏𝑗)

otherwise

where 1(𝑎𝑖 ̸=𝑏𝑗) is the indicator function equal to 1 when 𝑎𝑖 ̸= 𝑏𝑗, and 0 otherwise.
lev𝑎,𝑏(𝑖, 𝑗) is the distance between the first 𝑖 characters of string 𝑎 and the first 𝑗 characters
of string 𝑏.

Exercise 4/1
Consider the frequency table of the words of three documents 𝑑𝑜𝑐1, 𝑑𝑜𝑐2, 𝑑𝑜𝑐3 below.
Calculate the tf-idf weight of the terms car, auto, insurance, best for each document. idf
values of terms are in the table.

𝑑𝑜𝑐1 𝑑𝑜𝑐2 𝑑𝑜𝑐3 idf
car 27 4 24 1.65

auto 3 33 0 2.08
insurance 0 33 29 1.62

best 14 0 17 1.5

Table 1: Exercise.

After counting tf-idf weights by Definition 2 individually for each term we get the
following table

tf-idf
𝑑𝑜𝑐1 𝑑𝑜𝑐2 𝑑𝑜𝑐3

car 44.55 6.6 39.6
auto 6.24 68.64 0

insurance 0 53.46 46.98
best 21 0 25.5

Table 2: Solution.

Exercise 4/2
Count document representations as normalized Euclidean weight vectors for each docu-
ment from the previous exercise. Each vector has four components, one for each term.

Normalized Euclidean weight vectors are counted by Definition 3. Denominators
𝑚𝑑𝑜𝑐𝑛

for the individual documents are

𝑚𝑑𝑜𝑐1 =
√︀

44.552 + 6.242 + 212 = 49.6451

𝑚𝑑𝑜𝑐2 =
√︀

6.62 + 68.642 + 53.462 = 87.2524

2

𝑚𝑑𝑜𝑐3 =
√︀

39.62 + 46.982 + 25.52 = 66.5247

and the document representations are

𝑑1 =
(︂

44.55
49.6451 ; 6.24

49.6451 ; 0
49.6451 ; 21

49.6451

)︂
= (0.8974; 0.1257; 0; 0.423)

𝑑2 =
(︂

6.6
87.2524 ; 68.64

87.2524 ; 53.46
87.2524 ; 0

87.2524

)︂
= (0.0756; 0.7876; 0.6127; 0)

𝑑3 =
(︂

39.6
66.5247 ; 0

66.5247 ; 46.98
66.5247 ; 25.5

66.5247

)︂
= (0.5953; 0; 0.7062; 0.3833)

Exercise 4/3
Based on the weights from the last exercise, compute the relevance scores of the three
documents for the query car insurance. Use each of the two weighting schemes:

a) Term weight is 1 if the query contains the word and 0 otherwise.

b) Euclidean normalized tf-idf.

Please note that a document and a representation of this document are different things.
Document is always fixed but the representations may vary under different settings and
conditions. In this exercise we fix document representations from the last exercises and
will count relevance scores for query and documents under two different representations
of the query. It might be helpful to view on a query as on another document, as it is a
sequence of words.

We count the relevance scores for a) as the scalar products of the representation of the
query 𝑞 = (1, 0, 1, 0) with representations of the documents 𝑑𝑛 from the last exercise:

𝑞 · 𝑑1 = 1 · 0.8974 + 0 · 0.1257 + 1 · 0 + 0 · 0.423 = 0.8974

𝑞 · 𝑑2 = 1 · 0.0756 + 0 · 0.7876 + 1 · 0.6127 + 0 · 0 = 0.6883

𝑞 · 𝑑3 = 1 · 0.5953 + 0 · 0 + 1 · 0.7062 + 0 · 0.3833 = 1.3015

For b) we first need the normalized tf-idf vector 𝑞, which is obtained by dividing each
component of the query by the length of idf vector

√
1.652 + 02 + 1.622 + 02 = 2.3123

tf idf tf-idf 𝑞
car 1 1.65 1.65 0.7136

auto 0 2.08 0 0
insurance 1 1.62 1.62 0.7006

best 0 1.5 0 0

Table 3: Process of finding the Euclidean normalized tf-idf.

Now we multiply 𝑞 with the document vectors and we obtain the relevance scores:

𝑞 · 𝑑1 = 0.7136 · 0.8974 + 0 · 0.1257 + 0.7006 · 0 + 0 · 0.423 = 0.6404

𝑞 · 𝑑2 = 0.7136 · 0.0756 + 0 · 0.7876 + 0.7006 · 0.6127 + 0 · 0 = 0.4832

𝑞 · 𝑑3 = 0.7136 · 0.5953 + 0 · 0 + 0.7006 · 0.7062 + 0 · 0.3833 = 0.9196

3

Exercise 4/4
Consider a collection of documents and the terms dog, cat and food that occur in 10−3𝑥,
10−2𝑥 and 10−𝑥 of the documents, respectively. Now document doc1 contains the words
2𝑦, 𝑦 and 3𝑦 times and doc2 2𝑧, 3𝑧 and 𝑧 times. Order these two documents based on
vector space similarity with the query dog food.

Intuitively, 𝑑𝑜𝑐1 is more relevant than 𝑑𝑜𝑐2 because 𝑑𝑜𝑐2 is relatively too much about
cats and too little about food, which is a satisfactory answer. But precisely:

𝑑𝑜𝑐1 𝑑𝑜𝑐2 𝑞

dog 2𝑦 · 3𝑥 2𝑧 · 3𝑥 3𝑥

cat 𝑦 · 2𝑥 3𝑧 · 2𝑥 0
food 3𝑦 · 𝑥 𝑧 · 𝑥 𝑥

Table 4: tf-idf.

𝑑𝑜𝑐1 𝑑𝑜𝑐2 𝑞

dog 6𝑥𝑦/7𝑥𝑦 = 6/7 6𝑥𝑧/8.5𝑥𝑧 = 12/17 3𝑥/3.2𝑥 = 15/16

cat 2𝑥𝑦/7𝑥𝑦 = 2/7 6𝑥𝑧/8.5𝑥𝑧 = 12/17 0
food 3𝑥𝑦/7𝑥𝑦 = 3/7 𝑥𝑧/8.5𝑥𝑧 = 1/17 𝑥/3.2𝑥 = 5/16

Table 5: Representations.

𝑞 · 𝑑𝑜𝑐1 𝑞 · 𝑑𝑜𝑐2

dog 6/7 · 15/16 ∼ 0.8 12/17 · 15/16 ∼ 0.66
cat 0 0

food 3/7 · 5/16 ∼ 0.13 1/17 · 5/16 ∼ 0.02

Table 6: Relevance.

Here 0.8 + 0.13 > 0.66 + 0.02 and therefore 𝑑𝑜𝑐1 is more relevant than 𝑑𝑜𝑐2.

Exercise 4/5
Calculate the vector-space similarity between the query digital cameras and a document
containing digital cameras and video cameras by filling in the blank columns in the
table below. Assume 𝑁 = 10000000, sublinear term frequency scaling from Definition 4
(columns 𝑤) for both query and documents, idf weighting only for the query and cosine
normalization only for the document. and is a STOP word.

Query Document relevance
df tf w idf 𝑞 tf w 𝑑 𝑞 · 𝑑

digital 10 000
video 100 000

cameras 50 000

Table 7: Exercise.

4

The tf value is filled according to the occurrences of the terms in both query and
document.

tf𝑞 = 𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = (1, 0, 1)
tf𝑑 = 𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 𝑎𝑛𝑑 𝑣𝑖𝑑𝑒𝑜 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = (1, 1, 2)

Sublinear term frequency scaling uses the Definition 4. For the query the values are

𝑤𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = 1 + log (1) = 1 + 0 = 1
𝑤𝑣𝑖𝑑𝑒𝑜 = 0

𝑤𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = 1 + log (1) = 1 + 0 = 1

and for the document

𝑤𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = 1 + log (1) = 1 + 0 = 1
𝑤𝑣𝑖𝑑𝑒𝑜 = 1 + log (1) = 1 + 0 = 1

𝑤𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = 1 + log (2) = 1 + 0.301 = 1.301

Now we need to count the idf weights for the query. These are counted by Definition 1.

𝑖𝑑𝑓𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = log
(︁

107

104

)︁
= log

(︀
103)︀

= 3

𝑖𝑑𝑓𝑣𝑖𝑑𝑒𝑜 = log
(︁

107

105

)︁
= log

(︀
102)︀

= 2

𝑖𝑑𝑓𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = log
(︁

107

5×104

)︁
= log (200) = 2.301

and 𝑞 = 𝑤 · 𝑖𝑑𝑓 . Cosine normalization for the document is counted similarly as in the
last exercises by Definition 3 using 𝑤.

𝑑𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = 1√
12+12+1.3012 = 0.5204

𝑑𝑣𝑖𝑑𝑒𝑜 = 1√
12+12+1.3012 = 0.5204

𝑑𝑐𝑎𝑚𝑒𝑟𝑎𝑠 = 1.301√
12+12+1.3012 = 0.677

The score is the scalar multiple of 𝑞 and 𝑑. The final table is

Query Document relevance
df tf w idf q tf w d 𝑞 · 𝑑

digital 10 000 1 1 3 3 1 1 0.5204 1.5612
video 100 000 0 0 2 0 1 1 0.5204 0

cameras 50 000 1 1 2.301 2.301 2 1.301 0.677 1.5578

Table 8: Solution.

and the similarity score is

𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑞) =
3∑︁

𝑖=1
(𝑑𝑖 · 𝑞𝑖) = 3.119.

Exercise 4/6
Show that for the query 𝑞1 = affection the documents in the table below are sorted by
relevance in the opposite order as for the query 𝑞2 = jealous gossip. Query is tf weight
normalized.

5

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0 0.254

Table 9: Exercise.

We add queries to the original table:

SaS PaP WH 𝑞1 𝑞2
affection 0.996 0.993 0.847 1 0
jealous 0.087 0.120 0.466 0 1
gossip 0.017 0 0.254 0 1

Table 10: Exercise with queries.

Now we normalize the vectors 𝑞𝑖 by Definition 3 and get

SaS PaP WH 𝑞1 𝑞2 𝑞1𝑛 𝑞2𝑛

affection 0.996 0.993 0.847 1 0 1 0
jealous 0.087 0.120 0.466 0 1 0 0.7071
gossip 0.017 0 0.254 0 1 0 0.7071

Table 11: Exercise with queries after normalization.

In the last step we count the similarity score between the queries and documents by
𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑞) =

∑︀|𝑑|
𝑖=1(𝑑𝑖 · 𝑞𝑖)

𝑠𝑐𝑜𝑟𝑒(𝑆𝑎𝑆, 𝑞1) = 0.9961 · 1 + 0.087 · 0 + 0.017 · 0 = 0.9961
𝑠𝑐𝑜𝑟𝑒(𝑃𝑎𝑃, 𝑞1) = 0.993 · 1 + 0.120 · 0 + 0 · 0 = 0.993
𝑠𝑐𝑜𝑟𝑒(𝑊𝐻, 𝑞1) = 0.847 · 1 + 0.466 · 0 + 0.254 · 0 = 0.847

𝑠𝑐𝑜𝑟𝑒(𝑆𝑎𝑆, 𝑞2) = 0.9961 · 0 + 0.087 · 0.7071 + 0.017 · 0.7071 = 0.0735
𝑠𝑐𝑜𝑟𝑒(𝑃𝑎𝑃, 𝑞2) = 0.993 · 0 + 0.120 · 0.7071 + 0 · 0.7071 = 0.0849
𝑠𝑐𝑜𝑟𝑒(𝑊𝐻, 𝑞2) = 0.847 · 0 + 0.466 · 0.7071 + 0.254 · 0.7071 = 0.5091

The ordering for 𝑞1 is SaS > PaP > WH and for 𝑞2 is WH > PaP > SaS, and we see
that they are opposite.

Exercise 4/7
Compute the Levenshtein distance between paris and alice. Write down the matrix of
distances between all prefixes as computed by the algorithm 1.

Follow the algorithm 1 and put one word horizontally and the other vertically into the
matrix, both starting with 𝜀 (empty string). Then initialize the first rows and columns
(see the lines 2 to 7 of the algorithm).

6

𝜀 p a r i s
𝜀 0 1 2 3 4 5
a 1
l 2
i 3
c 4
e 5

Table 12: Initialization of the matrix.

Then compare the horizontal prefixes (of word paris) with the vertical prefixes (of word
alice), character by character, and fill in each cell of the matrix based on the values in
the surrounding cells by the criterion in the algorithm. Select the minimum of numbers
incremented by one in the cells up and left, and upper left incremented by one if the
characters are not equal, without increment otherwise (a condition starting at line 10).

For example, for the cell ap, select 𝑚𝑖𝑛{1 + 1, 1 + 1, 0 + 1} = 𝑚𝑖𝑛{2, 2, 1} = 1. The
upper left value is 0 + 1 because 𝑎 ̸= 𝑝. For the cell aa, select 𝑚𝑖𝑛{2 + 1, 1 + 1, 1 + 0} =
𝑚𝑖𝑛{3, 2, 1} = 1. The upper left value is 1 + 0 because 𝑎 = 𝑎.

𝜀 p a r i s
𝜀 0 1 2 3 4 5
a 1 1 1
l 2
i 3
c 4
e 5

Table 13: First two iterations of the main dynamic programming step.

Now continue and fill out the whole matrix, the value in the bottom right cell is the
Levenshtein distance for words paris and alice, which is 4.

𝜀 p a r i s
𝜀 0 1 2 3 4 5
a 1 1 1 2 3 4
l 2 2 2 2 3 4
i 3 3 3 3 2 3
c 4 4 4 4 3 3
e 5 5 5 5 4 4

Table 14: The final matrix with the Levenshtein distance in bold.

7

	Exercise 4/1
	Exercise 4/2
	Exercise 4/3
	Exercise 4/4
	Exercise 4/5
	Exercise 4/6
	Exercise 4/7

