Seminar 4

Definition 1 (Inverse document frequency)
Inverse document frequency of a term t is defined as

idf, = log (g)
t

where N is the number of all documents and df, (the document frequency of t) is the
number of documents that contain t.

Definition 2 (tf-idf weighting scheme)
In the tf-idf weighting scheme, a term t in a document d has weight

where tf, 4 is the number of tokens t (the term frequency of t) in a document d.

Definition 3 (£2? (cosine) normalization)
A vector v is cosine-normalized by

v v
v; ﬁl - Y%
v
Zva‘l v
where v; is the element at the j-th position in v.

Definition 4 (Sublinear term frequency scaling)
The weight of a term t in a document d is determined as

wr 1+ log (t]”t7d) if tft,d >0
td 0 otherwise
where tf, ; is the number of tokens t (the term frequency of t) in a document d.

Algorithm 1 (Levenshtein Distance — imperative approach)
1: function LEVENSHTEINDISTANCE(S1, S2)

2: for i =0to|s1| do

3: mli, 0] = i

4: end for

5: for j = 0to|s2| do

6: m[0, 5] = j

7: end for

8: for i =1+to|s1| do

9: for j =1 to|s2| do
10: ’Lf Sl[i] == 82[']'] then
11: mli,j] = min{m[i — 1,j] + 1,m[i,j — 1]+ 1,m[i — 1,5 — 1]}
12: else
13: mli,j] = min{m[i — 1,j] + 1,m[i,j — 1] + L,m[i — 1,5 — 1] + 1}
14: end if
15: end for
16: end for
17: return m[|s1|, |sz2|]

18: end function

Algorithm 2 (Levenshtein Distance — declarative approach)
Distance between two strings a and b is given by levy y(|al, |b]) where

max (i, 7) if min(7,j) =0
S levap(i —1,7) +1
leva b (i, j) = min { levap(i, 5 — 1) + 1 otherwise

leva,b(i - 15] - 1) + 1(%7’517])

where 1(q,2p,) 5 the indicator function equal to 1 when a; # b;, and 0 otherwise.
levy (1, 7) is the distance between the first i characters of string a and the first j characters
of string b.

Exercise 4/1

Consider the frequency table of the words of three documents docy, docs, docs below.
Calculate the tf-idf weight of the terms car, auto, insurance, best for each document. idf
values of terms are in the table.

docy | doco | docs | idf
car 27 4 24 1.65

auto 3 33 0 2.08
insurance 0 33 29 1.62
best 14 0 17 1.5

Table 1: Exercise.

After counting tf-idf weights by Definition [2] individually for each term we get the
following table

tf-idf
docy docy docs
car | 44.55 6.6 39.6
auto | 6.24 | 68.64 0
insurance 0 53.46 | 46.98
best 21 0 25.5

Table 2: Solution.

Exercise 4/2

Count document representations as normalized Euclidean weight vectors for each docu-
ment from the previous exercise. Each vector has four components, one for each term.

Normalized Euclidean weight vectors are counted by Definition Denominators
Mdoc, for the individual documents are

Mdoe, = V/44.552 + 6.242 + 212 = 49.6451

Maoe, = V 6.62 + 68.642 + 53.462 = 87.2524

Mdocy = \/39.62 + 46.982 + 25.52 = 66.5247

and the document representations are

< 44.55 6.24 0 21
1 =

; ; ; = (0.8974;0.1257;0; 0.42
49.6451’49.6451’49.6451’49.6451) (0-8974;0.1257; 0; 0.423)

g (66 6864 5346 0
7\ 87.2524" 87.2524° 87.2524° 87.2524

(39.6 0 46.98 25.5
3 =

) = (0.0756;0.7876; 0.6127; 0)

66.5247° 66.5247 66.5247" 66.5247) = (0-5953;0;0.7062; 0.3833)

Exercise 4/3

Based on the weights from the last exercise, compute the relevance scores of the three
documents for the query car insurance. Use each of the two weighting schemes:

a) Term weight is 1 if the query contains the word and 0 otherwise.
b) Euclidean normalized tf-idf.

Please note that a document and a representation of this document are different things.
Document is always fixed but the representations may vary under different settings and
conditions. In this exercise we fix document representations from the last exercises and
will count relevance scores for query and documents under two different representations
of the query. It might be helpful to view on a query as on another document, as it is a
sequence of words.

We count the relevance scores for a) as the scalar products of the representation of the
query ¢ = (1,0,1,0) with representations of the documents d,, from the last exercise:

qg-di=1-089744+0-0.1257+1-0+0-0.423 = 0.8974

g-do=1-0.075640-0.7876 +1-0.6127 +0- 0 = 0.6883
q-ds=1-0.5953+0-041-0.7062+ 0-0.3833 = 1.3015

For b) we first need the normalized t¢f~idf vector ¢, which is obtained by dividing each
component of the query by the length of idf vector v/1.652 + 02 + 1.622 + 02 = 2.3123

tf | idf | tf-idf q
car | 1 | 1.65 | 1.65 | 0.7136
auto | 0 | 2.08 0 0
insurance | 1 | 1.62 | 1.62 | 0.7006
best | 0 1.5 0 0

Table 3: Process of finding the Euclidean normalized tf-idf.

Now we multiply ¢ with the document vectors and we obtain the relevance scores:
q-d; =0.7136 - 0.8974 + 0 - 0.1257 4+ 0.7006 - 0 + 0 - 0.423 = 0.6404

q-do=0.7136 - 0.0756 + 0 - 0.7876 4 0.7006 - 0.6127 +- 0 - 0 = 0.4832
q-ds=0.7136-0.5953 + 0 - 0+ 0.7006 - 0.7062 + 0 - 0.3833 = 0.9196

Exercise 4/4

Consider a collection of documents and the terms dog, cat and food that occur in 10737,
1072 and 10~7 of the documents, respectively. Now document docl contains the words
2y, y and 3y times and doc2 2z, 3z and z times. Order these two documents based on

vector space similarity with the query dog food.

Intuitively, doc; is more relevant than docy because docs is relatively too much about
cats and too little about food, which is a satisfactory answer. But precisely:

docy doca q
dog | 2y-3x | 2z-3x | 3z
cat | y-2z | 3z-2x | O

food | 3y-=x zZ-T x

Table 4: tf-idf.

docy doca q
dog | 6zy/Txy =6/7 | 622/8.5xz =12/17 | 3x/3.22 = 15/16
cat | 2xy/Txy = 2/7 | 6xz/8.5xz = 12/17 0
food | 3zy/Texy =3/7 | xz/8.5zz=1/17 x/3.20 = 5/16

Table 5: Representations.

q - doci q - docs
dog | 6/7-15/16 ~ 0.8 | 12/17-15/16 ~ 0.66
cat 0 0
food | 3/7-5/16 ~0.13 | 1/17-5/16 ~ 0.02

Table 6: Relevance.

Here 0.8 + 0.13 > 0.66 + 0.02 and therefore doc; is more relevant than docs.

Exercise 4/5

Calculate the vector-space similarity between the query digital cameras and a document
containing digital cameras and video cameras by filling in the blank columns in the
table below. Assume N = 10000000, sublinear term frequency scaling from Definition []
(columns w) for both query and documents, idf weighting only for the query and cosine
normalization only for the document. and is a STOP word.

Query Document | relevance
af tf | w|ddf | q|tf | wld q-d
digital 10 000
video 100 000
cameras | 50 000

Table 7: Exercise.

The t¢f value is filled according to the occurrences of the terms in both query and
document.

tf, = digital cameras 1)
2)

(1,0,
tfy = digital cameras and video cameras 1,1

()

Sublinear term frequency scaling uses the Definition [d] For the query the values are

)

Waigitat = 1+1log(l) =140 =1
Wyideo =0
Weameras = 1+ log (1) =140 =1

and for the document

Wdigital = 1+ log (1) =1+0 =1
Wyideo — 1+10g(1) =1+0 =1
Weameras = 1+ 1Og (2) =1+4+0.301 =1.301

Now we need to count the idf weights for the query. These are counted by Definition [T}

. 7
idfaigitar = log (igx =log (10%) =3
idfvigeo =log (10) =log(10?) =2
idfcame'ras = 10g %) = IOg (200) = 2.301

and ¢ = w - idf. Cosine normalization for the document is counted similarly as in the
last exercises by Definition [3| using w.

ddigital :W = 0.5204

— 1 —
dvideo = VIZri2ri301z 0.5204

_ 1.301 _
dcameras - /12+12+130i12 — 0.677

The score is the scalar multiple of ¢ and d. The final table is

Query Document relevance
af tf | w | df q tf w d q-d
digital 10000 | 1 |1 3 3 1 1 0.5204 1.5612
video 100000 | O | O 2 0 1 1 0.5204 0
cameras | 50000 | 1 | 1 | 2301 | 2.301 | 2 | 1.301 | 0.677 1.5578

Table 8: Solution.

and the similarity score is

3
score(d,q) = Z(di -q;) = 3.119.

i=1

Exercise 4/6

Show that for the query q; = affection the documents in the table below are sorted by
relevance in the opposite order as for the query g» = jealous gossip. Query is tf weight
normalized.

SaS PaP WH

affection | 0.996 | 0.993 | 0.847

jealous | 0.087 | 0.120 | 0.466

gossip 0.017 0 0.254

Table 9: Exercise.

We add queries to the original table:

SaS PaP | WH | ¢1 | ¢
affection | 0.996 | 0.993 | 0.847 | 1 | O
jealous | 0.087 | 0.120 | 0.466 | 0 | 1
gossip 0.017 0 0254 | 0 | 1
Table 10: Exercise with queries.
Now we normalize the vectors ¢g; by Definition [3] and get
SaS PaP | WH || ¢1 | 2 || ¢in G2n
affection | 0.996 | 0.993 | 0.847 || 1 | O 1 0
jealous | 0.087 | 0.120 | 0.466 || O | 1 0 | 0.7071
gossip 0.017 0 0254 || 0 | 1 0 | 0.7071

Table 11: Exercise with queries after normalization.

In the last step we count the similarity score between the queries and documents by

score(d, q) = Ei‘i‘l(di - qi)

score(SaS,q1) = 0.9961-1+0.087-0+0.017-0
score(PaP,q;) = 0.993-1+40.120-0+0-0

scoreWH,q1) = 0.847-1+0.466-0+0.254-0
score(SaS,qz) = 0.9961-0+0.087-0.7071 + 0.017 - 0.7071
score(PaP,q2) = 0.993-0+ 0.120-0.7071 +0-0.7071
score(WH,q3) = 0.847-0+4 0.466 - 0.7071 + 0.254 - 0.7071

The ordering for ¢; is SaS > PaP > WH and for ¢ is WH > PaP > SaS, and we see

that they are opposite.

Exercise 4/7

Compute the Levenshtein distance between paris and alice. Write down the matrix of

distances between all prefixes as computed by the algorithm

= 0.9961
= 0.993
= 0.847

Follow the algorithm [1] and put one word horizontally and the other vertically into the
matrix, both starting with ¢ (empty string). Then initialize the first rows and columns

(see the lines 2 to 7 of the algorithm).

= 0.0735
= 0.0849
= 0.5091

o|O|(M

Table 12: Initialization of the matrix.

Then compare the horizontal prefixes (of word paris) with the vertical prefixes (of word
alice), character by character, and fill in each cell of the matrix based on the values in
the surrounding cells by the criterion in the algorithm. Select the minimum of numbers
incremented by one in the cells up and left, and upper left incremented by one if the
characters are not equal, without increment otherwise (a condition starting at line 10).

For example, for the cell ap, select min{l + 1,1+ 1,0+ 1} = min{2,2,1} = 1. The
upper left value is 0 + 1 because a # p. For the cell aa, select min{2+1,1+1,1+0} =
min{3,2,1} = 1. The upper left value is 1 + 0 because a = a.

[[[e]

plafr[ifs]
1]2[3]4]5
11

Y | W N O™

o|O|H | |M™

Table 13: First two iterations of the main dynamic programming step.

Now continue and fill out the whole matrix, the value in the bottom right cell is the
Levenshtein distance for words paris and alice, which is 4.

[lelpfalr[i]s]

O x| | DN | O ™
Y | W N = =T
o | oo no| = ol
QY =W NN W=
= DN Q| W || =
| ol ol | x| ot @

|O| M

Table 14: The final matrix with the Levenshtein distance in bold.

	Exercise 4/1
	Exercise 4/2
	Exercise 4/3
	Exercise 4/4
	Exercise 4/5
	Exercise 4/6
	Exercise 4/7

