HH2EHH: sheet l j l I uco c I .L-j i—- J—t l I U L points Recommend a query processing strategy [2 points] for the following boolean query: (Cleopatra OR Calpurnia) AND (Brutus OR Caesar) given the following document frequencies: • Cleopatra: 21,502 documents • Calpurnia: 257,219 documents • Brutus: 163,587 documents • Caesar: 175,843 documents Several strategies for estimating the cardinality of the result for an "OR" query exist. Explain which one you used and what assumption your strategy makes. [2 points] 1 CL£o?ATRft OR. CALfUKNlR \ = | CLE(7PATRft | + ICftLPUKMI^ \ ftsscAV^VuM•' HfcctAwe^b 6>hUV\i4 ( IkVTVS OR CfttfhK.*) \cizor(\T?.f\ or Cf\l?o*KJiA\ - rmx ( UleopatrM t |cAipoRNih() ftsswvM^o^ : 3>0Cfcuue/nts: a>*UWivv^ CLE0PftTRfi a/*** CAlp(jRN(fl mAxdat^PfMRftl, icAi-puiuim^ = zsi 219 RN(ft) Write your solution only on this side of the sheet! DDD1 E I f r. ,1 r. ,n r, ,1 r, ,1 mco l- I . J—j J—I L- 'j i-4 l 'j points Perform the following boolean query: Friends AND Romans given the following inverted index:___ • Friends: ^%1^23^39^to, 41,47, 49,51 ~* L^TftJ " 3 • Romans: 2,3,5,7^1X^29,31,37,39^41^43^47 |p|= /o> = 3 Present the result of the query and the number of comparisons with [2 points], and without [2 points] a skip list. Assume the skip list has frequency LvT^IJ' where |P| is the cardinality of a posting P and [-J is the floor function. (Example: P = {1,2,3}, \P\ = 3, sf\F\ « 1.73, {^J\P\\ = 1) - vx/itlooiAt 4 skip list : % u>myAUSov\s (35,291, (S3,31\ (33,3^, (3^33) , (*tl) , (11, Hi), - \X/itlo a. skip : /fg C0*>$ar\>oY\S (3,2), (J,^, (^(j^), (3,1)( (9,29){ (9,11) , flS,1l\ U^, 13), (10,23), (23,23^ (39,23), (35,^), (lO,