### Sample-based Clustering for Big Data using Coresets

Le Hong Trang

### Faculty of Computer Science and Engineering Ho Chi Minh City University of Technology, VNU-HCM lhtrang@hcmut.edu.vn



Lab of Software Architecture and Information System (lasaris) Faculty of Informatics, Masaryk University March 2019, Brno, Czech Republic

# Outline

### About HCMC University of Technology

Sampling-based Method for Big Data Clustering

Some Results VAT for Big Data VAT for Bacnet datasets Streaming Clustering

Summary of Our Current Works

Potential Works

# **HCMC University of Technology**

Location



# HCMC University of Technology

Campus





# Outline

### About HCMC University of Technology

### Sampling-based Method for Big Data Clustering

### Some Results VAT for Big Data VAT for Bacnet datasets Streaming Clustering

Summary of Our Current Works

Potential Works

# An ICT Architecture for Smart Cities

Overview



Smart Cities - HCMUT

### An ICT Architecture for Smart Cities

**Research topics** 



### An ICT Architecture for Smart Cities

Data analytics



# **Data analytics**

Big data

- A smart city will developed on an IoT infrastructure.
  - It should be network of sensors, devices, and citizens.
- A mount of data will be generated
  - huge size,
  - complicated structure,
  - continuously and fastly generated,
  - and so on.

### Called Big Data.



[Sun et al., 2015]

# **Big Data Clustering**

where?

- Economy,
- biology,
- Medicine,
  - Transportation,
- Education.



[Guillaume Agis's blog]

# The role of big data clustering

► In order to understand and explore the structure of the data for analysis purpose.

### **Challenges in Big Data**

- (a) Huge size (volume)
  - Large number of data object: computational cost increased exponentially.
  - High dimension: curse of dimensionality.
- (b) Many types of data (variety).



Sampling-based Method for Big Data Clustering

### **Challenges in Big Data**



#### Continuous Clustering Visualisation

2448037 clusters identified 3196044 messages in clusters

### [CeADAR, Dublin]

- (c) Continuously generated (velocity)
  - Real time processing.
  - Deal with streaming data.

Coreset concept [Agarwal et al., 2004]

• Proposed for geometric approximation of a set of points in  $\mathbb{R}^d$ .

- Given a set T and  $\varepsilon > 0$ , let  $\mu$  be a *monotonic function* defined on T, that is, for  $S \subseteq T$ ,  $\mu(S) \le \mu(T)$ .
- Then, S is an  $\varepsilon$ -coreset of T w.r.t  $\mu$ , if

$$(1-\varepsilon)\mu(T) \le \mu(S).$$

•  $\omega(u, P) = \max_{p \in P} \langle u, p \rangle - \min_{p \in P} \langle u, p \rangle$  is an example for  $\mu$ , where u is an arbitrary direction of P.



Coreset for clustering [Har-Peled et al., 2004]

### Definition

A set S of s points is an  $(k, \varepsilon)$ -coreset for a set T of n > s points if

 $(1-\varepsilon)Cost_T(C) \le Cost_S(C) \le (1+\varepsilon)Cost_T(C),$ 

for  $C = \{c_1, c_2, \dots, c_k\}$  a set of k centers.

▶ For a clustering problem, functions *Cost* can be defined by

$$Cost_T(C) = \sum_{i=1}^n d(x_i, c_i^*) \text{ and } Cost_S(C) = \sum_{i=1}^s w_j d(y_i, c_i^{*\prime}).$$

where,  $c_i^*, c_i^{*'} \in C$  respectively are closest centers for  $x_i \in T$  and  $y_j \in S$ , i.e.,  $d(x_i, c_i^*)$  and  $d(y_i, c_i^{*'})$  are minimum among k centers,  $w_j = |T(y_j)|$ , i.e., the number of items of T whose closest point in S is  $y_j$ .

ProTraS [Ros and Guillaume, 2018]

- 1. Add new sample in the group with highest probability of cost reduction that combines
  - density-based probability:  $P_{dens}(j) = \frac{w_j}{\max_i w_i}$ ,
  - distance-based probability:  $P_{dist}(j) = \frac{d_j}{\max_i d_i}$ .
- 2. Assign each pattern to the nearest sample.
- 3. Compute Cost.
- 4. If  $(Cost > \varepsilon)$  goto Step 1.

Theorem ProTraS yields a  $(k, \varepsilon)$ -coreset with

$$\varepsilon = \frac{\sum_{j=1}^{s} w_j d_j}{Cost_T(C)}.$$

#### ProTraS vs. siVAT



 Sample obtained by ProTraS is higher representative, compared with that by siVAT.

But

- uniformly distributed  $\rightarrow$  difficult to highlight clusters in the sample.
- may include noises and outliers.

#### ProTraS: our improving



- Replace every representative point in the sample by the center of group represented by it.
  - Objects located at the boundary side of clusters will be replaced by interior ones of those.
  - New obtained sample thus should has separated clusters.
- $\rightarrow$  obtain higher accuracy in VAT problem.

### **Experiments**

Comparison between ProTraS and our sampling



ProTraS vs. our sampling

Sampling-based Method for Big Data Clustering

### **Experiments**

#### Sample sizes with different values of $\boldsymbol{\varepsilon}$

| 0    | Dataset       | Data size (T) | Sample size (S)  |                  | Ratio S/T (%)    |                  |
|------|---------------|---------------|------------------|------------------|------------------|------------------|
| Ora. |               |               | $\epsilon = 0.1$ | $\epsilon = 0.2$ | $\epsilon = 0.1$ | $\epsilon = 0.2$ |
| 1    | A.set 1       | 3000          | 261              | 97               | 8.7              | 3.23             |
| 2    | A.set 2       | 5250          | 315              | 116              | 6                | 2.21             |
| 3    | A.set 3       | 7500          | 341              | 119              | 4.55             | 1.59             |
| 4    | FLAME         | 240           | 166              | 90               | 69.17            | 37.5             |
| 5    | Birch-set 3   | 100000        | 424              | 153              | 0.424            | 0.153            |
| 6    | JAIN          | 373           | 108              | 56               | 28.95            | 15.01            |
| 7    | S.sets 1      | 5000          | 237              | 96               | 4.74             | 1.92             |
| 8    | S.sets 2      | 5000          | 327              | 120              | 6.54             | 2.4              |
| 9    | S.sets 3      | 5000          | 422              | 155              | 8.44             | 3.1              |
| 10   | S.sets 4      | 5000          | 448              | 166              | 8.96             | 3.32             |
| 11   | Dim sets 1    | 1351          | 17               | 10               | 1.26             | 0.74             |
| 12   | Dim sets 2    | 2701          | 17               | 11               | 0.63             | 0.41             |
| 13   | Dim sets 3    | 4051          | 20               | 8                | 0.49             | 0.2              |
| 14   | Dim sets 4    | 5401          | 416              | 17               | 7.7              | 0.31             |
| 15   | Dim sets 5    | 6751          | 379              | 19               | 5.61             | 0.28             |
| 16   | data5k-CS     | 5000          | 44               | 17               | 0.88             | 0.34             |
| 17   | data5k-NonCS  | 5000          | 264              | 95               | 5.28             | 1.9              |
| 18   | data10k-CS    | 10000         | 25               | 10               | 0.25             | 0.1              |
| 19   | data10k-NonCS | 10000         | 114              | 40               | 1.14             | 0.4              |
| 20   | data15k-CS    | 15000         | 61               | 22               | 0.41             | 0.145            |
| 21   | data15k-NonCS | 15000         | 111              | 44               | 0.74             | 0.293            |
| 22   | data100k-10   | 100000        | 103              | 45               | 0.103            | 0.045            |
| 23   | data100k-25   | 100000        | 191              | 73               | 0.191            | 0.073            |
| 24   | data100k-27   | 100000        | 187              | 79               | 0.187            | 0.079            |
| 25   | data200k-5    | 200000        | 108              | 44               | 0.054            | 0.022            |
| 26   | data200k-17   | 200000        | 162              | 62               | 0.081            | 0.031            |
| 27   | data1M        | 1000000       | 315              | 107              | 0.0315           | 0.0107           |
| 28   | data1M-7      | 1000000       | 84               | 41               | 0.0084           | 0.0041           |
| 29   | data1M-15     | 1000000       | 142              | 60               | 0.0142           | 0.006            |
| 30   | data1M-55     | 1000000       | 355              | 131              | 0.0355           | 0.0131           |
| 31   | data2M-77     | 2000000       | 457              | 159              | 0.023            | 0.008            |

Table 1: Sample size with  $\epsilon = 0.1$  and 0.2.

# Outline

About HCMC University of Technology

Sampling-based Method for Big Data Clustering

Some Results VAT for Big Data VAT for Bacnet datasets Streaming Clustering

Summary of Our Current Works

Potential Works

Clustering

### Notes

- Most of proposed techniques concentrate on how to separate objects into proper groups.
- Many algorithms, for example the family of k-means, require the number of clusters as an input.
- Knowing an approximate number of clusters can help a clustering algorithm not only to speed up the process, but also to enhance its accuracy.
- It is important to estimate a number of clusters before applying a suitable technique for the cluster analysis.

- VAT: introduced by Bezdek and Hathaway, 2002.
  - Determine whether cluster are presents in a given dataset.
  - Visualize cluster structures in relational matrices among objects of the dataset.
- ► Main idea
  - Rearranges unlabled objects so that similar ones will be located nearby.
  - Highlights the cluster structure of a dataset in an intuitive image.

VAT: main idea



- Take a pairwise dissimilarity matrix of a dataset D(I(D)).
- > Determine a potential partition of the dataset by Prim's algorithm.
- Reorder matrix D into  $D^*$  due to the obtained partition.
- Visualize  $D^*$  by a grayscale image  $I(D^*)$ .
- The cluster tendency is indicated by the "dark blocks" along the diagonal.

The VAT algorithm: variants

- Some variants were proposed to deal with datasets of irregular structure and large size. Some typical ones of them include
  - sVAT [Hathaway et al., 2006]: scalable VAT for large datasets using sampling.
  - iVAT [Wang et al., 2010]: improved VAT for datasets of complicated structure using a path-based distance.
  - Revised iVAT [Havens and Bezdek, 2012]: improve the computation of the path-based distance in iVAT.
  - Combining sVAT and iVAT to obtain *siVAT*.

The VAT algorithms: difficulties

- Sampling for large datasets
  - Need an overestimate of the true but unknown number of clusters.
  - Sample points are chosen randomly.
  - $\rightarrow$  Low representativeness.



A complex dataset with 9 clusters.

### Sample-based VAT Method

Proposed algorithm

**Input:**  $T = \{x_i\}$ , for i = 1, 2, ..., n, a tolerance  $\varepsilon > 0$ . **Output:** A sample S and  $D'^*$ .

1: Call ProTraS for T and  $\varepsilon$  to obtain  $S = \{y_j\}$  and  $P(y_j)$ . 2:  $S' = \emptyset$ . 3: for all  $y_j \in S$  do 4:  $y_k^* = \operatorname{argmin}_{y_k \in P(y_j)} \sum_{y_l \in P(y_j)} d(y_k, y_l)$ . 5:  $S' = S' \cup \{y_k^*\}$ . 6: Form  $D^*$  the reordered matrix corresponding to S'. 7: Apply iVAT on  $D^*$  to obtain  $D'^*$  and produce  $I(D'^*)$ . 8: return S and  $D'^*$ .

Theorem

Sample obtained the algorithm is also a coreset of the given dataset T.

### VAT results: compared with siVAT







### VAT results: deal with high complex structures







### VAT for Bacnet datasets

A joint work with Prof. Fabio Massacci, Trentro University, Italy

### ▶ BACnet: Building Automation and Control Networking Protocol

| Ethernet IPv4+UDP BVLL NPDU APDU (will data) | Ethernet | IPv4+UDP | BVLL NPDU APDU (with data) |
|----------------------------------------------|----------|----------|----------------------------|
|----------------------------------------------|----------|----------|----------------------------|

### Our proposed approach



### VAT for Bacnet datasets

A joint work with Prof. Fabio Massacci, Trentro University, Italy



Binary image using otsu's threshold (left); the distance image from binary image (middle) and region image (right).

### Streaming clustering: data processed with Spark



### An example: results at $t_0$ and $t_1$



33

### An example: results at $t_2$ and $t_3$



# Clustering results: deal with streaming data

| Datasets    | Size    | Cluster num. | Sample size | Whole dataset | Sample |
|-------------|---------|--------------|-------------|---------------|--------|
| A.set 1     | 3.000   | 20           | 55          | 23.24         | 19.15  |
| A.set 2     | 5.250   | 35           | 61          | 43.56         | 39.80  |
| A.set 3     | 7.500   | 50           | 59          | 54.52         | 50.38  |
| FLAME       | 240     | 2            | 47          | 18.70         | 19     |
| Birch-set 3 | 100000  | 100          | 143         | 518.03        | 453    |
| JAIN        | 373     | 2            | 34          | 6.97          | 6.85   |
| S.sets 1    | 5.000   | 15           | 52          | 21.43         | 20.31  |
| S.sets 2    | 5.000   | 15           | 70          | 32.51         | 31.24  |
| S.sets 3    | 5.000   | 15           | 70          | 32.14         | 30.27  |
| S.sets 4    | 5.000   | 15           | 106         | 56.42         | 54.24  |
| Dim 2       | 1.351   | 9            | 11          | 6.49          | 7.49   |
| Unbalance   | 6500    | 8            | 25          | 14.47         | 12.73  |
| D31         | 3100    | 31           | 62          | 21.64         | 19.21  |
| G2-2-10     | 2048    | 10           | 23          | 19.05         | 8.56   |
| G2-2-20     | 2048    | 20           | 43          | 19.50         | 13.74  |
| G2-2-30     | 2048    | 30           | 76          | 19.70         | 19.98  |
| G2-2-40     | 2048    | 40           | 89          | 21.02         | 22.89  |
| Data1M-7    | 1000000 | 7            | 677         | 1255          | 813    |
| Data1M-15   | 1000000 | 15           | 837         | 1542          | 1027   |
| Data1M-55   | 1000000 | 55           | 2108        | 5400          | 3342   |
| Data2M-77   | 2000000 | 77           | 2600        | 7800          | 4500   |

# Outline

About HCMC University of Technology

Sampling-based Method for Big Data Clustering

Some Results VAT for Big Data VAT for Bacnet datasets Streaming Clustering

### Summary of Our Current Works

Potential Works

# Summary

- A postprocessing task of the ProTraS is introduced to obtain a sample of the dataset such that
  - clusters in the sample are separated as much as possible,
  - while preserving the cluster structure of the whole dataset.
  - $\rightarrow$  obtain higher accuracy in VAT problem.
- However,
  - ProTraS-based the sampling in our algorithm is also based on farthest-first traversal.
  - In the case of datasets with high noise or outliers, the algorithm might not be robust.
    - Maintain high representativeness points, while try to increase the inter-cluster distance.

### **Extension for a Clustering Algorithm**

- Utilizing the proposed VAT algorithm to give an efficient clustering method dealing big data (with three features including Volume, Variety, and Velocity).
  - From VAT result on the sample set, try to obtain the clusters of the sample.
  - Generalize the result obtained on the sample to the whole dataset.

# Outline

About HCMC University of Technology

Sampling-based Method for Big Data Clustering

Some Results VAT for Big Data VAT for Bacnet datasets Streaming Clustering

Summary of Our Current Works

Potential Works

# Problem

- Coreset for scaling applications in smart cities (with Bara and Mouzhi)
  - Improving the sample obtained by coreset.
  - Applying to scenarios in smart cities dealing with big datasets.
- VAT technique for anomaly detection in cybersecurity (discussing with Bacem)
  - Visualizing the cluster tendency for a streaming dataset.
  - Anomaly data points can be detected if they form a new dark block on the VAT image.

### The End

Thank you for your attention.