PV260 - SOFTWARE QUALITY

SOFTWARE MEASUREMENT & METRICS AND THEIR
ROLE IN QUALITY IMPROVEMENT

Bruno Rossi
brossi@mail.muni.cz

LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS ally _
MASARYK UNIVERSITY, BRNO lasaris

.
Outline

* Introduction

* The Measurement Process

* Motivational Examples

* Background on Software Measurement
* The Goal Question Metrics approach

* Measures and Software Quality Improvement

— SQALE (Software Quality Assessment Based on Lifecycle
Expectations)

e (Case Studies

ally .
lasaris

Introduction

 The following defect (can you spot it?) in Apple's SSL code was
undiscovered from Sept 2012 to Feb 2014 - how can it be?

L
o=
— |
:1
L The handshake algorithm containing the goto fail bug
if {{err = ReadyHash{&SSLHashSHAl, &hashCtx)) I= @)
goto fail;
if ({err = SSLHashSHAl.update(&hashCtx, &clientRandom)} != @)
goto fail;
if ({err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != @)
goto fail;
if ({err = SS5LHashSHAl.update(&hashCtx, &signedParams)) l= @)
goto fail;
goto fail; g
if ({err = SS5lHashSHAl.final(&hashCtx, &hashout)) [= @) |2
goto fail; 92
! L The duplicate handshake algorithm appearing immediately before the buggy block
if(isRsa) {
/o ¥
if ((err = ReadyHash(&SSLHashMD5, &hashCtx)) != @)
goto fail;
if ({err = SSLHashMD5.update(&hashCtx, &clientRandom)) = B8)
goto fail;
if ((err = 55LHashMD5.update(&hashCtx, &serverRandom)) != @)
goto fail;
if ((err = SS5LHashMD5.update(&hashCtx, &signedParams)) |= 8)
goto fail;
M. Bland, “Finding more than one worm in the apple,” if ((err = SSLHashMDS.final(ghashCtx, &hashOut)) I= B)
Communications of the ACM, vol. 57, no. 7, pp. 58-64, goto fail;
Jul. 2014. }

~ lasaris

.
Introduction

* Modern systems are very large & complex in terms of
structure & runtime behaviour

* The figure on the right
represents Eclipse JDT 3.5.0
(350K LOCs, 1.324 classes, BN o s i
23.605 methods) N NS il

»
¥

Classes — black - Methods — red - Attributes — blue. Method containment, attribute containment, and class
inheritance — gray - Invocations — red - Accesses = blue -.

lasarls

2
Introduction

* We need ways to understand attributes of software, represent in a
concise way and use it to track for software & develo_pment process
improvement ‘ : -

* Software Measurement and Metrlcs are one of the aspects Wi can
consider | e

If we consider the following metrics,
what can we say?
Are they “good” metrics?

LOCs 354.780
NOM 23.605
NOC 1.324
NOP 45

LOCs=lines of code, NOM=nr. of methods
NOC=nr. of classes, NOP=nr. of packages

.
i

ally
lasarls

N
Introduction

* Typical problems of measurement:

— How can | measure the maintainability of my software?
- Can | estimate the number of defects of my software?
- What is the productivity of my development team?

— Can | measure the quality of my testing process?

ally .
lasaris

o
Measurement

* Measurement is the process by which numbers or symbols
are assigned to attributes of entities in the real world in
such a way as to describe them according to clearly defined
rules (N. Fenton and S. L. Pfleeger, 1997)

— A measurement is the process to define a measure

ally .
lasaris

e
The Measurement Process

* The measurement process goes from the real world to the
numerical representation

* Interpretation goes from the numerical representation to the
relevant empirical results

Measures >

Real World Numbers

SOISE)S

Intelligence Barrier

S)INSaY JUBAS|oY

Relevant
Empirical
Results

< Interpretation

Reduced
Numbers

ally .
lasaris

N
Why Software Measurement

To avoid anecdotal evidence without a clear research (through
experiments or prototypes for example)

To increase the visibility and the understanding of the process
To analyze the software development process

To make predictions through statistical models

Gilbs’s Principle of fuzzy targets (1988):
“Projects without clear goals will not achieve their goals clearly”

ally .
lasaris

S
However...

* Although measurement may be integrated in development,
very often objectives of measurements are not clear

* “l measure the process because there is an automated tool
that collects the metrics, but do not know how to read the
data and what | can do with the data”

Tom De Marco (1982):
“You cannot manage what you cannot measure” ...
...but you need to know what to measure and how to measure

ally .
lasaris

Motivational Example

ally .
lasaris

N
Review of Defective Toyota Camry’'s System (1/3)

* Expert source code and system review after reported cases of
accidents due to cars accelerating without users' inputs *

* 18 months review + previous NASA experts code review

* Investigation on unintended accelerations

ally
* http://www.safetyresearch.net/Library/BarrSlides_ FINAL _SCRUBBED.pdf lasaris

http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

N
Review of Defective Toyota Camry's System (2/3)

* Usage of software metrics (p.24):

* “Data-flow spaghetti
- Complex coupling between software modules and between tasks

- Count of global variables is a software metric for “tangledness”
— 2005 Camry L4 has >11,000 global variables (NASA)”

BOOKOUT V. TOYOTA

2005 Camry L4
Software Analysis
Michael Barr

* http://www.safetyresearch.net/Library/BarrSlides_ FINAL _SCRUBBED.pdf lasaris

N
Review of Defective Toyota Camry’'s System (3/3)

* Usage of software metrics (p.24):

* “Control-flow spaghetti
- Many long, overly-complex function bodies
- Cyclomatic Complexity is a software metric for “testability”
— 2005 Camry L4 has 67 functions scoring >50 (“untestable”)
— The throttle angle function scored over 100 (unmaintainable)”

* See also p.30-31 for coding rules violations and expected number of bugs

BOOKOUT V. TOYOTA

2005 Camry L4
Software Analysis
Michael Barr

* http://www.safetyresearch.net/Library/BarrSlides_ FINAL _SCRUBBED.pdf lasaris

Pitfalls in linking the real world
phenomenon to numbering systems

My HOBBY: EXTRAPOLATING

BETTERGETA

BULK RATE ON

WEDDING CAKE.
oy

A& YOU CAN SEE, BY LATE
NEXT MONTH YOU'LL RAVE
OVER‘FUJRDDZENHJSM

https://xkcd.com/605/

ally
lasarls

https://xkcd.com/605/

- s
Pitfall Example (1/3)

* A/B Testing is a kind of randomized experiment in which you can
propose two variants of the same application to the users

* Set-up an experiment with two browsers and two variations of the
same webpage

FI: PV260 Software Quality (Spring 2019) other courses Fl: PV260 Software Quality (Spring 2019) other courses

'é) Select: all the students who have not completed or interrupted their studies enrolled in the courses selected [PV260] I\gl Select: all the students who have not completed or interrupted their studies enrolled in the courses selected [PV260]

PV260: 39 users / 40 programmes of studies PV260: 39 users / 40 programmes of studies

Enrolment- and evaluation-related information ~ Enrolment- and evaluation-related information ~

Learn more Learn mol re

Conv Rate A Conv Rate B
Firefox 87.50% 100.00%
Chrome 50.00% 62.50%

What can you conclude? Which alternative is better?

https://medium.com/homeaway-tech-blog/simpsons-paradox-in-a-b-testing-93af7a2f3307]- a S a r\l S

N
Pitfall Example (2/3)

* Let’s look at the same table but with additional information about
the way the tests were split

Conv Rate A Conv Rate B
Firefox 70/80 = 87.5% 20/20 = 100%
Chrome 10/20 =50% 50/80 = 62.5%
Both 80/100 = 80% 70/100 = 70%

https://medium.com/homeaway-tech-blog/simpsons-paradox-in-a-b-testing-93af7a2f3307]- a S a r\l S

Pitfall Example (3/3) A

Simpsons' paradox

* It can happen that:
a/b < A/B
c/d < C/D

(a+c)/(b+d) > (A+C)/(B + D)

Dept Men Women
e e, g . Applicants admitted Applicants admitted
1/5 < 2/8 A 5 20% 8 25%
6/8 4/5 B 8 75% 5 80%
<
Total 13 53% 13 46%
7/13 > 6/13

See: http://en.wikipedia.org/wiki/Simpson%27s_paradox - considering the following papers:
J. Pearl (2000). Causality: Models, Reasoning, and Inference, Cambridge University Press.

P.J. Bickel, E.A. Hammel and J.W. O'Connell (1975). "Sex Bias in Graduate Admissions: Data From Berkeley. Science 187 (4175)

: 398—4&.. .
lasaris

Background on Software Measurement

ally .
lasaris

Software Measurement Methods

artefactBased quantificationBased
operation operation

Measurement Measurement

artifacts / Models
objects

Scale

types,

Product Flow graphs i
statistics

(architecture
implementation,
documentation)

Call graphs

Structure tree Correlation

Process
(management, life-
cycle, CASE)

Code schema Estimation

Adjustment

Resources
(personnel,
software,
hardware)

Calibration

valueBased
operation

experienceBased
operation

Measurement
Goals

Measurement
Evaluation

Analysis Understanding

Visualization Learning

Improvement

Exploration

Management

Prediction

Controlling

ally .
lasaris

- e
Measurement Information Model (ISO/IEC 15939)

Information Needs

Measurable
Concept:

abstract relationship
between attributes of
entities and
information needs

Entity

Attribute Attribute

ally .
lasaris

Measurement Information Model (ISO/IEC 15939)

e e e

Variable assigned a
Derived Derived value by applying the
Measure Measure measurement function
to two or more values of
base measures

Algorithm for combining

Measurement
Measurable Function two or more base
Concept measures

Base Base Variable assigned a
Measure Measure value by applying the
method to one attribute

Measurement Measurement Operations mapping
Method Method an attribute to a scale

Property relevant to
information needs

Attribute Attribute

lasaris

Measurement Information Model (ISO/IEC 15939) ‘wwpat

Information
Product

Interpretation

Indicator

(analysis)
Model

The outcome of the |
measurement process;
that satisfies the '
information needs

Explanation relating the
quantitative information in
the indicator to the
information needs

Variable assigned a value
by applying the analysis
model to base and/or
derived measures

Algorithm for combining
measures and decision
criteria

,///’‘\~———/—/"_,///”"\‘——"/ﬁ\“_____

ally .
lasaris

ISO/IEC 15939 Examples

Information Needs

Information
Product

Information Needs

Comparison of
values obtained
with generic
thresholds and/or
targets

Derived

Computational
2asure

Accuracy

External quality
measures —
Functionality -
Accuracy
vieasurable B1/B2

Concept

Measurement
Function

Base
2asure

B1= Nr. of
inaccurate
computations
encountered
by users

Interpretation

Indicator

(analysis)
Model

Derived
Measure

Base
Measure

B2=
Operation
Time

Information
Product

Comparison of
values obtained
with generic
thresholds and/or
targets

Derived

Failure density U

against test
cases

External quality
measures —
Reliability -
Maturity
leasurable B1/B2
Concept

Function

Base

B1= Number of
lasure

detected
failures

Attribute

Run-time
accuracy

Inspired by Abran, Alain, et al. "An information model for software quality measurement with ISO standards." Proceedings of the Interna

Attribute

Run-time
usability

Measurement

Interpretation

Indicator

(analysis)
Model

Derived
Measure

Base

B2=N
Measure b

of performed
test cases

Attribute

Run-time

reliability

Conference on Software Develooment (SWDC-REK). Revkiavik. Iceland. 2005.

Attribute

e sy _
tonall 3SAr1S

Measure Definition

* A measure is a mapping between
- The real world
- The mathematical or formal world with its objects and relations

* Different mappings give different views of the world depending on the
context (height, weight, ...)

* The mapping relates attributes to mathematical objects; it does not relate
entities to mathematical objects

ally .
lasaris

Valid Measure

* The validity of a measure depends on definition of the attribute
coherent with the specification of the real world

Measurement
Low High
TRUE FALSE
2 % | NEGATIVE | POSITIVE
=
§ Hih FALSE TRUE
9 NEGATIVE | POSITIVE

 Example: Is LOC a valid measure of productivity?

— Think by paradox: 100K System.out statements vs
100K of complex loops and statements Measurement

Low

TRUE

Low | NEGATIVE

Real World

FALSE TRUE

High | NEGATIVE | POSIVE

" ADDITIONAL PROBLEM: You might have two different projects with two

different definitions of LOCs (e.g., considering blanks+comments vs only “;”) so L

’ O
_that the following can be true at the same time P1>P2 and P1<P2 2

- "18saris

27-109

Valid Measures - Example (1/5)

 Code coverage is a measure giving an indication of how much of the
source code has been run (“covered”) by running the tests

 Different criteria:

- Statement coverage (the one assumed by standard “code coverage): the
% of statements of the program covered by the tests

- Function coverage: the % of functions/methods covered by the tests

- Branch coverage: the % of branches of the control structures (e.g., if-
—then-—else) covered by the tests

- Condition coverage: % of each Boolean condition evaluated both as
True/False

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.

[03] */

[04] public class PrimeGenerator

[05] {

[06] private static boolean[] crossedOut;

[07] private static int[] result;

[08] public static int[] generatePrimes(int maxValue) {
[09] if (maxValue < 2){

[10] return new int[0];

[11] }else{

[12] uncrossIntegersUpTo(maxValue);

[13] crossOutMultiples();
[14] putUncrossedIntegersIntoResult();
[15] return result;

[13] } -.. .
ey s lasaris

- e
Valid Measures - Example (2/5)

* From Wikipedia: “...A program with high code coverage has been
more thoroughly tested and has a lower chance of containing
software bugs than a program with low code coverage...”

Q.: Would you consider code coverage as a valid measure of how
much thoroughly one software project has been tested?

— Suppose you have two projects and you compute code coverage

P1 - 70% VS P2 — 80%

Would you generally consider P2 to be “better” (more accurately) tested
than P1?

ally .
lasaris

Valid Measures - Example (3/5)

A. Assumption: considering every test covering the same nr. of lines
as equal?
Coverage 100% Coverage 100%

[01] double div (int x, int y){ [01] double div (int x, int y)({
[02] return x/y; [02] return x/y;
[03] } [03] }

AssertEquals (1.0, div(1l,1)); assertEquals(0.66, div(2,3), 0.1);

Note(!): Software follows usually a Pareto principle:
- ~80% of the defects are in the ~20% of the code

- the ~20% of code with more defect-density can be more difficult
to cover with tests

ully .
lasaris

Valid Measures - Example (4/5) x '

* According to Martin Fowler: “Test
coverage is a useful tool for finding
untested parts of a codebase. Test
coverage is of little use as a numeric
statement of how good your tests
are’”’ (http://martinfowler.com/bliki/ TestCoverage.html)

ally
lasarls

Valid Measures - Example (5/5)

In this case, we do not respect the representation condition:
when we assign symbols to the attributes of entities we need to
preserve the meaning of relationships when moving entities from

the real world to the numerical world

Real 1-1 mapping on relations

Mathem.

-

World

World

You can see this also from the Information Theory point of view

Real World

Measurement

Low

TRUE

Low | NEGATIVE

TRUE
POSITIVE

ally .
lasaris

Measurement Scales (1/4)

* Every measurement is mapped to a so-called scale (nominal, ordinal,
interval, rational)

* Considering the scale is quite important for the admissible operations

Nominal -
Ordinal -
Interval -
Rational —

ally .
lasaris

Measurement Scales (2/4)

* Some examples of measures and related scales

Scale Type Examples in Software Eng. Indicators of Central Tendency

Nominal Name of the programming Mode
language (e.g. Java, C++, C#)

Ordinal Ranking of failures (as a Mode + Median
measure of failure severity)

Interval Beginning date, end date of Mode + Median + Arithmetic
activities Mean

Ratio LOC (as a measure of program Mode + Median + Arithmetic
size) Mean + geometric Mean

Morasca, Sandro. "Software measurement." Handbook of Software Engineering and Knowledge
Engineering (2001): 239-276.

ully .
lasaris

Measurement Scales (3/4) - Examples

* Example, suppose that we have the following ranking of software
tickets by severity

Level

6

Severity

Blocker
Critical

Major

Normal

Minor

Trivial

Description

Prevents function from being used, no work-
around, blocking progress on multiple fronts

Prevents function from being used, no work-
around

Prevents function from being used, but a work-
around is possible

A problem making a function difficult to use but
no special work-around is required

A problem not affecting the actual function, but
the behavior is not natural

A problem not affecting the actual function, a
typo would be an example

ully .
lasaris

Measurement Scales (4/4) - Examples

* |s it meaningful to use the weighted average to compare two
projects in terms of severity of the open issues?

Order
6
5
4
3
2

1

Severity

Blocker

Critical
Major
Normal

Minor

Trivial

P1
2

36
25

15
2

121

P2
10

19
22

32
5

113

Let’s define the following metric:
Sev(P,)=avg () issues,* weight,) @

Sev(P,)=avg(2+6+36%5+25*4+15%3+2+2+121%1)=
Sev(P,)=a g(10*6+19*5+22*4+32*3+5*2+113*1) 77

A , BN
Are the projects the same

according to our metric? Is there
the “same distance” from a
critical ticket to a blocker that
there is between minor and
“trivial? /

ally
lasarls

- e
Direct vs Indirect Measures (1/2)

* Some measures are harder to collect or are not regularly
collected

— Direct: from a direct process of measuring

- Indirect: from a mathematical equation in the world of symbols

< T

Variable assigned a

Derived ST value by applying the .. .)
Measure Measure measurement function Th'lS 1S What in |SO/ | EC
to two or more values of
base measures 1 5939 we refer as base
Measurement Algorithm for combining measure and derived
Measurable Function two or more base
Concept measures measure
Base Base Variable assigned a
Measure Measure value by applying the

method to one attribute

Measurement Measurement Operations mapping
Method Method an attribute to a scale

Entity
Property relevant to
information needs

ally .
lasaris

Direct vs Indirect Measures (2/2)

* Direct
- Number of known defects
* Indirect
- Defects density (DD)
DD= known def(.ects
product size

- COCOMO, measure of effort
E=a-KSLoC’-EAF

5
where b=0.91+0.01 Z SF,
i=1
a=2.94

EAF = Effort Adjustment Factor
SF = Scale Factors

ally .
lasaris

- e
Internal vs External Attributes (1/4)

* Generally, it easier to collect measures of length and
complexity of the code (internal attributes of product) than
measures of its quality (external attributes)

- Internal attribute: internal characteristics of product, process,
and human resources

- External attributes: due to external environment

ally .
lasaris

N
Internal vs External Attributes (2/4)

* One of the aims of Software Engineering is to improve the
quality of software

Software
Software Product
Process Product Effects

influences influences influences

| Attributes
of Quality

External
Quality

Internal
Process

Quality Quality

Attributes Attributes In use
cEpeFds ‘on d_epeFds ‘on _de;Ends_on
Process Measures of Measures Quality
Measures Internal Of external Measures
quality quality Inuse

ally .
lasaris

Internal vs External Attributes (3/4)

* The mapping of internal attributes to external ones - and
then quality in use - is not as straightforward

&

internal attributes external attributes

~ ~subcharacteristic ”

‘attribute * I @

= ~characteristic -

ally
lasarls

Internal vs External Attributes (4/4)

* The mapping of internal attributes to external ones - and then
quality in use - is not as straightforward (example: reliability)

attribute * nr. of

failures over

How many faults were . a period of
detected in reviewed scharacteristic - time

?
P)r(i%%t : external attributes

A=Absolute number of faults
detected in review
B=Number of estimated faults to

be detected in review (using past

history or reference model)

Is there a relation
between the two?

ASSUMPTION (!): fix internal mistakes to fix the corresponding failure(s)‘.]_gS aris

Objective vs Subjective Measures

Objective: the same each time they are taken (e.g.
automated collected by some device)

- e.g., LOCs
Subjective: manually collected by individuals

- e.g., time to use a functionality in an application

ally .
lasaris

SOFTWARE METRICS - SIZE

ally .
lasaris

44-109

Various Measures of Size

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.

[03] */

[04] public class PrimeGenerator

[05] {

[06] private static boolean[] crossedOut;

[07] private static int[] result;

[08] public static int[] generatePrimes(int maxValue){
[09] if (maxValue < 2){

[10] return new int[0];

[11] telse{

[12] uncrossIntegersUpTo(maxValue);

[13] crossOutMultiples();

[14] putUncrossedIntegersIntoResult();

[15] return result;

[16]

[17]1 }

[18] }

lasaris

45-109

Various Measures of Size

LOC =18 * multiples. Repeat until there are no more multiples
(Lines Of Code) , T the array.
I [04] public class PrimeGenerator
cLoc=3 I
= [06] private static boolean[] crossedOut;
(Commented A private static int[] result;
Lines of Code) [08] public static int[] generatePrimes(int maxValue){
[09] if (maxValue < 2){
[10] return new int[0];
[11] telse{
[12] uncrossIntegersUpTo(maxValue);
[13] crossOutMultiples();
[14] putUncrossedIntegersIntoResult();
[15] return result;
[16] }
[171
[18] 1}

lasaris

46-109

Various Measures of Size

NLOC =15

(Non-Commented

Lines Of Code)

[01] *
[02] =*
[03] */

multiples. Repeat until there are no more multiples
in the array.

[04] public class PrimeGenerator

[05] |
[06]
[07]
[08]
[09]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18] }

private static boolean[] crossedOut;
private static int[] result;
public static int[] generatePrimes(int maxValue){
if (maxValue < 2){
return new int[0];
}else({
uncrossIntegersUpTo(maxValue);
crossOutMultiples();
putUncrossedIntegersIntoResult();
return result;

}
}

lasaris

47-109

Various Measures of Size

NOC =1

(Number Of
Qlasses)

NOM =1
(Number of
Methods)

NOP =1
(Number of

Packages)

[01] * multiples. Repeat until there are no more multiples

[02] =*
[03] */

in the array.

[04] public class PrimeGenerator

[05] {
[06]
[07]
[08]
[09]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18] }

private static boolean[] crossedOut;
private static int[] result;
public static int[] generatePrimes(int maxValue){
if (maxValue < 2){
return new int[0];
}else({
uncrossIntegersUpTo(maxValue) ;
crossOutMultiples();
putUncrossedIntegersIntoResult();
return result;

}
}

lasaris

Measures of Size Good for?

* Size is used for normalization of existing
measures

— from the example before, it would be much more useful to report a
comments density of 16% (3/18) rather than 3 CLOCs = Why? J

_CLOCs _ 3

= =—=0.1
LOCs 18 0.16

CD

ally .
lasaris

Measures of Size Good for?

* Example, using comments density to compare Open Source
projects after normalization

100%
90%
80%
70%
60%
50%
40%

Comment Density

30%
20%
10%

0%

mean = 0.1867
median = 0.1674
stdev = 0.1088
correl = -0.00787

What is a good

1.E+00 1.E+01

1.E+02 1.E+03 1.E+04 1E+05 1.E+06 1.E+07
Project Size in Lines of Code (LoC =CL + SLoC)

1.E+08

reference value
for “comments
density” in your
opinion?

h _/

0. Arafat and D. Riehle, “The comment density of open source software code,” in 31st International Conference on Software
Engineering - Companion Volume, 2009. ICSE-Companion 2009, 2009, pp. 195-198.

ally .
lasaris

Measures of Size Good for?

* Size can give a good rough initial estimation of effort,

although...

Software LOCs How would you compare

Microsoft Windows Vista ~50M Mozilla Firefox with the
. Linux Kernel in terms of

Linux Kernel 3.1 ~15M maintenance effort?

Android ~12M

Mozilla Firefox ~10M

Unreal Engine 3 ~2M

— Measures of source code size should *never* he used to assess

the productivity of developers A ,@f ‘Why?

ally .
lasaris

Measures of Size Good for?

» Size can be used for comparison of projects and across
releases

| E

| £

| :

‘ I ‘ L]

| B

| _

, el
03 E [: :
[OF] < i
= :
(@) £ £
@ | §
— http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
ully

lasaris

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Another Observation about LOCs

“The task then is to refine the code base to better meet customer
need. If that is not clear, the programmers should not write a line of
code. Every line of code costs money to write and more money to

support.”

Jeff Sutherland, one of the main proponents of the
Agile Manifesto and the SCRUM methodology

ally .
lasaris

SOFTWARE METRICS - COMPLEXITY

ally .
lasaris

- e
Cyclomatic Complexity (CC)

* G=(N,E) is a graph representing the control flow of a
program. N=nodes, E=edges

* Cyclomatic Complexity is defined as:

V(G) - IE I - IN I + P, where p=nr. of entry/exit points,usually 2

— Assumptions: higher complexity of the program flow graphs, more
complex testing process for the source code

ally .
lasaris

55-109

Cyclomatic Complexity (CC)

CC=3

CC of method
generatePrimes
v(G)=|E|-|N|+3
v(G)=9-9+3=3

Note in this
code we have
two return
statements +
one entry
point

Typical ranges
1-4 low

5-7 medium
8-10 high

11+ very high

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.

[03] */

[04] public class PrimeGenerator{

private static boolean[] crossedOut;

private static int[] result;

public static int[] generatePrimes(int maxValue) {

[05]
[06]
[07]
[08]
[09]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[177 }

}

if (maxValue < 2){
return new int[0];

}else({
uncrossIntegersUpTo(maxValue);
crossOutMultiples();
putUncrossedIntegersIntoResult();
return result;

lasaris

Example by using CC

* The following code structure from a 2008 students’ project
implementing chess: one method with 292L0Cs and 163 CC

Details
(Click on a rectangle to view details)

Project: Checkers Team5
Package: it.unibz.inf.project5.checkers.game
Total Class Count: 8
Concrete Class Count: 8
Abstract Class Count: 0
Afferent Coupling Count (Ca): 1
Efferent Coupling Count (Ce): 1
Abstractness (A): 0.0
Instability (I): 0.5
Distance (D): 0.5
Volatility (V): 1
File: GameBoard.java

Class: GameBoard
NCSS: 811

Method: eatCoin(Movement, Movement, Coin)
NCSS: 292
CCN: 163
WCCN 15 [JCCN 69 B CCN 10-24 B CCN 25+ B N/A

ully .
lasaris

57-109

Example by using CC

* Let's decompose a bit such huge method

public boolean eatCoin(Movement mov, Movement eatMov, Coin coin)
throws IOException({
//Controls if the eatMove is in the board, if not return
if (!canMove(eatMov)) {
System.out.println("You can't eat this coin");
return false;

}

try{
//If it is a coin

if(!this.board[mov.row][mov.col].isKing()){

//If the coin to eat isn't a king
System.out.println("nextRow " + mov.nextRow + "
nextCol " + mov.nextCol + " isKing " +

this.board[mov.nextRow][mov.nextCol].isKing())
if(!this.board[mov.nextRow][mov.nextCol].isKing()){

14

ully .
lasaris

Example by using CC

//Mhite king

if(coin.checkColour()
//If more then one coin can be eat the plaer have to make a choose
if(((checkField(tempMovl) == 1 && checkField(newEatMovl) == 0) || (checkField(tempMov2) == 1 && checkField(newEatMov2) == 0)) && ((checkField(
== 1 && checkField(newEatMov3) == 0) || (checkField(tempMov4) == 1 && checkField(newEatMov4) == 0)) && ((checkField(tempMovl) == 1 &&
checkField(newEatMovl) == 0) || (checkField(tempMov3) == 1 && checkField(newEatMov3) == 0)) && ((checkField(tempMov2) == 1 && checkField(newEa

(checkField(tempMov4) == 1 && checkField(newEatMov4) == 0))){

.moveCoin(window.nextYClick, window.nextXClick);

.preXClick = window.nextXClick;

.preYClick = window.nextYClick;

.secondClick = false;

.anzClick = 1;

.jTextArea.setText("Scegli che pedina mangiare");

while (!window.secondClick){}

if((window.nextXClick/50==tempMovl.nextCol && window.nextYClick/50==tempMovl.nextRow) || (window.nextXClick/50==newEatMovl.nextCol &&

window.nextYClick/50==newFatMov1.nextRow)){

eatCoin(tempMovl, newEatMovl, coin);

0y |1

window
window
window
window
window
window

¥

else{

= -1){

if ((window.nextXClick/50==tempMov2.nextCol && window.nextYClick/50==tempMov2.nextRow) || (window.nextXClick/50==newEatMov2.nex
window.nextYClick/50==newEatMov2.nextRow)){

}
else{

eatCoin(tempMov2, newEatMov2, coin);

if((window.nextXClick/50==tempMov3.nextCol && window.nextYClick/50==tempMov3.nextRow) ||
(window.nextXClick/50=—=newEatMov3.nextCol && window.nextYClick/50==newEatMov3.nextRow)){
eatCoin(tempMov3, newEatMov3, coin);
}
else{
if((window.nextXClick/50==tempMov4.nextCol && window.nextYClick/50==tempMov4.nextRow) ||
(window.nextXClick/50==newEatMov4.nextCol && window.nextYClick/50==newEatMov4.nextRow)){
eatCoin(tempMov4, newEatMov4, coin);
}
else{
boolean ret = false;
while(!ret){
i = (int) (HMath.random() * 4);
switch (i){
case 1:
if(checkField(tempMovl) == 1 && checkField(newEatMovl) == 0){
window.nextXClick = tempMovl.nextCol;
window.nextYClick = tempMovl.nextRow;
eatCoin(tempMovl, newEatMovl, coin);
ret = true;

ally i
lasaris

Complexity A /

A word of warning is that metrics take typically into account syntactic
complexity NOT semantic complexity

* Both of the following code fragments have the *same* Cyclomatic
Complexity - which code fragment is easier to understand?

[04] public class PrimeGenerator [04] public class A

[05] { [05] {

[06] private static boolean[] crossedOut; [06] private static boolean[] c;

[07] private static int[] result; [07] private static int[] b;

[08] [08]

[09] public static int[] generatePrimes(int maxValue) { [09] public static int[] generate(int m) {
[10] if (maxValue < 2){ [10] if (m < 2){

[11] return new int[0]; [11] return new int[0];

[12] }else{ [12] }else{

[13] uncrossIntegersUpTo(maxValue); [13] methodOne (m) ;
[14] crossOutMultiples(); [14] methodTwo () ;
[15] putUncrossedIntegersIntoResult(); [15] methodThree () ;
[16] return result; [16] return b;

[17] } [171] }

[18] } [18] }

« As well, as in the initial motivating example, a word of warning
when comparing projects in terms of average complexity

ully .
lasaris

OBJECT ORIENTED METRICS

ally .
lasaris

- e
Chidamber & Kemerer Suite (1994!)

* WMC: Weighted methods per class
— nr. of methods per class

* DIT: Depth of Inheritance Tree
— max inheritance level from the root to the class
* NOC: Number of Children
— nr. Of direct descendants of a class
* CBO: Coupling between object classes
— Class A coupled with B, if Ais using methods/attributes of B
* RFC: Response for a Class

— count of methods that can be executed by class A responding to
a message

e LCOM: Lack of cohesion in methods

— (see next slide!)

ally .
lasaris

More recent metrics

ndepend
metrics

coupling
Eiferent coupling (Ce): numbsarof

types within the package that depand

instability

Instability (1): mtio ofe flaent coupling to total coupling,

which indicates the package’s msilience to change

abstractness

Abstractness (i) mtio of the numberof
intemal akstract typas to the numberofintemal

distance from main sequence:
zone of pain and zone of uselessness

on types outside this package I=Ce/f (Ce+ Ca) types S =
Warsion 1.1 Afferent l:.oupi_ng {Ca): numker of 1=0 indicates a completely stable package, painful to madify A=0 indicates a complete ly concrete package 5 L Amemblies that are
types outside the paclage that depend 1=1 indi : bl la — ™ abstract and
Copyright € Corillian Corporation, 20 thin thi Ta =lindicates a completely irstable package A=1 indicates a completely abstmct package S .
All rights resared o types within this packags < a instable are ! Mainsequence,
- . potentially useless. A+l=1
References ‘OhGSIOH mckage " =|i‘ . —— meprasants optimal balance
wvw.ndepend com | Documentation| Ilalajlinnd. Cohesion (H).ave mge number of intemal / [} b \ be“"fe"' akstractness and
Metrics definitiors rhtionshifs pertyp "——Iv ‘-ﬁ—___"‘ .E ~ stability
“ .)
Agik Principles, Pattams, and Practices in H=R+1}/ N wher = b dn & the ?ormalmgd
obert C Martin, Prentice Hall PTR, R= numberoftype mlations hips intarnal to the pckage, r /" = _,__f — sei‘HL:?mr\:\]n;r;a;nj
and D e e _______.p" =] . '
.) <
metrics] . N = number of types in the mackage '/ ‘é*' o Aot e D+ 07
éﬁ Eusz Classes inside an asembly showld be strongly related, the Ce=2 N=8 d w concrete and stable \\ might be problematic.
line saf Coxde (LEC) ! .ii :‘E T cohesion should be high. On the other hand, teo high values = = W are potent ially hard to ~ Haweer, in the real world it
E. Linesof Comments 37 B B may indicate overcoupling. A goad range 5 1.5 < H £ 40, Ca=5 R=12 5 i \\ is very hard to avoid such
=P Commen t?] L] mblies. Allow a small
5" Hiumber 2L mShuctans 11 1=37=0.29 A=3/8= 0375 ¥ - :::ema?e ofyouf 5
o e N depth of number of M= 13/8= 1625 Stable I_ t bility, | Instable aisemblies toviolate this
Humber ofTypes EHEE H : 2 nstapiliy, constraint.
Number o EEnE inheritance tree children
Humber ofrethods [111]] . . . =
T e e B The depth of inhertance tree (DIT) Mumber of children NoC=7 [asso‘iaﬁo" ra"k Iwel
Humber ofvan dkdes] fora class arastructure E its (NOQ fora class is DIT=0
H :{::::g:g:gg[i? =§;=n numberof base clases (including the numberof types he“eeﬂ ‘I asses Google Page Rank applied to typas If a package depends an nothing or famewark
2 ;‘efa?o‘;%g:he:m w0 = SystemObject thus DIT 2 1) tdﬁ;?bglfis;}rgcﬂ The amociation betwesn clases or methods packages, then it & Level 0
2 dstractmess (g B Types where DIT > & might be hard ¥ ¥ NOC=1 4 NOC=3 (ABC) & the numberof members Ty o Ty @ the types (methods) If a package depends on packages of at most
B DlstTcehomman wouence (D) W - fo maintain. Mumber of children DIT=1 of athers types that a class directly that depend on type (method) LevelM, then it is Level M+1
';a‘ﬁc -n: Not a rule since sometime classes foran interface & the wses in its the body of its methods A thenthe mnkof AE ff a package & part of a circular dependency, then
Lq'doéﬂ ﬂicfoéﬂp'ﬂlmm]m == inherit from tier classes which have :-Inl::mI:En'rle?'lftilyt’FES that r A4 = dad X OR({T) it & Leval M/ Ifa package depends on
T I a high DIT. E.g, the average depth P noc=o 5 L LB e Dl o= (4)=(1-d) Z_; Cally somethingof level N/A, it & Level /A
n tmee iz] af inheritance for fram ework DIT=2 “\\ r ' '
:;s:‘-ub::g;g‘clmnn [Elg::s; SABC) : chasses which derive from "-..._______‘_1‘] d =damping factor, typically L85 leval 2
D afinhertm e Tree [DIT) H System. Windows. Forms.Controlis = Test types with Figh rank
Repon s for aType FFT) L 53 r ‘\\ Al 4 thoroughly, as defects theregre === ===
* Rogquires PDES Lagical LOC: number of 1 lack of cohesion of methods o] likely to be more catastraphic levall
soquence points language and shyle indapandont. ABC=5

2 Require source code.
Currently for O anly, VB saon Meatric is nat

The single msponsibility principle states that a
class should not have morme than one reason to

i e

additiv. change Sucha clas & cohesive leval O
 Vearies depending on cmpiling for releaze ar M A Ay
aehig. 10(:,»:—1_26'_*' v r. ‘\\‘ [S
*0me namespace defined over N assemblies = « . Y e
B po— M| > > s
Framework
Fa‘kag es M =static and irstance methods in the class, '> L o
——— =1 1 il s = = - -
e F = irstance fiekds in the class, q:lomat: :ompla"ty
asz=mbly | M, = methods accessing field £ and = L]
o T R The numberofdecisions that can be taken ina precedurs
1 |5| = cardinality ofset & - 4 .)) .
q : Cydomatic Complaxity (CC) IL Cyclomatic Complaxity (ILCC)
T : Ina class that & utterly cohesive, every methad L ¢ Nubn;bero‘f these expessiors in the method Nl.!mbergf dis:r:Lct.ca:le o.ffseI:Lt:rgeted by
' L] aocesses eve ry instance field ¥, - oy J.IJI'I'Ip" e netnictions Language
'I A, if. while, for. foreadh, case. default, incle pe nclent
Z Mlx =|Mx|F| | r continue goto, &8 || catch ILCC s genermlly larger than CC
l | ?: n
[l]] [1 oo . ':>' ?: (temary operator), 7? {nonnull operator) ILCCtit) =1
50 = %
These exprasions are not countad ILCEL or) = 2

Ahigh LLOM walue genemlly pinpoints a poorly

. alsa, do, switch, try, wing thmow, firally eturn,
cohesive class

ey object creation, method call, field access

LCOM = 0.24

8
=

=)
1]

LCOM = 0 ILCC(foreadch) = 3

Ore class with fiue Froe clazes, sach Frue constricto ree ac h st five fiekd s ILECC > 20 are hard to understond, TCC > 40
y depends on x ?fgﬁ Wh?-’:I-COM >08 0\22 IFl > R;awd Ina] fiekls eachwith a withore fiekd ard a (black: two getters that acee s two CC > 15 are hard to understand, CC > 30 are en;m;r:qmpjg:qu; should be split :.rno o
 is used b h MdT'gm :w‘:ﬁ i getterand wtter gete rand wtter fields (bley ard thee getters that extremely complex and should be spiit into el meathonrs funoss qenerated vodd

Wy o avovd such non-cohesive types. access three fiekd s (gree n) smaller methods (unless generated codel &

ally .
lasaris

http://www.hanselman.com/blog/content/binary/NDepend%20metrics%20placemats%201.1.pdf

FINAL REMARKS

ally .
lasaris

N o
Final Remarks

* Given all that we have seen, what are your thoughts on the

following metric (from the 90’s but still used) computing the
Maintainability Index (MI) of a project:

MI=171-5.2-In(V)—0.23-CC—16.2-In(LOC)

T

Where V is the Halstead volume, measuring the complexity of code based on
length and vocabulary used (in the code)

V=N=xlog,n

where N=N,+N,

N,=Total operators(like>, ;,), etc.., N ,=Total operands like j ,i,0,etc...)
N=n+n,

n,=unique operators, n,=unique operands

In your view, what is good and what is bad
about this metric?

Note: you might see different versions of Ml implemented in different tools - this is the original

formula that has a range (171,-=), other variations go in the (0,100) range, e.g. look at I.I .
Microsoft Visual Studio documentation for details lasaris

The Goal Question Metrics
(GQM) Approach

ally .
lasaris

Software Measurement - Pitfalls

* Common pitfalls in software measurement

- Collecting measurements without a meaning
* Measurement must be goal-driven
- Not analyzing measurements
* Numbers need detailed analysis
- Setting unrealistic targets
* Targets should not be uniquely defined based on the numbers
- Paralysis by analysis

* Measurement is a key activity in management, not a separate activity

Count what is countable.

Measure what is measurable.

And what is not measurable, make measurable.
Galileo Galilei

ally .
lasaris

- e
The GQM Approach

* Introduced in 1986 by Rombach and Basili
- GQM stands for Goal Question Metric

* |t is a deductive instrument to derive suitable
measures from prescribed goals

* The paradigm is initiated by Business Goals (BG)

ally .
lasaris

Examples of Business Goals

* Improve the quality of a software product

* Understand the development process for a given project
* Enhance the inspection process in the testing phase

* Decide on the adoption of a new software tool

* Evaluate costs of a transition to a new sw solution

* Assess the efficiency of the development process

* Evaluate the current testing strategy

ally .
lasaris

- s
The GQM Approach

* From the BGs we can derive the GQM

* The Goal Question Metric top-down approach consists of
three layers

- Conceptual layer - the Measurement Goal (G)
— Operational layer - the Question (Q)

- Measurement layer - the Metric (M)

ally .
lasaris

Goal-oriented Measurement

* Measurements must be goal-oriented

* Following typically a structure as the GQM approach:

Measurement
Goal (G)

Question (Q)

Metric (M)

Business objectives, key
performance indicators,
projects targets,
improvements goals

Review

Approaches to reach the
goals, improvement
programs, change
management, project
management techniques

Define

Business, employee,
products, processes

What are the goals to reach?
What do | need to improve?

L

How do I reach my
objectives? | will | improve?

L

Am | doing good or bad? Am |
doing better or worse?

ally .
lasaris

Goal-oriented Measurement

Starting with objectives which can be personal or company-wide it is determined
what to improve. Goals are translated into what should be achieved in the context

of a software project or process or product

Business objectives, key
Measurement performance indicators,
Goal (G) projects targets,

improvements goals

What are the goals to reach?
What do | need to improve?

Review

Approaches to reach the
goals, improvement
Question (Q) programs, change
management, project
management techniques

Define

Business, employee,
products, processes

Metric (M)

v

How do I reach my
objectives? | will I improve?

L

Am | doing good or bad? Am |
doing better or worse?

ally .
lasaris

Goal-oriented Measurement

Identification about how the improvement should be done
Asking questions helps in clarifying how the objectives of step 1 will effectively
(and efficiently) be reached

Business objectives, key What are the goals to reach?
Measurement perforphance indicators, What do | need to improve?
Goal (G) proje ts targets,
impyovements goals
Review
v v

Approaches to reach the

. How do I reach my
goals, improvement

objectives? | will I improve?

Question (Q) programs, change
management, project
management techniques
ﬂ Feedback loop
Define (understand)
v
Business, emp|oyee, Am | doing good or bad? Am |
products, processes doing better or worse?

Metric (M)

ally .
lasaris

Goal-oriented Measurement

Identify appropriate measurements that will indicate progress and whether the

change is pointing in a good direction

Busingss objectives, key

Measurement performance indicators,

Goal (G) projgcts targets,
impJjovements goals

Review

pproaches to reach the
oals, improvement
programs, change
management, project
management techniques

Question (Q)

What are the goals to reach?
What do | need to improve?

iyt

How do I reach my
objectives? | will | improve?

Feedback loop

Define

Business, employee,

Metric (M) products, processes

v

Am | doing good or bad? Am |
doing better or worse?

@

ally .
lasaris

Goal-oriented Measurement

The primary question must be “What do | need to improve?” rather than “What

measurements should | use?”

Software measurements should follow from the organizational needs

Business objectives, key

Measurement performance indicators,

Goal (G) projects targets,
improvements goals

Review

Approaches to reach the
goals, improvement
Question (Q) programs, change
management, project
management techniques

Define

Business, employee,
products, processes

Metric (M)

What are the goals to reach?
What do | need to improve?

L

How do I reach my
objectives? | will I improve?

!

Am | doing good or bad? Am |
doing better or worse?

ally .
lasaris

N .
The Measurement Goal

e The MG is structured in 5 items

- Object of Study (0S): what we want to measure - as a model
— Purpose: is the major verb

— Focus (F): the perspective to which one looks at the OS

- Point of view: generally is a person or a category of people

- Context: the environment in which the OS is observed

ally .
lasaris

The Measurement Goal

Here are some possible and common used words for each item
of the Goal structure

Object of study: process, product, model, metric, etc

Purpose: characterize, evaluate, predict, motivate, etc. in
order to understand, assess, manage, engineer, improve, etc.
it

Point of view: manager, developer, tester, customer, etc.

Perspective or Focus: cost, effectiveness, correctness,
defects, changes, product measures, etc.

Environment or Context: specify the environmental factors,
including process factors, people factors, problem factors,
methods, tools, constraints, etc.

ully .
lasaris

The Questions - Example

The Question is a link between OS and F

BG,: improve the software inspection process

MG : Analyze the current inspection process to evaluate it in terms

of duration testing from the point of view of the testers in a small
software house

- 0S: Inspection method
- Focus: cost

- Q Link: weekly labor of a tester to inspect a code

Q : What is the cost of the weekly labor of a tester to inspect a code
with the given process?

ally .
lasaris

The Metrics - Example

* Metrics are a set of measures for OS, F, and the Q Link

* Example

* | can derive the following metrics

M1= weekly salary * effort * # testers

M2= weekly salary * effort * duration of the inspection

ally .
lasaris

SQALE (Software Quality Assessment
Based on Lifecycle Expectations)

ally .
lasaris

——
SQALE

* SQALE (Software Quality Assessment Based on Lifecycle Expectations)
is a quality method to evaluate technical debts in software projects
based on the measurement of software characteristics

* |t allows to discuss here how quality characteristics have been
mapped into numerical representations

ally .
lasaris

.
SQALE

* SQALE quality model is based around three levels, the first one
including 8 software characteristics

Level 2 Level 3

Characteristic Sub- Source Code
Characteristic Requirement

\ Reusability

\ Portability

| Maintainability

\ Efficiency

\ Changeability

|
|
|
\ Security \
|
|
|

| Reliability

Testability -.lgsar.is

——
SQALE

* The second level is formed by characteristics

Level 1 Level 3

Characteristic Sub- Source Code
Characteristic Requirement

| Reusability

| Portability

\ Maintainability

<:1 Understandability
Readability

Fault tolerance

|

|

|
Architecture related reliability |
Resource related reliability |
Synchroniation related reliability |
|

|

|

|

|

\ Efficiency

\ Changeability

Statement related reliability
Logic related reliability
Data related reliability

Testability _E Integration Testing Testability
Unit Testing Testability

|

|

—
\ Security \ :

|

|

—

| Reliability

ally .
lasaris

.
SQALE

* The third level is linking language specific constructs to the sub-
characteristics

Level 1 Level 2

Characteristic Sub- Source Code
Characteristic Requirement

\ Reusability \
\ Portability \
‘ Maintainability }_ﬂ Understandability |
Readability \
Securit
‘ y ‘ Fault tolerance ————t{ Switch statements have a 'default’ condition |
) . A h' . .I.
‘ Efficiency ‘ rchitecture related.rel'le.lbl ity |
Resource related reliability |
e el — No assignement ' =" within 'if’ statement |
‘ Changeability ‘ Synchroniation related reliability] - e
Statement related reliability | — No assignement ' =" within 'while’ statement |
‘ Reliability Logic related reliability — Invariant iteration index |
Data related reliability | N |
ili Coupling between objects (CBO) <7
Testability Integration Testing Testability }—/ pting IECHIICE0)
Unit Testing Testability }_/-—{ Number of parameters in a module call (NOP) <6 |

iy
lasaris

SQALE - Remediation Function

* For each of the source code requirements we need to associate a
remediation function that translates the non-compliances into
remediation costs

* |n the most complex case you can associate a different function for
each requirement, but in the most simple case you can have some
predefined value for categories in which code requirements are in:

Type1
Type2
Type3
Type4d
Type5

Corrigible with an automated tool, no risk

Manual remediation, but no impact on compilation
Local impact, need only unit testing

Medium impact, need integration testing

Large impact, need a complete validation

Change in the indentation

Add some comments

Replace an instruction by another
Cut a big function in two

Change within the architecture

0.01
0.1
1
5
20

ully .
lasaris

SQALE - Non-Remediation Function

* Non-remediation functions represent the cost to keep a non-
conformity so a negative impact from the business point of view

NC Type Description Non-Remediation
Factor

Blocking
High
Medium
Low
Report

Will or may result in a bug

Wil have a high/direct impact on the maintainance cost

Will have a mediunvpotential impact on the maintainance cost
Wil have a low impact on the maintainance cost

Very low impact, it is just a remediation cost report

Division by zero
Copy and paste
Complex logic
Naming convention
Presentation issue

5000
250
50

15
2

ully .
lasaris

e
SQALE - Indices

* Sums of all the remediation costs associated to a particular hierarchy of
characteristics constitute an index:

— SQALE Testability Index: STI

— SQALE Reliability Index: SRI

- SQALE Changeability Index: SCI
- SQALE Efficiency Index: SEI

— SQALE Security Index: SSI

— SQALE Maintainability Index: SMI
— SQALE Portability Index: SPI

— SQALE Reusability Index: SRul

- SQALE Quality Index: SQI (overall index)

* Note that there is a version of each index that represents density, -..
normalized by some measure of size lasaris

N
SQALE - Rating

* Indexes can be used to build a rating value:

Rating = estimated remediation cost
estimated development cost

Rating | Upto | Color Example, an artefact that has an estimated

A 1% - development cost of 300 hours and a STI of 8.30

5 0o, hours, using the reference table on the left

C 4%

D 8%

8.30 h
oo Rating=——"—=2.7%->C
E |] ating=z-" 0
ol

lasaris

SQALE - Rating

* The final representation can take the form of a Kiviat diagram in
which the different density indexes are represented

Reusability

Testability

Quality Target

Current version

Maintainability
Reliability

ally .
lasaris

SQALE - Rating

This is the view you find in SonarCube

http://www.sonarqube.org/sonar-sqale-1-2-in-screenshot

S0ALE Rating Remediation Cost Lines of Code
3,677K &

31,“53 days &

SOALE Remediaticn Cost

T

SQALE Kiviat

1nn

m

21

- 50,000
- 45,200
< 40,000
- 35,000
.+ 30,000

- 25,000

- 20800

¢ N5 000

FTTT

Fila Distribution by SQALE Rating

SQALE Pyramid Cost @ Total W

Potatity [N s 310531

Sosurity | 8018 26020.7
Eficiency 8486 252279
Changeatiity I Bi142 246703
Rediability = @000 | 36180 18565.1
Testablity [143471 148474

SQALE Sunburst

ally .
lasaris

N
SQALE

* Given our initial discussion of measurement pitfalls, scales and
representation condition, the following sentence should be now
clear:

“Because the non-remediation costs are not established on an
ordinal scale but on a ratio scale, we have shown [..] that we can
aggregate the measures by addition and comply with the

measurement theory and the representation clause.”

Letouzey, Jean-Louis, and Michel Ilkiewicz. "Managing technical debt with the SQALE method." IEEE software 6
(2012): 44-51.

ally .
lasaris

Case Studies

ally .
lasaris

- e
Case Study

* Suppose that we have the some projects on which we
computed the following set of metrics

Project01 Project02 Project03 Project04 Project05 Project06
LOCS 4920 5817 4013 4515 3263 5735
packages 29 49 33 35 25 33
classes 126 199 159 181 75 198
methods 658 862 644 817 415 715
attributes 153 196 227 285 78 177
parameters 301 459 393 440 182 415
local vars 493 533 325 397 339 416
calls 2051 2830 1844 2297 917 2015
Proj status ~ complete. complete| incomplete] complete incomplete| complete

— What can you say about the projects?

ally .
lasaris

- s
Case Study

 What if we consider relative instead of absolute values?

* This would allow to compare the values across projects

Project01 Project02 Project03 Project04 Project05 Project06
LOCs/NOM 7.48 6.75 6.23 5.53 7.86 8.02
NOC/NOP 4.34 4.06 4.82 5.17 3.00 6.00
NOM/NOC 5.22 4.33 4.05 4.51 5.53 3.61
att/NOC 1.21 0.98 1.43 1.57 1.04 0.89
param/NOM 0.46 0.53 0.61 0.54 0.44 0.58
locvars/INOM 0.75 0.62 0.50 0.49 0.82 0.58
Calls/INOM 3.12 3.28 2.86 2.81 2.21 2.82 highest value
Proj status | complete] complete] incomplete] complete] incompletel complete| lowest value
ully

lasaris

Case Study

* What if we make sense out of the metrics by using the GQM
approach?

G1. Analyze the software product (object of study) for the purpose of
evaluation (purpose) with respect to the effectiveness of code structure

(quality focus) from the point of view of the development team (point of
view) in the environment of our project named xyx (environment).

Q1.1. what is Q1.2. what is

the structure of the coupling

the system? within the
system?

M1.2.2
param/NOM

M1.1.1 M1.1.2 M1.1.3 M1.2.1
NOC/NOP LOCs/NOM NOM/NOC Calls/NOM

ally .
lasaris

Case Study

* What if we make sense out of the metrics by using the GQM
approach?

G1. Analyze the software product (object of study) for the purpose of
evaluation (purpose) with respect to the effectiveness of code structure

(quality focus) from the point of view of the development team (point of
view) in the environment of our project named xyx (environment).

Q1.2. what is
the coupling
within the
system?

Q1.1. what is
the structure of

the system?

M1.1.1 M1.1.2 M1.1.3 M1.2.1 M1.2.2
NOC/NOP LOCs/NOM NOM/NOC Calls/NOM param/NOM

@@ P1: 0.46] P5: 0.4

ally .
lasaris

Case Study

* What happens if we consider LOCs instead of NOMs?

G1. Analyze the software product (object of study) for the purpose of
evaluation (purpose) with respect to the effectiveness of code structure
(quality focus) from the point of view of the development team (point of
view) in the environment of our project named xyx (environment).

Q1.1. what is Q1.2. what is
the structure of the coupling

the system? within the
system?

M1.1.1 M1.1.2 M1.1.3 M1.2.1 M1.2.2
NOC/NOP LOCs/NOM N[@)\V/I\\[e]e; Calls/LOCs param/LOCs

DOTD
ully

lasaris

s
Case Study - The Overview Pyramid

* Another useful way to think in terms of relative values and thresholds
is to use the Overview Pyramid

* The Overview pyramid allows to represent three different aspects of
internal quality: inheritance, size & complexity and coupling

Inheritance ANDC | |
AHH | |
| Size & Complexity |] Nop Coupling
| | NOC
NOM NOM
[T ioc cALL ||
CYCLO FANOUT
NOP: Number of Packages ANDC: Average Number of Derived Classes
NOC: Number of Classes AHH: Average Hierarchy Height
NOM: Number of Methods CALL: Number of Distinct Method Invocations
LOC: Lines of Code FANOUT: Number of Called Classes

CYCLO: Cyclomatic Complexity

* |t provides both absolute and relative values that are compared against
typical thresholds

ally .
lasaris

I C ose to high :
I Close to average ANDC E
ﬁCIose to low AHH
16.21 NOP 14 .
289 L 227 Project 1
T.47 NOM 658 NOM 2.13
0.1 LOC 4920.0 1407 CALL 0.13
CYCLO 498.0 188 FANOUT
ANDC [ggele
AHH 0.28
10.04 NOP 23
NOC 231 .
6.74 NOM 862 NOM 2.43 PrOJeCt 2
0.11 LOC 5817.0 20098 CALL 0.16 5
CYCLO 674.0 336 FANOUT
ANDC L
AHH 0.28
11.25 NOP 16
3.57 NOC 180
6.23 NOM 644 NOM i
0.11 LaC 4013.0 1200 CALL 0.24 PrOJeCt 3
CYCLO 456.0 299 FANOUT S

= .ldsaris

Case Study - The Overview Pyramid. -~

I Close to high
I Close to average
I Cios< to low ANDC 0.07
AHH 0.28
14.0 NOP 17
NOC 238
5.52 NOM 817 NOM 1.92
0.11 LOC 4515.0 1574 CALL 0.21
CYCLO 535.0 331 FANOUT
ANDC

AHH
NOFP 11

62
415 NOM 1.67
0.1 [MNe 3263.0 697 caL [HEE
CYCLO 3510 80 FANOUT
ANDC
AHH
14.25 NOP 16
ERER NOC 228
8.02 NOM 715 NOM 2.0
0.13 LoC 5735.0 1431 CALL 0.17

CY¥CLO 757.0 257 FANOUT

- e
Case Study - The Overview Pyramid

Back to our initial project
Eclipse JDT 3.5.0

The overview pyramid

ANDC 0.0
At
29.42 NOP 45
17.82 NOC 1324
15.02 NOM 23605 NOM 2.19
0.2 LOC 354780.0 51765 CALL 0.07
CYCLO 72883.0 3804 FANOUT

I, iose to high
I Close to average
I C o5« to low

i

ally .
lasaris

Conclusions

* Measurement is important to track progress of software
projects and to focus on relevant parts that need attention

* As such, we always need to take measurement into account
with some “grain of salt”

* Still, collecting non-relevant or non-valid metrics might be
even worse than not collecting any valid measure at all

ally .
lasaris

Extra Slides

ally .
lasaris

List of some Acronyms

* LOGs: Lines of Code
* CC: McCabe Cyclomatic complexity

* Fan in: number of local flows that terminates in a module
* Fan out: number of local flows emanate from a module

* Information flow complexity of a a module: length of the module times the
squared difference of fan in and fan out

* NOM: Number of Methods per class

* WMC: Weighted Methods per Class

* DIT: Depth of Inheritance Tree

* NOC: Number of Children

* CBO: Coupling Between Objects

* RFC: Response For a Class

* LCOM: Lack of Cohesion of Methods

* ANDC: Average Number of Derived Classes

* AHH: Average Hierarchy Height ull :
lasaris

Measurement Experience

* Measurement Experience can have the form of:

- Analogies - Lemmas
- Axioms - Formulas,

- Correlations - Methodologies

- Criterions - Principles

— Intuitions - Relations

~ Laws — Rule Of Thumbs
- Theories

ally .
lasaris

Software Engineering Laws (1/4)

Bayes’ law

Dijkstra’s law

Glass’ law

for software

processindicators

systemOfMeasures
standards
experience

Simon’s law I

Humphrey's law

systemRequirements >

softwareProcess

methods
lifecycle
management

W

personnelResources

developmentStaff
users
customers

Corbato’s law
Weinberg’s law

Miller’s law

Parnas’ law

Curtis’

Ebert’s law

applicationDomain

softwareProduct

programs
documentations

softwareResources platformResources
COTS systemSoftware
ICASE hardwarelnfrastructureg

Mcliroy’s law Moore’s law
Basili’s law Cooper’s law

Example: Laws in
Software
Engineering: how
were these derived?

law

Lehman’s law

DeRemer’s law

lasaris

Software Engineering Laws (2/4)

“A human being can concentrate on
7+2 items at a time”

Information hiding in object
oriented programming

“Productivity is improved by

Pr(A|B) = Pr(B|A)*Pr(A) / Pr(b)
w) [—
e Bayes’ law processindicators Miller's law
“Testing can show
the presence but not g SystemOfMeasures , I
absence of errors” o Dijkstra’s law standards Parnas’ law -
experience Curtis’ law
Ebert's I
ert's law _
Glass’ law Simon’s law Humphrey’s law applicationDomain
softwareProcess softwareProduct
systemRequirements >
for software ng%?: programs
management documentations
W
personnelResources softwareResources olatformResources
dBVEIzF;:rintStaﬁ COTS systemSoftware
ASE
customers ICAS hardwarelnfrastructureg
Corbato’s law Mcliroy’s law Moore's law
Weinberg’s law Basili’s law Cooper’s law

reducing accidents and
controlling essence”

Lehman’s law

DeRemer’s law

ally .
lasaris

Software Engineering Laws (3/4)

“the user will never
know what they want

“Good designs

Bayes’ law processindicators until after the system V| require deep
“Requirement B . is in production” - application domain
deficiencies are the Everything put stemOfMeasures _ knowledge”
; together falls apart Parnas™Naw
prime source of sooner or later” standards -
A A \ bert’s law
Glass’ law Simon’s law I Humphrey's law/ applicationDomain \ Lehman’s law
\
softwareProcess softwareProduct
systemRequirements EE— methods 8 laws of software
for software I programs :
ifecycle ; evolution
management documentations
“The value of a < Davis’ law /s
model depends on 1 DeRemer’s law
the view taken,but 11_,-""
none is best for all I‘I;l
” ersonnelResources
purposes P softwareResources platformResources “What applies to
small systems does
develril[;r;lrintStaff l%ggsé SYSteTSUﬁwa re not app};y to large
customers hardwarelnfrastructures ones”
Corbato’s law Mcliroy’s law Moore’s law
Weinberg’s law Basili’s law Cooper’s law
ully

lasaris

Software Engineering Laws (4/4)

Bayes’ law processindicators Miller's law
systemOfMeasures Parnas’ law
Dijkstra’s law standards -,
experience Curtis’ law
Ebert’s law
Glass’ law Simon'’s law I Humphrey's law applicationDomain \, Lehman’s law
softwareProcess softwareProduct
systemRequirements >
for software ng%?: programs
management documentations

“‘the number of lines of Davis’ law
code a programmer can ,,--': ‘ : DeRemer’s law
‘tﬂ'm te n tZ fixed period of Software reuse reduces Perspective based L

ime Iffl © s?crz;:?e cycle time and inspections (along one
regaraiess o p e » PerS increases productivity eResoul dimension, for a 5
programming language de and quality specific stakeholder) are

“ . , YETE TS et 1 j

If pu_llders built \ users Itéigsé Z;‘fglgg neteffect/ve and d The number of transistors on an
buildings the way customers — € integrated circuit will double in about
programmers ‘ " 18 months.

Wrotg programs,) —

the first A Corbato’s law Mcliroy’s law |/ Moore’s law

woodpecker that e ; o : The number of radio

came along Weinberg’s law Basili’s law Cooper'slaw g | ommunications doubles every 30
would destroy months

civilization”

lasaris

References

N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical Approach, Third BHEES
Edition, 3 edition. Boca Raton: CRC Press, 2014.

C. Ebert and R. Dumke, Software Measurement: Establish - Extract - Evaluate -
Execute, Softcover reprint of hardcover 1st ed. 2007 edition. Springer, 2010.

Lanza, Michele, and Radu Marinescu. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-
oriented systems. Springer Science & Business Media, 2007.

Some code samples from Martin, Robert C. Clean code: a handbook of agile software
craftsmanship. Pearson Education, 2008.

Moose platform for software data analysis http://moosetechnology.org

ally
The SQALE Method http://www.sqale.org/wp-content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf lasaris

http://moosetechnology.org/
http://www.sqale.org/wp-content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109

