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Chapter 3. PROBABILITY THEORY BASICS

CHAPTER 3:
BASICS of PROBABILITY THEORY
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PROBABILITY INTUITIVELY

Intuitively, probability of an event E is the ratio between the number of favorable
elementary events involved in E to the number of all possible elementary events involved
in E .

Pr(E) =
number of favorable elementary events involved in E

number of all possible elementary events involved in E

Example: Probability that when tossing a perfect 6-sided dice we get a number divided
by 3 is

2/6 = 1/3

.

Key fact: Any probabilistic statement must refer to a specific underlying probability
space - a space of elements to which a probability is assigned.
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PROBABILITY SPACES

A probability space is defined in terms of a sample space Ω (often with an algebraic
structure – for example outcomes of some cube tossing) and a probability measure
(probability distribution) defined on Ω.

Subsets of a sample space Ω are called events. Elements of Ω are referred to as
elementary events.

Intuitively, the sample space represents the set of all possible outcomes of a probabilistic
experiment – for example of a cube tossing. An event represents a collection (a subset)
of possible outcomes.

Intuitively - again, probability of an event E is the ratio between the number of
favorable elementary events involved in E and the number of all possible
elementary events.
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PROBABILITY THEORY

Probability theory took almost 300 years to develop

from intuitive ideas of Pascal, Fermat and Huygens,
around 1650,

to the currently acceptable axiomatic definition of
probability (due to A. N. Kolmogorov in 1933).
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AXIOMATIC APPROACH - I.

Axiomatic approach: Probability distribution on a set Ω is every function
Pr : 2Ω → [0, 1], satisfying the following axioms (of Kolmogorov):

1 Pr({x}) ≥ 0 for any element (elementary event) x ∈ Ω;

2 Pr(Ω) = 1

3 Pr(A ∪ B) = Pr(A) + Pr(B) if A,B ⊆ Ω, A ∩ B = ∅.

Example: Probabilistic experiment – cube tossing; elementary events – outcomes of
cube tossing; probability distribution – {p1, p2, p3, p4, p5, p6},

∑6
i=1 pi = 1, where pi is

probability that i is the outcome of a particular cube tossing.

In general, a sample space is an arbitrary set. However, often we need (wish) to consider
only some (family) of all possible events of 2Ω.

The fact that not all collections of events lead to well-defined probability spaces leads to
the concepts presented on the next slide.
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AXIOMATIC APPROACH - II.

Definition: A σ-field (Ω,F) consists of a sample space Ω and a collection F of subsets of
Ω satisfying the following conditions:

1 ∅ ∈ F

2 ε ∈ F⇒ ε ∈ F

3 ε1, ε2, . . . ∈ F⇒ (ε1 ∪ ε2 ∪ . . .) ∈ F

Consequence

A σ-field is closed under countable unions and intersections.

Definition: A probability measure (distribution) Pr : F→ R≥0 on a σ-field (Ω,F) is a
function satisfying conditions:

1 If ε ∈ F, then 0 ≤ Pr(ε) ≤ 1.

2 Pr[Ω] = 1.

3 For mutually disjoint events ε1, ε2, . . .
Pr
[⋃

i εi
]

=
∑

i Pr(εi )

Definition: A probability space (Ω,F,Pr) consists of a σ-field (Ω,F) with a probability
measure Pr defined on (Ω,F).

IV054 1. Basics of Probability Theory 14/62

PROBABILITIES and their PROPERTIES - I.

Properties (for arbitrary events εi):

Pr (ε) = 1− Pr (ε);

Pr (ε1 ∪ ε2) = Pr (ε1) + Pr (ε2)− Pr (ε1 ∩ ε2);

Pr(
⋃

i≥1

εi ) ≤
∑

i≥1

Pr(εi ).

Definition: Conditional probability of an event ε1 given an event ε2 is defined by

Pr [ε1|ε2] =
Pr [ε1 ∩ ε2]

Pr [ε2]

if Pr [ε2] > 0.
Theorem: Law of the total probability Let ε1, ε2, . . . , εk be a partition of a sample
space Ω. Then for any event ε

Pr [ε] =
k∑

i=1

Pr [ε|εi ] · Pr [εi ]

IV054 1. Basics of Probability Theory 15/62

EXAMPLE:

Let us consider tossing of two perfect dices with sides labelled by 1, 2, 3, 4, 5, 6. Let

ε1 be the event that the reminder at the division of the sum of the outcomes of both
dices when divided by 4 is 3, and

ε2 be the event that the outcome of the first cube is 4.
In such a case

Pr [ε1|ε2] =
Pr [ε1 ∩ ε2]

Pr [ε2]
=

1
36
1
6

=
1

6
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PROBABILITIES and their PROPERTIES - II.

Theorem: (Bayes’ Rule/Law)

(a) Pr (ε1) · Pr (ε2|ε1) = Pr (ε2) · Pr (ε1|ε2) basic equality

(b) Pr(ε2|ε1) = Pr (ε2) Pr (ε1|ε2)

Pr (ε1)
simple version

(c) Pr [ε0|ε] = Pr [ε0∩ε]

Pr [ε]
= Pr [ε|ε0]·Pr [ε0]∑k

i=1 Pr [ε|εi ]·Pr [εi ]
. extended version

Definition: Independence

1 Two events ε1, ε2 are called independent if

Pr (ε1 ∩ ε2) = Pr (ε1) · Pr (ε2)

.

2 A collection of events {εi |i ∈ I} is independent if for all subsets S ⊆ I

Pr

[⋂

i∈S
εi

]
=
∏

i∈S
Pr [εi ].
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MODERN (BAYESIAN) INTERPRETATION of BAYES RULE

for the entire process of learning from evidence has the form

Pr [ε1|ε] =
Pr [ε1 ∩ ε]

Pr [ε]
=

Pr [ε|ε1] · Pr [ε1]∑k
i=1 Pr [ε|εi ] · Pr [εi ]

.

In modern terms the last equation says that Pr [ε1|ε], the probability of a hypothesis ε1

(given information ε), equals Pr (ε1), our initial estimate of its probability, times Pr [ε|ε1],
the probability of each new piece of information (under the hypothesis ε1), divided by the
sum of the probabilities of data in all possible hypothesis (εi ).
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TWO BASIC INTERPRETATIONS of PROBABILITY

In Frequentist interpretation, probability is defined with respect to a large number of
trials, each producing one outcome from a set of possible outcomes - the
probability of an event A , Pr(A), is a proportion of trials producing an
outcome in A.

In Bayesian interpretation, probability measures a degree of belief. Bayes’ theorem then
links the degree of belief in a proposition before and after receiving an
additional evidence that the proposition holds.
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EXAMPLE 1

Let us toss a two regular cubes, one after another and let

ε1 be the event that the sum of both tosses is ≥ 10

ε2 be the event that the first toss provides 5

How much are: Pr(ε1),Pr(ε2),Pr(ε1|ε2),Pr(ε1 ∩ ε2)?

Pr(ε1) =
6

36

Pr(ε2) =
1

6

Pr(ε1|ε2) =
2

6

Pr(ε1 ∩ ε2) =
2

36
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EXAMPLE 2

Three coins are given - two fair ones and in the third one heads land with
probability 2/3, but we do not know which one is not fair one.

When making an experiment and flipping all coins let the first two come up heads and
the third one comes up tails. What is probability that the first coin is the biased one?

Let εi be the event that the ith coin is biased and B be the event that three coins flips
came up heads, heads, tails.

Before flipping coins we have Pr(εi ) = 1
3

for all i . After flipping coins we have

Pr(B|ε1) = Pr(B|ε2) =
2

3

1

2

1

2
=

1

6
Pr(B|ε3) =

1

2

1

2

1

3
=

1

12

and using Bayes’ law we have

Pr(ε1|B) =
Pr(B|ε1)Pr(ε1)∑3
i=1 Pr(B|εi )Pr (εi )

=
1
6
· 1

3
1
6
· 1

3
+ 1

6
· 1

3
+ 1

12
· 1

3

=
2

5

Therefore, the above outcome of the three coin flips increased the likelihood that the first
coin is biased from 1/3 to 2/5
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THEOREM

Let A and B be two events and let Pr(B) 6= 0. Events A and B are independent if and
only if

Pr(A|B) = Pr(A).

Proof

Assume that A and B are independent and Pr(B) 6= 0. By definition we have

Pr(A ∩ B) = Pr(A) · Pr(B)

and therefore

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
=

Pr(A) · Pr(B)

Pr(B)
= Pr(A).

Assume that Pr(A|B) = Pr(A) and Pr(B) 6= 0. Then

Pr(A) = Pr(A|B) =
Pr(A ∩ B)

Pr(B)

and multiplying by Pr(B) we get

Pr(A ∩ B) = Pr(A) · Pr(B)

and so A and B are independent.
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SUMMARY

The notion of conditional probability, of A given B, was introduced in order to get
an instrument for analyzing an experiment A when one has partial information B
about the outcome of the experiment A before experiment has finished.

We say that two events A and B are independent if the probability of A is
equal to the probability of A given B,

Other fundamental instruments for analysis of probabilistic experiments are random
variables as functions from the sample space to R, and expectation of random
variables as the weighted averages of the values of random variables.
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MONTY HALL PARADOX

Let us assume that you see three doors D1, D2 and D3
and you know that behind one door is a car and behind
other two are goats.

Let us assume that you get a chance to choose one door
and if you choose the door with car behind the car will be
yours, and if you choose the door with a goat behind you
will have to milk that goat for years.

Which door you will choose to open?
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Let us now assume that you have chosen the door D1.

and let afterwords a moderator comes who knows where
car is and opens one of the doors D2 or D3, say D2, and
you see that the goat is in.

Let us assume that at that point you get a chance to
change your choice of the door.

Should you do that?
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Let C1 denote the event that the car is behind the door D1.
Let C3 denote the event that the car is behind the door D3.
Let M2 denote the event that moderator opens the door D2.

Let us assume that the moderator chosen a door at random if goats were behind both
doors he could open. In such a case we have

Pr [C1] =
1

3
= Pr [C3], Pr [M2|C1] =

1

2
, Pr [M2|C3] = 1

Then it holds

Pr [C1|M2] =
Pr [M2|C1]Pr [C1]

Pr [M2]
=

Pr [M2|C1]Pr [C1]

Pr [M2|C1]Pr [C1] + Pr [M2|C3]Pr [C3]
=

1/6

1/6 + 1/3
=

1

3

Similarly

Pr [C3|M2] =
Pr [M2|C3]Pr [C3]

Pr [M2]
=

Pr [M2|C3]Pr [C3]

Pr [M2|C1]Pr [C1] + Pr [M2|C3]Pr [C3]
=

1/3

1/6 + 1/3
=

2

3
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RANDOM VARIABLES - INFORMAL APPROACH

A random variable is a function defined on the elementary events of a probability space
and having as values real numbers.

Example: In case of two tosses of a fair six-sided dice, the value of a random variable V
can be the sum of the numbers on te two top spots on the dice rolls.

The value of V can therefore be an integer from the interval [2, 12].

A random variable V with n potential values v1, v2, . . . , vn is characterized by a probability
distribution p = (p1, p2, . . . , pn), where pi is probability that V takes the value vi .

The concept of random variable is one of the most important of modern science and
technology.
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INDEPENDENCE of RANDOM VARIABLES

Definition Two random variables X , Y are called independent random variables if

x , y ∈ R⇒ PrX ,Y (x , y) = Pr[X = x ] · Pr[Y = y ]
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EXPECTATION – MEAN of RANDOM VARIABLES

Definition: The expectation (mean or expected value) E[X ] of a random variable X is
defined as

E[X ] =
∑

ω∈Ω

X (ω)PrX (ω).

Properties of he mean for random variabkes X and Y and a constant c:

E[X + Y ] = E[X ] + E[Y ].

E[c · X ] = c · E[X ].

E[X · Y ] = E[X ] · E[Y ], if X ,Y are independent

The first of the above equalities is known as linearity of expectations. It can be
extended to a finite number of random variables X1, . . . ,Xn to hold

E[
n∑

i=1

Xi ] =
n∑

i=1

E[Xi ]

and also to any countable set of random variables X1,X2, . . . to hold: If∑∞
i=1 E[|Xi |] <∞, then

∑∞
i=1 |Xi | <∞ and

E[
∞∑

i=1

Xi ] =
∞∑

i=1

E[Xi ].
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EXPECTATION VALUES

For any random variable X let RX be the set of values of X . Using RX one can show that

E [X ] =
∑

x∈RX

x · Pr(X = x).

Using that one can show that for any real a, b it holds

E[aX + b] =
∑

x∈RX

(ax + b)Pr(X = x)

= a
∑

x∈RX

x · Pr(X = x) + b
∑

x∈RX

Pr(X = x)

= a · E[X ] + b

The above relation is called weak linearity of expectation.
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INDICATOR VARIABLES

A random variable X is said to be an indicator variable if X takes on only values 1 and 0.

For any set A ⊂ S , one can define an indicator variable XA that takes value 1 on A and 0
on S − A, if (S ,Pr) is the underlying probability space.

It holds:

EPr[XA] =
∑

s∈S
XA(s) · Pr({s})

=
∑

s∈A
XA(s) · Pr({s}) +

∑

s∈S−A

XA(s) · Pr({s})

=
∑

s∈A
1 · Pr({s}) +

∑

s∈S−A

0 · Pr({s})

=
∑

s∈A
Pr({s})

= Pr(A)
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VARIANCE and STANDARD DEVIATION

Definition For a random variable X variance VX and standard deviation σX are
defined by

VX = E((X − EX )2)

σX =
√

VX

Since

E((X − EX )2) = E(X 2 − 2XEX + (EX )2) =

= E(X 2)− 2(EX )2 + (EX )2 =

= E(X 2)− (EX )2,

it holds
VX = E(X 2)− (EX )2

Example: Let Ω = {1, 2, . . . , 10}, Pr(i) = 1
10

, X (i) = i ; Y (i) = i − 1 if i ≤ 5 and
Y (i) = i + 1 otherwise.
EX = EY = 5.5, E(X 2) = 1

10

∑10
i=1 i

2 = 38.5, E(Y 2) = 44.5; VX = 8.25, VY = 14.25
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TWO RULES

For independent random variables X and Y and a real number c it holds

V(cX ) = c2V(X ); σ(cX ) = cσ(X )

V(X + Y ) = V(X ) + V(Y ). σ(X + Y ) =
√

V (X ) + V (Y ).
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MOMENTS

Definition

For k ∈ N the k-th moment mk
X and the k-th central moment µk

X of a random variable X
are defined as follows

mk
X = EX k

µk
X = E((X − EX )k)

The mean of a random variable X is sometimes denoted by µX = m1
X and its variance by

µ2
X .
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EXAMPLE I

Each week there is a lottery that always sells 100 tickets. One of the tickets wins 100
millions, all other tickets win nothing.

What is better: to buy in one week two tickets (Strategy I) or two tickets in two different
weeks (Strategy II)?

Or none of these two strategies is better than the second one?
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EXAMPLE II

With Strategy I we win (in millions)

0 with probability 0.98

100 with probability 0.02

With Strategy II we win (in millions)

0 with probability 0.9801 = 0.99 · 0.99

100 with probability 0.0198 = 2 · 0.01 · 0.99

200 with probability 0.0001 = 0.01 · 0.01

Variance at Strategy I is 196

Variance at Strategy II is 198
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PROBABILITY GENERATING FUNCTION

The probability density function of a random variable X whose values are natural
numbers can be represented by the following probability generating function (PGF):

GX (z) =
∑

k≥0

Pr(X = k) · zk .

Main properties
GX (1) = 1

EX =
∑

k≥0

k · Pr(X = k) =
∑

k≥0

Pr(X = k) · (k · 1k−1) = G′X(1).

Since it holds

E(X2) =
∑

k≥0

k2 · Pr(X = k)

=
∑

k≥0

Pr(X = k) · (k · (k − 1) · 1k−2 + k · 1k−1)

= G′′X(1) + G′X(1)

we have

VX = G ′′X (1) + G ′X (1)− (G ′X (1))2.
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AN INTERPRETATION

Sometimes one can think of the expectation E[Y ] of a random variable Y as the
”best guess” or the ”best prediction” of the value of Y .

It is the ”best guess” in the sense that among all constants m the expectation
E[(Y −m)2] is minimal when m = E[Y].
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WHY ARE PGF USEFUL?

Main reason: For many important probability distributions their PGF are very simple
and easy to work with.

For example, for the uniform distribution on the set {0, 1, . . . , n − 1} the PGF has form

Un(z) =
1

n
(1 + z + . . .+ zn−1) =

1

n
· 1− zn

1− z
.

Problem is with the case z = 1.
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PROPERTIES of GENERATING FUNCTIONS

Property 1 If X1, . . . ,Xk are independent random variables with PGFs G1(z), . . . ,Gk(z),
then the random variable Y =

∑k
i=1 Xi has as its PGF the function

G(z) =
k∏

i=1

Gi (z).

Property 2 Let X1, . . . ,Xk be a sequence of independent random variables with the same
PGF GX (z). If Y is a random variable with PGF GY (z) and Y is independent of all Xi ,
then the random variable S = X1 + . . .+ XY has as PGF the function

GS(z) = GY (GX (z)).
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IMPORTANT DISTRIBUTIONS

Two important distributions are connected with experiments, called Bernoulli trials, that
have two possible outcomes:

success with probability p

failure with probability q = 1− p

Coin tossing is an example of a Bernoulli trial.

1. Let values of a random variable X be the number of trials needed to obtain a success.
Then

Pr(X = k) = qk−1p

Such a probability distribution is called the geometric distribution and such a variable
geometric random variable. It holds

EX =
1

p
VX =

q

p2
G(z) =

pz

1− qz

2. Let values of a random variable Y be the number of successes in n trials. Then

Pr(Y = k) =

(
n
k

)
pkqn−k

Such a probability distribution is called the binomial distribution and it holds

EY = np VY = npq G(z) = (q + pz)n
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and also
EY 2 = n(n − 1)p2 + np
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BERNOULLI DISTRIBUTION

Let X be a binary random variable (called usually Bernoulli or indicator random variable)
that takes value 1 with probability p and 0 with probability q = 1− p, then it holds

E[X ] = p VX = pq G [z] = q + pz .
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BINOMIAL DISTRIBUTION revisited

Let X1, . . . ,Xn be random variables having Bernoulli distribution with the common
parameter p.
The random variable

X = X1 + X2 + . . .+ Xn

has so called binomial distribution denoted B(n, p) with the density function denoted

B(k, n, p) = Pr(X = k) =

(
n
k

)
pkq(n−k)
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POISSON DISTRIBUTION

Poisson distribution

Let λ ∈ R>0. The Poisson distribution with the parameter λ is the probability
distribution with the density function

p(x) =

{
λx e−λ

x!
, for x = 0, 1, 2, ...

0, otherwise

For large n the Poisson distribution is a good approximation to the Binomial distribution
B(n, λ

n
)

Property of a Poisson random variable X :

E[X ] = λ VX = λ G [z] = eλ(z−1)
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EXPECTATION+VARIANCE OF SUMS OF RANDOM VARIABLES

Let

Sn =
n∑

i=1

Xi

where each Xi is a random variable which takes on value 1 (0) with probability p
(1− p = q).
It clearly holds

E(Xi ) = p

E(X 2
i ) = p

E(Sn) = E(
n∑

i=1

Xi ) =
n∑

i=1

E(Xi ) = np

E(S2
n ) = E((

n∑

i=1

Xi )
2) = E(

n∑

i=1

X 2
i +

∑

i 6=j

XiXj) =

=
n∑

i=1

E(X 2
i ) +

∑

i 6=j

E(XiXj)
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Hence

E(S2
n ) = E((

n∑

i=1

Xi )
2) = E(

n∑

i=1

X 2
i +

∑

i 6=j

XiXj) =

=
n∑

i=1

E(X 2
i ) +

∑

i 6=j

E(XiXj)

and therefore, if Xi , Xj are pairwise independent, as in this case, E(XiXj) =
= E(Xi )E(Xj) Hence

E(S2
n ) = np + 2

(
n
2

)
p2

= np + n(n − 1)p2

= np(1− p) + n2p2

= n2p2 + npq

VAR[Sn] = E(S2
n )− (E(Sn))2 = n2p2 + npq − n2p2 = npq
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MOMENT INEQUALITIES

The following inequality, and several of its special cases, play very important role in the
analysis of randomized computations:

Let X be a random variable that takes on values x with probability p(x).

Theorem For any λ > 0 the so called k th moment inequality holds:

Pr [|X | > λ] ≤ E(|X |k)

λk

Proof of the above inequality;

E(|X |k) =
∑

x∈X
|x |kp(x) ≥

∑

|x|>λ
|x |kp(x) ≥

≥ λk
∑

|x|>λ
p(x) = λkPr [|X | > λ]
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Two important special cases - I.1

of the moment inequality;

Pr [|X | > λ] ≤ E(|X |k)

λk

Case 1 k → 1 λ→ λE(|X |)

Pr [|X | ≥ λE(|X |)] ≤ 1

λ
Markov′s inequality

Case 2 k → 2 X → X − E(X ), λ→ λ
√

V (X )

Pr
[
|X − E(X )| ≥ λ

√
V (X )

]
≤ E((X − E(X ))2)

λ2V (X )
=

=
V (X )

λ2V (X )
=

1

λ2
Chebyshev′s inequality

Another variant of Chebyshev’s inequality:

Pr[|X − E(X )| ≥ λ] ≤ V (X )

λ2

and this is one of the main reasons why variance is used.
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Two important special cases - I.2

The following generalization of the moment inequality is also of importance:

Theorem

If g(x) is non-decreasing on [0,∞), then

Pr [|X | > λ] ≤ E(g(X ))

g(λ)

As a special case, namely if g(x) = etx , we get:

Pr [|X | > λ] ≤ E(etX )

etλ
basic Chernoff ′s inequality

Chebyshev’s inequalities are used to show that values of a random variable lie close to its
average with high probability. The bounds they provide are called also concentration
bounds. Better bounds can usually be obtained using Chernoff bounds discussed in
Chapter 5.

IV054 1. Basics of Probability Theory 50/62

FLIPPING COINS EXAMPLES on CHEBYSHEV INEQUALITIES

Let X be a sum of n independent fair coins and let Xi be an indicator variable for the
event that the i-th coin comes up heads. Then E(Xi ) = 1

2
, E(X ) = n

2
, Var[Xi ] = 1

4
and

Var[X ] =
∑

Var[Xi ] = n
4

.

Chebyshev’s inequality

Pr[|X − E(X )| ≥ λ] ≤ V (X )

λ2

for λ = n
2

gives

Pr [X = n] ≤ Pr [|X − n/2| ≥ n/2] ≤ n/4

(n/2)2
=

1

n
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THE INCLUSION-EXCLUSION PRINCIPLE

Let A1,A2, . . . ,An be events – not necessarily disjoint. The Inclusion-Exclusion
principle, that has also a variety of applications, states that

Pr

[
n⋃

i=1

Ai

]
=

n∑

i=1

Pr (Ai)−
∑

i<j

Pr (Ai∩Aj) +
∑

i<j<k

Pr (Ai∩Aj∩Ak)−

− . . . + (−1)k+1
∑

i1<i2<...<ik

Pr

[
k⋂

j=1

Aij

]
. . . +

+ (−1)n+1 Pr

[
n⋂

i=1

Ai

]
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BONFERRONI’S INEQUALITIES

the following Bonferroni’s inequalities follow from the Inclusion-exclusion principle:
For every odd k ≤ n

Pr

(
n⋃

i=1

Ai

)
≤

k∑

j=1

(−1)j+1
∑

i1<...<ij≤n

Pr

(
j⋂

l=1

Ail

)

For every even k ≤ n

Pr

(
n⋃

i=1

Ai

)
≥

k∑

j=1

(−1)j+1
∑

i1<...<ij≤n

Pr

(
j⋂

l=1

Ail

)
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SPECIAL CASES of THE INCLUSION-EXCLUSION PRINCIPLE

”Markov”-type inequality - Boole’s inequality or Union bound

Pr

(⋃

i

Ai

)
≤
∑

i

Pr (Ai )

”Chebyshev”-type inequality

Pr

(⋃

i

Ai

)
≥
∑

i

Pr (Ai )−
∑

i<j

Pr (Ai ∩ Aj)

Another proof of Boole’s inequality:

Let us define Bi = Ai −
⋃i−1

j=1 Aj . Then
⋃

Ai =
⋃

Bi . Since Bi are disjoint and for each i
we have Bi ⊂ Ai we get

Pr[
⋃

Ai ] = Pr[
⋃

Bi ] =
∑

Pr[Bi ] ≤
∑

Pr[Ai ]
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APPENDIX

APPENDIX

IV054 1. Basics of Probability Theory 55/62

PUZZLE - HOMEWORK

Puzzle 1 Given a biased coin, how to use it to simulate an unbiased coin?

Puzzle 2 n people sit in a circle. Each person wears either red hat or a blue hat, chosen
independently and uniformly at random. Each person can see the hats of all the other
people, but not his/her hat. Based only upon what they see, each person votes on
whether or not the total number of red hats is odd. Is there a scheme by which the
outcome of the vote is correct with probability greater than 1/2.
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MODERN (BAYESIAN) INTERPRETATION of BAYES RULE

Bayes rule for the process of learning from evidence has the form:

Pr [ε1|ε] =
Pr [ε1 ∩ ε]

Pr [ε]
=

Pr [ε|ε1] · Pr [ε1]∑k
i=1 Pr [ε|εi ] · Pr [εi ]

.

In modern terms the last equation says that Pr [ε1|ε], the probability of a hypothesis ε1

(given information ε), equals Pr (ε1), our initial estimate of its probability, times Pr [ε|ε1],
the probability of each new piece of information (under the hypothesis ε1), divided by the
sum of the probabilities of data in all possible hypothesis (εi ).
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EXAMPLE - DRUG TESTING

Suppose that a drug test will produce 99% true positive and 99% true negative results.

Suppose that 0.5% of people are drug users.

If the test of a user is positive, what is probability that such a user is a drug user?
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SOLUTION

Pr(drg-us|+) =
Pr(+|drg-us)Pr(drg-us)

Pr(+|drg-us)Pr(drg-us) + Pr(+|no-drg-us)Pr(no-drg-us)

Pr(drg − us|+) =
0.99× 0.005

0.99× 0.005 + 0.01× 0.995
=≈ 33.2%
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BAYES’ RULE INFORMALLY

Basically, Bayes’ rule concerns of a broad and fundamental issue: how we analyze
evidence and change our mind as we get new information, and make rational decision in
the face of uncertainty.

Bayes’ rule as one line theorem: by updating our initial belief about something with new
objective information, we get a new and improved belief
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BAYES’ RULE STORY

Reverend Thomas Bayes from England discovered the initial version of the ”Bayes’s
law” around 1974, but soon stopped to believe in it.

In behind were two philosophical questions
Can an effect determine its cause?
Can we determine the existence of God by observing nature?

Bayes law was not written for long time as formula, only as the statement: By
updating our initial belief about something with objective new information, we
can get a new and improved belief.

Bayes used a tricky thought experiment to demonstrate his law.

Bayes’ rule was later invented independently by Pierre Simon Laplace, perhaps the
greatest scientist of 18th century, but at the end he also abounded it.

Till the 20 century theoreticians considered Bayes rule as unscientific. Bayes rule
had for centuries several proponents and many opponents in spite that it has turned
out to be very useful in practice.

Bayes rule was used to help to create rules of insurance industries, to develop
strategy for artillery during the first and even Second World War (and also a great
Russian mathematician Kolmogorov helped to develop it for this purpose).
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It was used much to decrypt ENIGMA codes during 2WW, due to Turing, and also
to locate German submarines.
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