
CZ.1.07/2.2.00/28.0041
Centrum interaktivńıch a multimediálńıch studijńıch opor pro inovaci výuky a efektivńı učeńı

Prologue

You should spent most of your time thinking about

what you should think about most of your time.

IV054 0. 2/29

RANDOMIZED ALGORITHMS AND PROTOCOLS - 2020

RANDOMIZED ALGORITHMS

AND PROTOCOLS - 2020

Prof. Jozef Gruska, DrSc
Wednesday, 10.00-11.40, B410

WEB PAGE of the LECTURE

http://www.fi.muni.cz/usr/gruska/random20

FINAL EXAM: You need to answer four questions out of five given to you.
CREDIT (ZAPOČET): You need to answer three questions out of five given to you.

EXERCISES/TUTORIALS

EXERCISES/TUTORIALS: Thursdays 14.00-15.40, C525

TEACHER: RNDr. Matej Pivoluška PhD

Language English

NOTE: Exercises/tutorials are not obligatory

IV054 0. 5/29

CONTENTS - preliminary

1 Basic concepts and examples of randomized algorithms

2 Types and basic design methods for randomized algorithms

3 Basics of probability theory

4 Simple methods for design of randomized algorithms

5 Games theory and analysis of randomized algorithms

6 Basic techniques I: moments and deviations

7 Basic techniques II: tail probabilities inequalities

8 Probabilistic method I:

9 Markov chains - random walks

10 Algebraic techniques - fingerprinting

11 Fooling the adversary - examples

12 Randomized cryptographic protocols

13 Randomized proofs

14 Probabilistic method II:

15 Quantum algorithms

IV054 0. 6/29

LITERATURE

R. Motwami, P. Raghavan: Randomized algorithms, Cambridge University Press,
UK, 1995

J. Gruska: Foundations of computing, International Thompson Computer Press,
USA. 715 pages, 1997

J. Hromkovič: Design and analysis of randomized algorithms, Springer, 275 pages,
2005

N. Alon, J. H. Spencer: The probabilistic method, Willey-Interscience, 2008

Part I

Simple Methods of design of Randomized Algorithms

Chapter 4. SIMPLE METHODS for DESIGN of RANDOMIZED
ALGORITHMS

In this chapter we present a new way how to see randomized algorithms and an
application of some simple basic techniques how to design randomized algorithms.

Especially we deal with:

A unified approach to deterministic, randomized and
quantum algorithms

Application of the linearity of expectations method

Design of randomized algorithms for games trees.

IV054 1. Simple Methods of design of Randomized Algorithms 9/29

PROLOGUE

A way to see basics of deterministic, randomized
and quantum computations and their differences.

IV054 1. Simple Methods of design of Randomized Algorithms 10/29

MATHEMATICAL VIEWS of COMPUTATION 1/3

Let us consider an n bits strings set S ⊂ {0, 1}n.

To describe a deterministic computation on S we need to specify:

an initial state - by an n-bit string - say s0

and an evolution (computation) mapping E : S → S which can be described by a vector
of the length 2n, the elements and indices of which are n-bit strings.

A computation step is then an application of the evolution mapping E to the current
state represented by an n-bit string s.

However, for any at least a bit significant task, the number of bits needed to describe
such an evolution mapping, n2n, is much too big. The task of programming is
then/therefore to replace an application of such an enormously huge mapping by an
application of a much shorter circuit/program.

IV054 1. Simple Methods of design of Randomized Algorithms 11/29

MATHEMATICAL VIEWS of COMPUTATION 2/3

To describe a randomized computation we need;

1:) to specify an initial probability distribution on all n-bit strings. That can be done by
a vector of length 2n, indexed by n-bit strings, the elements of which are non-negative
numbers that sum up to 1.

2:) to specify a randomized evolution, which has to be done, in case of a homogeneous
evolution, by a 2n × 2n matrix A of conditional probabilities for obtaining a new
state/string from an old state/string.

The matrix A has to be stochastic - all columns have to sum up to one and A[i , j] is a
probability of going from a string representing j to a string representing i .

To perform a computation step, one then needs to multiply by A the 2n-elements
vector specifying the current probability distribution on 2n states.

However, for any nontrivial problem the number 2n is larger than the number of particles
in the universe. Therefore, the task of programming is to design a small
circuit/program that can implement such a multiplication by a matrix of an enormous
size.

IV054 1. Simple Methods of design of Randomized Algorithms 12/29

MATHEMATICAL VIEWS of COMPUTATION 3/3

In case of quantum computation on n quantum bits:

1:) Initial state has to be given by an 2n vector of complex numbers (probability
amplitudes) the sum of the squares of which is one.

2:) Homogeneous quantum evolution has to be described by an 2n × 2n unitary matrix
of complex numbers - at which inner products of any two different columns and any two
different rows are 0.1

Concerning a computation step, this has to be again a multiplication of a vector of the
probability amplitudes, representing the current state, by a very huge 2n × 2n unitary
matrix which has to be realized by a ”small” quantum circuit (program).

1A matrix A is usually called unitary if its inverse matrix can be obtained from A by transposition around
the main diagonal and replacement of each element by its complex conjugate.

IV054 1. Simple Methods of design of Randomized Algorithms 13/29

LINEARITY OF EXPECTATIONS

A very simple, but very often very useful, fact is that for any random variables X1,X2, . . .
it holds

E[
∑

i

Xi] =
∑

i

E[Xi].

even if Xi are dependent and dependencies among Xi ’s are very complex.

Example: A ship arrives at a port, and all 40 sailors on board go ashore to have fun. At
night, all sailors return to the ship and, being drunk, each chooses randomly a cabin to
sleep in. Now comes the question: What is the expected number of sailors sleeping in
their own cabins?

Solution: Let Xi be a random variable, so called (indicator variable), which has value 1 if
the i-th sailor chooses his own cabin, and 0 otherwise.

Expected number of sailors who get to their own cabin is

E[
40∑

i=1

Xi] =
40∑

i=1

E[Xi]

Since cabins are chosen randomly E[Xi] = 1
40

and E[
∑40

i=1 Xi] = 40. 1
40

= 1.

IV054 1. Simple Methods of design of Randomized Algorithms 14/29

EXAMPLE - BINARY PARTITION of a SET of LINE SEGMENTS
1/3

Problem Given a set S = {s1, . . . , sn} of non-intersecting line segments, find a partition
of the plane such that every region will contain at most one line segment (or at most a
part of a line segment).

s
1

s
3

s
3

s
3

L 1

s
1

s
2

L 2 L 3

L 1

s
1

s
2

s
3

L 2

L 3

s
2

A (binary) partition will be described by a binary tree + additional information (about
nodes). With each node v a region rv of the plane will be associated (the whole plane
will be represented by the root) and also a line Lv intersecting rv .

Each line Lv will partition the region rv into two regions rl,v and rr,v which correspond to
two children of v - to the left and right one.

IV054 1. Simple Methods of design of Randomized Algorithms 15/29

EXAMPLE - BINARY PARTITION of a SET of LINE SEGMENTS
2/3

Notation: l(si) will denote a line-extension of the segment si .
autopartitions will use only line-extensions of given segments.
Algorithm RandAuto:

Input: A set S = {s1, . . . , sn} of non-intersecting line segments.
Output: A binary autopartition PΠ of S .
1: Pick a permutation Π of {1, . . . , n} uniformly and randomly.
2: While there is a region R that contains more than one segment, choose one of

them randomly and cut it with l(si) where i is the first element in the ordering induced
by Π such that l(si) cuts the region R.
Theorem: The expected size of the autopartition PΠ of S , produced by the above
RandAuto algorithm is θ(n ln n).
Proof: Notation (for line segments u, v).

index(u, v) =
i if l(u) intersects i − 1 segments before hitting v ;
∞ if l(u) does not hit v .

u a v will be an event that l(u) cuts v in the constructed (autopartition) tree.

IV054 1. Simple Methods of design of Randomized Algorithms 16/29

EXAMPLE - BINARY PARTITION of a SET of LINE SEGMENTS
3/3

Probability: Let u and v be segments, index(u, v) = i and let u1, . . . , ui−1 be segments
the line l(u) intersects before hitting v .
The event u a v happens, during an execution of RandPart, only if u occurs before any
of {u1, . . . , ui−1, v} in the permutation Π.Therefore the probability that event u a v
happens is 1

i+1
= 1

index(u,v)+1
.

Notation: Let Cu,v be the indicator variable that has value 1 if u a v and 0 otherwise.

E[Cu,v] = Pr[u a v] =
1

index(u, v) + 1
.

Clearly, the size of the created partition PΠ equals n plus the number of intersections due
to cuts. Its expectation value is therefore

n + E [
∑

u

∑

v 6=u

Cu,v] = n +
∑

u

∑

v 6=u

Pr [u a v] = n +
∑

u

∑

v 6=u

1

index(u, v) + 1
.

For any line segment u and integer i there are at most two v ,w such that
index(u, v) = index(u,w) = i .Hence

∑
v 6=u

1
index(u,v)+1

≤∑n−1
i=1

2
i+1

and therefore

n + E[
∑

u

∑
v 6=u Cu,v] ≤ n +

∑
u

∑n−1
i=1

2
i+1
≤ n + 2nHn.

IV054 1. Simple Methods of design of Randomized Algorithms 17/29

GAME TREE EVALUATION - I.

Game trees

x3x1 x2 x4 x5 x6 x7 x8 1 y2 y3 y4 y5 6 y7 y8y y

min min

min

min min

max max

Game trees are trees with operations max and min alternating in internal nodes and with
values assigned to their leaves. In case all such values are Boolean - 0 or 1 Boolean
operation OR and AND are considered instead of max and min.

Tk – binary game tree of depth 2k.

T
1

Goal is to evaluate the tree - the root.

IV054 1. Simple Methods of design of Randomized Algorithms 18/29

GAME TREE EVALUATION - II.

x3x1 x2 x4 x5 x6 x7 x8 1 y2 y3 y4 y5 6 y7 y8y y

min min

min

min min

max max

Evaluation of game trees plays a crucial role in AI, in various game playing programs.

Assumption: An evaluation algorithm chooses at each step (somehow) a leaf, reads
its value and performs all evaluations of internal nodes it can perform. Cost of an
evaluation algorithm is the number of leaves inspected. Determine the total number
of such steps needed.

IV054 1. Simple Methods of design of Randomized Algorithms 19/29

WORST CASE COMPLEXITY

Tk – will denote the binary game tree of depth 2k.

T
1

Every deterministic algorithm can be forced to inspect all leaves. The worst-case
complexity of a deterministic algorithm to evaluate Tk is therefore:

n = 4k = 22k .

IV054 1. Simple Methods of design of Randomized Algorithms 20/29

A RANDOMIZED ALGORITHM - BASIC IDEA:

To evaluate an AND-node v , the algorithm chooses randomly one of its
children and evaluates it.

If 1 is returned, algorithm proceeds to evaluate other children subtree and
returns as the value of v the value of that subtree. If 0 is returned,
algorithm returns immediately 0 for v (without evaluating other subtree).

To evaluate an OR-node v , algorithm chooses randomly one of its children
and evaluates it.

If 0 is returned, algorithm proceeds to evaluate other subtree and returns as
the value of v the value of the subtree. If 1 is returned, the algorithm
returns 1 for v .

IV054 1. Simple Methods of design of Randomized Algorithms 21/29

RANDOMIZED ALGORITHMS - SUMMARY of THE BASIC IDEA

Start at the root and in order to evaluate a node evaluate
(recursively) a random child of the current node.

If this does not determine the value of the current node,
evaluate the node of other child.

IV054 1. Simple Methods of design of Randomized Algorithms 22/29

Theorem: Given any instance of Tk , the expected number of steps for the above
randomized algorithm is at most 3k .

Proof by induction:
Base step: Case k = 1 easy - verify by computations for all possible inputs.
Inductive step: Assume that the expected cost of the evaluation of any instance of Tk−1

is at most 3k−1.

Consider an OR-node tree T with both children being Tk−1-trees.
If the root of T were to return 1, at least one of its Tk−1-subtrees has to return 1.
With probability 1

2
this child is chosen first, given in average at most 3k−1

leaf-evaluations. With probability 1
2

both subtrees are to be evaluated.
The expected cost of determining the value of T is therefore:

1

2
× 3k−1 +

1

2
× 2× 3k−1 =

1

2
× 3k =

3

2
× 3k−1.

IV054 1. Simple Methods of design of Randomized Algorithms 23/29

If the root of T were to return 0 both subtrees have to be evaluated, giving the cost
2× 3k−1.

Consider now the root of Tk .

If the root evaluates to 1, both of its OR-subtrees have to evaluate to 1. The expected
cost is therefore

2× 3

2
× 3k−1 = 3k .

If the root evaluates to 0, at least one of the subtrees evaluates to 0. The expected cost
is therefore

1

2
× 2× 2× 3k−1 +

1

2
× 3

2
× 3k−1 ≤ 3k = nlg4 3 = n0.793.

Our algorithm is therefore a Las Vegas algorithm. Its running time (number of leaves
evaluations) is: n0.793.

IV054 1. Simple Methods of design of Randomized Algorithms 24/29

APPENDIX

The concept of the number of wisdom introduced in the following and
related results helped to show that randomness is deeply rooted even
in arithmetic.

In order to define numbers of wisdom the concept of self-delimiting
programs is needed.

A program represented by a binary word p, is self-delimiting for a
computer C , if for any input pw the computer C can recognize where
p ends after reading p only..

IV054 1. Simple Methods of design of Randomized Algorithms 25/29

Another way to see self-delimiting programs is to consider only such
programming languages L that no program in L is a prefix of another
program in L.

IV054 1. Simple Methods of design of Randomized Algorithms 26/29

Ω - numbers of wisdom

For a universal computer C with only self-delimiting programs, the number
of wisdom ΩC is the probability that randomly constructed program for C
halts. More formally

ΩC =
∑

p halts

2−|p|

where p are (self-delimiting) halting programs for C .

ΩC is therefore the probability that a self-delimiting computer program for
C generated at random, by choosing each of its bits using an independent
toss of a fair coin, will eventually halt.

IV054 1. Simple Methods of design of Randomized Algorithms 27/29

Properties of numbers of wisdom

0 ≤ ΩC ≤ 1

ΩC is an uncomputable and random real number.

At least n-bits long theory is needed to determine n bits of ΩC .

At least n bits long program is needed to determine n bits of ΩC

Bits of Ω can be seen as mathematical facts that are true for no reason.

IV054 1. Simple Methods of design of Randomized Algorithms 28/29

Greg Chaitin, who introduced numbers of wisdom, designed a specific
universal computer C and a two hundred pages long Diophantine
equation E , with 17,000 variables and with one parameter k, such that
for a given k the equation E has a finite (infinite) number of solutions
if and only if the k-th bit of ΩC is 0 (is 1).{ As a consequence, we have
that randomness, unpredictability and uncertainty occur even in the
theory of Diophantine equations of elementary arithmetic.}
Knowing the value of ΩC with n bits of precision allows to decide
which programs for C with at most n bits halt.

IV054 1. Simple Methods of design of Randomized Algorithms 29/29

