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Prologue

You should spent most of your time thinking about

what you should think about most of your time.
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Randomized Proofs



Chapter 12. RANDOMIZED PROOFS

In this chapter several types of randomized proofs are introduced and
their power is analyzed.
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WHAT IS A PROOF? - I.

A proof is whatever convinces me (M. Even).

A proof is a sequence of statements each of which is either an axiom or follows from
previous statements by an easy deduction rule - whether a to-be-proof is indeed a
proof it should be chargeable by a computer. (A proof verification is therefore a
computation process - a formalists’ (Hilbert) view.)

A proof of the existence of an object O is indeed a real proof only in case if the
proof contains a method how the object O construct (a intuitionists’ view).
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WHAT IS A PROOF - II.

The question What is a proof is one of major ones of the
philosophy of science and mathematics.
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FROM THE HISTORY of PROOFS - I.

The concept of the proof (of a theorem from axioms) was introduced
during the First Golden Era of Mathematics, in Greece, in 600-300 BC.

Most of the Greek proofs were actually proofs of correctness of
geometric algorithms.

After 300 BC, Greek’s ideas concerning proofs were actually ignored,
even by Greeks, for almost 2000 years.

During the Second Golden Era of Mathematics, in 17th century, the
concept of the proof did not play very important role. Famous was
encouragement of those times ”Go on, God will be with you” –
whenever rigour of some methods or correctness of some theorem was
questioned.
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FROM THE HISTORY of PROOFS - II.

An understanding that proofs are important has developed again at the end
of 19th century and especially at the beginning of 20th century because

a lot of counter-intuitive phenomena have appeared in mathematics
(for example a function that is everywhere continuous but has nowhere
derivative);

paradoxes have appeared in the set theory. - For example, Does there
exist a set of all sets?
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GREEK MATHEMATICS - I.

The Greek mathematics can be seen as dealing to a large extent with
geometrical calculi.

The goals of the proofs of theorems were actually aimed to show
correctness of algorithms.

One can say about that period that knowledge was mainly of practical
nature, calculations were of chief interest. When some ”theoretical”
elements entered they were to a large extend (though not only) to
facilitate techniques.
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GREEK MATHEMATICS - II.

Much of mathematics developed can be seen also as important attempts to understand
the concept of a ”process”.

In addition, three main problems of antique:

squaring of the circle;

duplication of the cube;

trisection of the angle.

which had a profound impact on the development of science, and led to the development
of infinitesimal calculus, are actually algorithmic problems. Unsolvability of these
problems, with compass and straightedge alone, has been shown only in the modern
time.
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IMPORTANT PARADOXES

Also more theoretical approaches of that period can be seen as being
often deeply informatics in nature. For example, the attempts to
understand the concept of a process and to deal with four famous
Zeno paradoxes:

Dichotomy paradox;

Achilles paradox;

Arrow paradox;

Stadium paradox
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DICHOTOMY and ACHILES PARADOXES

Dichotomy paradox shows that it is impossible to move through even a finite length
path in finite time, under the assumption that both time and space are infinitely divisible
- because in order to traverse a distance we have at first traverse the first half of it, and
so on recursively.

Achilles and Tortoise paradox: shows that in case Tortoise stats to move before
Achilles, he can never catch Tortoise. The reason being that each time Achilles reaches
place Tortoise was before, Tortoise will already by some place ahead.
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Stadium paradox

Let us consider the following initial position of wagons of three trains.

. A A A .
B B B . .
. . C C C

Let us consider the case that A-train does not move,B-train moves in one unit of time to
the right exactly for one wagon-position; and at the same unit of time the C-train moves
to the left one-wagon position, then the positions of three trains will be

AAA
BBB
CCC

However, that means that at this moment the right most wagon of the B-train moved
along all three wagons of the C-train during that unit of time.
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GREEK MATHEMATICS - CLASSICAL PERIOD (Pythagorean,
600-300 B.C.) 1/3

Greek mathematics was based on and helped to develop a new doctrine of
nature - namely that nature is orderly and develops according to a plan. Old
doctrine, but in Greek society actually dominating at that time, was that gods
manipulate nature and men according their whims.

Its protagonists were Thales and Pythagorean and it was highlighted by works
of Eudoxus, Euclid, Plato and Aristotle.

Greeks created, for the first time, mathematics as an organized, independent
and reasoned discipline.

Greeks made mathematics abstract - to see mathematical entities, numbers
and geometrical objects as abstractions, sharply distinguished from physical
objects.

Greek made mathematics deductive, deriving truth in theorems by deduction
from axioms.
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GREEK MATHEMATICS - CLASSICAL PERIOD (Pythagorean,
600-300 B.C.) 2/3

Greeks came with the idea to prove existence by construction.

Their mathematics was mainly (well founded) geometry, (actually motivated
by astronomy).

Main goal of Mathematics was seen as to understand functioning of universe -
they believed that mathematics is the key to comprehension of universe, for
mathematical laws are the essence of its design.

Greeks made mathematics to be a liberal art closely related (and a
preparation) to philosophy.

For Greeks arithmetic, geometry and astronomy were considered as the art of
the mind and music for the soul.

It is believed that it was the aesthetic appeal of the subject that caused Greek
mathematicians to carry the exploration of particular topics beyond their use
in the understanding of the physical world.

Greeks made enormous contributions to the philosophy of science.

Their mathematics was much inspired by the fact that phenomena that are
much diverse from qualitative point of view exhibit identical mathematical
properties.
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GREEK MATHEMATICS - CLASSICAL PERIOD (Pythagorean,
600-300 B.C.) 3/3

Their position was based on a belief that mind is capable to recognize truth,
observation of physical world is not needed. As a consequences their outcomes
were a combination of ingenious ideas, bold speculations and shrewd guesses.

Greek mathematicians mixed deep and serious thoughts with what we could
consider as fanciful, useless, and unscientific doctrines.

Greek mathematicians ”reduced” astronomy and music to numbers and
therefore astronomy and music was considered to be a part of mathematics.

Their classics (books) contained only formal deductive mathematics, no
motivation - though one can expect astronomy was the main motivation.

They believed in the power of mind to yield also the first principles.

During the classical period, the doctrine of the mathematical design of nature
was established and the search for its mathematical laws instituted.

They believed that mathematical facts are not created by men, that they
exists and can only be discovered.

Their main contributions were practically forgotten or ignored for 2000 years
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LIMITATIONS OF CLASSICAL GREEK MATHEMATICS

They reduced mathematics to geometry dealing with simple curves,
areas and bodies only.

By insisting on a unity, completeness and simplicity, and by separating
speculative thoughts from utility, they narrowed people’s vision and
closed their minds to new thoughts and methods.

Their insistence on exact concepts and proofs was also a defect so far
as creative mathematics is concerned.

They were not able to accept irrational numbers in arithmetic.

Their concept of proof was too restrictive concerning creative
mathematics, and so was their concept of constructability.

They were not able to accept infinity. Neither infinity of large not of
small objects and not infinite processes.

They could not accept continuity because of their emphasis on
atomism.
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WHY WAS GREEK MATHEMATICS IGNORED FOR 2000 YEARS?
1/2

One of the most puzzling things in history of science is why
ingenious Greek mathematics of its classical period was later
practically ignored for about 2000 years.

It was actually already ignored in the Alexandrian period (300 B.C.
- 600 A.C.)

One reason is nicely put together by Cicero: The Greeks held the
geometers in the highest honour; accordingly, nothing made more
brilliant progress among them than mathematics. But we have
established as the limit of this art its usefulness in measuring and
counting.

Other reasons: it ignored computational needs of society; it was
based on a wrong view of importance of observations and so it
could hardly help other sciences; concerning exactness and
deduction, it made too high and restrictive requirements for that
period.

IV054 1. Randomized Proofs 23/47

WHY WAS GREEK MATHEMATICS IGNORED FOR 2000 YEARS?
2/2

Christianity decreased interest in physical world, preparation of the
soul for after-life in the heaven was the main concern.

Christianity brought a new belief concerning ways one seek for
truth.

Theology was seen as embracing all knowledge.

New revival of the Classical Greek period appeared after a new
doctrine was developed that saw God as the one creating
mathematical nature and as seeing search for mathematical laws of
nature as religious quest. A discovery of a mathematical law was
seen as a further discovery of the greatness of the God - and
therefore God was to be praised after each discovery of a simple
law of nature, not the one who made the discovery. For example,
Kepler wrote a paean { big thanks} to God after each of his
(Kepler’s) discovery.
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PLATO versus ARISTOTLE

Concerning the development of the basic philosophical positions of main Greek
period two men played the main role: Plato and Aristotle.

Their views were quite different, and opposite in many sense, what later influenced
much development of the science during the Renaissance.

Plato was the most influential propagator of the doctrine that the reality and
intelligibility of the physical world can be comprehended only through mathematics.

He was convinced that the world was mathematically designed.

Plato believed that physical world is but an imperfect copy of the ideal world, the
one mathematicians and philosophers should study.

He believed that mathematical laws, eternal and unchanging, are the essence of
reality. Plato not only tried to understand nature through mathematics, he actually
tried to substitute mathematics for nature itself.

Aristotle believed in material things as the primary substance and source of reality.

He believed that science must study the physical world to obtain truth.

He believed that science must study the physical world to obtain truth.

He believed that genuine knowledge is obtained from sense experience by intuition
and abstraction.

He distinguished sharply between physics and mathematics and assigned a minor
role to mathematics.

IV054 1. Randomized Proofs 25/47

SPECIAL TYPES of PROOFS

SPECIAL TYPES of PROOFS
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PROOFS for NP-problems

Definition A language L ⊂ Σ∗ is in NP if and only if there exists a
polynomial-bounded function p and a polynomial time deterministic
Turing machine M with the following properties:

For every x ∈ L, it holds that M accepts (x , y) for some string
y ∈ Σp(|x |) (called certificate or witness or proof);

For every x 6∈ L, it holds that M rejects (x , y) for all strings
y ∈ Σp(|x |).
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QUANTUM PROOFS

A quantum proof is a quantum state that plays the role of a
witness or certificate to a quantum computer that runs a
verification procedure.

All languages in NP have very short (logarithmic size) quantum
proofs which can be verified provided that two unentangled copies
are given.
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HILBERT’S VIEW of PROOF

A proof is a sequence of statements where each of them is
either axiomatically true, or it follows from previous
statements according to few obviously correct deduction
rules.
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INTERACTIVE PROOF PROTOCOLS 1/2

In an interactive proof system there are two parties:

An (all powerful) Prover, often called Peggy (actually a randomized algorithm that
uses a private random number generator);

A not too much (polynomially) powerful Verifier, often called Vic (a polynomial time
randomized algorithm using a private random number generator).

The Prover knows some secret, or a knowledge, or a fact about a specific object, and
wishes to convince the Verifier, through a communication with him, that he has the
above knowledge.

For example, both Prover and Verifier posses an input x and Prover wants to convince
Verifier that x has a certain properties and that (s)he – Prover – knows how to prove
that.
The interactive prove consists of several rounds. In each round Prover and Verifier
alternatively do the following.

1 Receive a message from the other party.

2 Perform a (private) computation.

3 Send a message to the other party.

Communication starts by a challenge of Verifier and a response by the Prover.
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INTERACTIVE PROOF PROTOCOLS 2/2

At the end, the Verifier either accepts or rejects Prover’s attempts to
convince him.
An interactive proof protocol is said to be an interactive proof system for a
decision problem Π if the following properties are satisfied.

Completeness : If x is a yes-instance of Π, then the Verifier always accepts
Prover’s “proof”.

Soundness : If x is a no-instance of Π, then the Verifier accepts Prover’s
“proof” only with a very small probability.
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ZERO-KNOWLEDGE PROOFS - INFORMALLY

Very informally An interactive “proof” protocol at which a Prover tries to convince a
Verifier about the truth of a statement, or about possession of a knowledge, is called
“zero-knowledge” protocol if the Verifier does not learn from the communication with the
Prover anything more except that the statement is true or that Prover has knowledge
(secret) she claims to have.

Example The proof n = 670592745 = 12345× 54321is not a
zero-knowledge proof that n is not a prime.

Informally: A zero-knowledge proof is an interactive proof protocol that provides highly
convincing evidence that a statement is true or that Prover has certain knowledge (of a
secret) and that the Prover knows a (standard) proof of it while providing not a single
bit of information about the proof (knowledge or secret). (In particular, Verifier who got
convinced about the correctness of a statement cannot convince the third person about
that.)
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ZERO-KNOWLEDGE PROOFS - INFORMALLY

More formally: A zero-knowledge proof of a theorem T is an interactive two party
protocol, in which the Prover is able to convince the Verifier who follows the same
protocol, by an overwhelming statistical evidence,

that T is true, if T is indeed true,

but no Prover is not able to convince Verifier that T is true, if this is not so.

In additions, during their interactions, the Prover does not reveal to the Verifier any other
information, except whether T is true or not.

Consequently, whatever Verifier can do after he gets convinced, he can do just believing
that T is true.
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Age difference finding protocol

Alice and Bob wants to find out who is older without disclosing any other information
about their age.

The following protocol is based on a public-key cryptosystem.

Protocol Age of Bob: j , age of Alice: i .
1. Bob choose a random x , computes k = eA(x) and sends Alice s = k − j .
2. Alice first computes the numbers yu = dA(s + u); 1 ≤ u ≤ 100, then chooses a large
random prime p and computes numbers

zu = yu mod p, 1 ≤ u ≤ 100(?)

and verifies that for all u 6= v

|zu − zv | ≥ 2 and zu 6= 0.(??)

(If this is not the case, Alice chooses a new p and repeats steps (? and (??).)
Finally, Alice sends Bob the following sequence (order is important).

z1, . . . , zi , zi+1 + 1, . . . , z100 + 1, p

as z ′1, . . . , z
′
i , z
′
i+1, . . . , z

′
100

3. Bob checks whether j-th number in the above sequence is congruent to x modulo p.
If yes, Bob knows that i ≥ j , otherwise i < j .
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Zero-knowledge proof for quadratic residua

Input: An integer n = pq, where p, q are primes and x ∈ QR(n).

Protocol: Repeat lg n times the following steps:

Peggy chooses a random v ∈ Z∗n and sends to Vic y = v 2 mod n.

Vic sends to Peggy a random i ∈ {0, 1}.
Peggy computes a square root u of x and sends to Vic

z = uiv mod n.

Vic checks whether
z2 ≡ x iy (mod n).

Vic accepts Peggy’s proof if he succeeds in Step 4 in each of lg n rounds.
Completeness is straightforward:
Soundness. If x is not a quadratic residue, then Peggy can answer only one of two
possible challenges (only if i = 0), because in such a case y is a quadratic residue if and
only if xy is not a quadratic residue. This means that Peggy will be caught in any given
round of the protocol with probability 1

2
.

The overall probability that Prover deceives Vic is therefore 2− lg n = 1
n

.
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Zero-knowledge proof for graph isomorphism

Input: Two graphs G1 and G2 with the set of nodes {1, . . . , n}.
Repeat the following steps n times:

1 Peggy chooses a random permutation π of {1, . . . , n} and computes H to be the
image of G1 under the permutation π, and sends H to Vic.

2 Vic chooses randomly i ∈ {1, 2} and sends it to Peggy. {This way Vic asks for
isomorphism between H and Gi .}

3 Peggy creates a permutation ρ of {1, . . . , n} such that ρ specifies isomorphism
between H and Gi and Peggy sends ρ to Vic. {If i = 1 Peggy takes ρ = π; if i = 2
Peggy takes ρ = σ ◦ π, where σ is a fixed isomorphic mapping of nodes of G2 to G1.}

4 Vic checks whether H provides the isomorphism between Gi and H.

Vic accepts Peggy’s “proof” if H is the image of Gi in each of the n rounds.
Completeness. It is obvious that if G1 and G2 are isomorphic then Vic accepts with
probability 1.

Soundness: If graphs G1 and G2 are not isomorphic, then Peggy can deceive Vic only if
she is able to guess in each round the i Vic chooses and then sends as H the graph Gi .
However, the probability that this happens is 2−n.

Observe that Vic can perform all computations in polynomial time.
However, why is this proof a zero-knowledge proof?
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Why is the last “proof” a “zero-knowledge proof”?

Because Vic gets convinced, by the overwhelming statistical evidence, that graphs G1 and
G2 are isomorphic, but he does not get any information (“knowledge”) that would help
him to create isomorphism between G1 and G2.

In each round of the proof Vic see isomorphism between H (a random isomorphic copy of
G1) and G1 or G2, (but not between both of them)!

However, Vic can create such random copies H of graphs by himself and therefore this
cannot help Vic to find an isomorphism between G1 and G2.

Information that Vic can receive during the protocol, called transcript, contains:

The graphs G1 and G2.

All messages transmitted during communications by Peggy and Vic.

Random numbers used by Peggy and Vic to generate their outputs.

Transcript has therefore the form

T = ((G1,G2); (H1, i1, ρ1), . . . , (Hn, in, ρn)).

The essential point - a basis for a formal definition of zero-knowledge proof - is that Vic
can forge the transcript, without participating in the interactive proof, that look like “real
transcript”, if graphs are isomorphic, by means of a special forging algorithm called
simulator.
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GRAPH NON-ISOMORPHISM

A simple interactive proof protocol exists for computationally very hard graph
non-isomorphism problem.

Input: Two graphs G1 and G2, with the set of nodes {1, . . . , n}.
Protocol: Repeat n times the following steps:

1 Vic chooses randomly an integer i ∈ {1, 2} and a permutation π of {1, . . . , n}. Vic
then computes the image H of Gi under the permutation π and sends H to Peggy.

2 Peggy determines a value j such that Gj is isomorphic to H, and sends j to Vic.

3 Vic checks if i = j .

Vic accepts Peggy’s proof if i = j in each of n rounds.

Completeness: If G1 is not isomorphic to G2, then the probability that Vic accepts is
clearly 1.

Soundness: If G1 is isomorphic to G2, then Peggy can deceive Vic if and only if she
correctly guesses n times the i Vic chosen randomly. Probability that this happens is 2−n.

Observe that Vic’s computations can be performed in polynomial time (with respect to
the size of graphs).
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ZERO-KNOWLEDGE PROOFS for NP-COMPLETE PROBLEMS

In 1986 Goldreich, Micali and Widgerson showed that if one-way
functions exist, then zero-knowledge proofs exist for each
NP-complete problem.

Since all NP-complete problems are reducible to each other, to prove
the above statement it is sufficient to show the existence of
zero-knowledge proof for one of them, for example for 3-coloring of
graphs.
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3-COLORABILITY

Are the nodes of the following graph colorable by three colors in such a way that no edge
connects nodes of the same color?

Yes, they are:
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3-COLORING of GRAPHS

Let the Prover know a 3-coloring of a graph G . He can convince about it a Verifier if
they perform n rounds of the following protocol.

The Prover makes a 3-coloring of G , then permutes colors, encrypts each node-color
using a special one-way function, permutes nodes and then sends to the Verifier the
resulting graph with all nodes labeled by cryptotexts of their colors.

The Verifier chooses an edge and asks the Prover to disclose the corresponding one-way
functions and colours of the edge’s end-nodes. If the Verifier finds that two chosen nodes
are indeed colored by different colors, the Prover succeeded in that round.

In case the Prover succeeds in all n rounds the Verifier accepts as the fact that the
Prover knows how to 3-color G . At the same time, the verifier got the slightest idea how
to 3-color G .
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Classes CZK and SZK

Zero-knowledge proofs of the graph non-isomorphism and of the graph 3-coloring are
quite different.

In case of 3-coloring of the graph, the fact that the proof is zero-knowledge depends in
the crucial way on the fact, a computational assumption, that one-way functions exist
and therefore the polynomial time Verifier does not have enough computational power to
do encryptions of colors. Such zero-knowledge proofs are called computational
zero-knowledge proofs and the class of problems with computational zero-knowledge
proofs is denoted CZK.

In case of graph-non-isomorphism problem, the verifier cannot cheat no matter how
much computational power he has. Such zero-knowledge proofs are called statistical
zero-knowledge proofs and the class of the problems with such proofs is denoted SZK.

Clearly SZK ⊆ CZK.

OPEN PROBLEM are the classes CZK and SZK equal?

It can be shown that if one-way functions exist, then CZK=PSPACE.
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PROBABILISTICALLY CHECKEABLE PROOFS

The concept of probabilistic checkeable proofs (PCP), or transparent or holographic
proof, is another great/shocking idea concerning proofs.

Informally, PCP proofs are proofs such that are written down in such a way that one
needs to look only to (very) few randomly chosen bits of it in order to find out whether
the proof is correct with (very) probability.

The hard task is to encode a given proof so randomized checking is possible.

Famous PCP-Theorem says that every NP-complete problem/language admits a
probabilistically checkeable polynomially long proof.

This implies that every mathematical proof can be encoded in such a way that any error
in the original proof translates into errors almost everywhere in the new proof.
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PCP-THEOREM - STILL INFORMALLY

Intuitively, the PCP-theorem says that for some fixed (and universal)
constant K , for every n, any mathematical proof of length n can be
rewritten as a (different) proof of length poly(n) that is formally
verifiable on 99% by a randomized algorithm that makes only k
queries to the proof.

One can also prove that each proof can be rewritten in such a way
that it is enough to check 11 randomly chosen bit in order to verify
the proof with probability at least 1

2
.
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PCP-THEOREM - FORMALLY

Let PCP[f , g ] denote the class of languages (decision problems) with a transparent proof
that uses O(f (n)) random bits and checks O(g(n)) bits of an n bit long proof.

It holds:

PCP Theorem NP = PCP[lg n,O(1)].

This result says that no matter how large an instance of an NP-problem is and how long
its proof is, it is enough to look to a fixed number of (randomly) chosen bits of the proof
in order to determine, with high probability, its validity.

Moreover, given an ordinary proof of membership for an NP-language, the corresponding
transparent proof can be constructed in polynomial time in the length of the original
classical proof.

Transparent proofs therefore have strong error-correcting properties.
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PCP proof for the GRAPH NON-ISOMORPHISM

Given any two n-node non-isomorphic graphs G0 and G1 the Prover sends to the Verifier
a specially encoded binary String proving that G0 and G1 are non-isomorphic.

What is in the String?

The Prover chooses some ordering of all n-node graphs and puts as the i-th bit of the
String to 1 (to 0) if the i-th graph of the chosen ordering is isomorphic to G1 (to G0) -
otherwise he puts as i-th bit of the String a randomly chosen bit.

How does the String proves to the Verifier that G0 and G1 are non-isomorphic?

VERY EASY (in a way): The Verifier flips the coin to choose G0 or G1, randomly
permutes it to get a graph H. Then she queries the corresponding bit of the String and
accepts if and only if the queried bit matches her randomly chosen bit.

The method works. Indeed, if graphs G0 and G1 are non-isomorphic, then the Verifier will
always accept; if not, then probability of acceptance is at most 1/2.
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PCP-THEOREM and APPROXIMATION ALGORITHMS

A surprising connection has been discovered between holographic proofs and highly
practical problems of approximability of NP-complete problems.

It has been shown how any sufficiently good approximation algorithm for the clique
problem can be used to test whether transparent proofs exist, and hence to determine
membership in NP-complete languages.

On this basis it has been shown for the clique problem - and a variety of other NP-hard
optimization problems, such as graph coloring - that there is a constant ε > 0 such that
no polynomial time approximation algorithm for the clique problem for a graph with a set
of |V | of vertices can have a ratio bound less than |V |ε unless P=NP.
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