
IA158 - Scheduler

Jan Koniarik

March 26, 2020

Agenda

1. Project information
2. Scheduler requirements
3. API introduction
4. Example task

Jan Koniarik · IA158 - Scheduler · March 26, 2020 2 / 23

Project information

Project

Part of the assessment of the course is a project - scheduler.
Your goal is to write a scheduler in C.
It has to schedule our three tasks and one of your own - four in
total.

You can get creative with your task.
Your scheduler has to meet all the requirements, and you have
three attempts at submission.

The personal presentation will not be required.

You are allowed to work in pairs, but we can not recommend it
now

Changes
The project requirements changed: You do not have to use embedded
hardware, and the presentation of the project is not required.

Jan Koniarik · IA158 - Scheduler · March 26, 2020 3 / 23

Scheduler requirements

Scheduler requirements
Assumptions:

Jobs are non-preemptible
Tasks are periodic
One processor
No resources/priorities/precedence
Synchronized

Requirements:
Schedule our three tasks and one of your own
The schedule has to be valid
Overrun detection (not prevention)

It should be clear to potential users that overrun happend but do
not stop the execution.

The schedule is not hardcoded

Jan Koniarik · IA158 - Scheduler · March 26, 2020 4 / 23

Scheduler requirements

Skeleton

There will be a simple C skeleton in the school information system
with CMake as a build system.
The three given tasks are schedulable without a problem, and we
believe it is easy to add the fourth task.
Your solution has to schedule all four tasks correctly, in case you have
an error - the project will not be accepted, and you fail.

Jan Koniarik · IA158 - Scheduler · March 26, 2020 5 / 23

Scheduler requirements

Preemptability

But the non-preemptable scheduling is NP-hard

We designed our tasks in a way that it is solvable with an algorithm
that expects preemptable jobs. As for your task, it is your burden to
design it in a way that it is not necessary. 1

1But if you know how to implement it, you can do it.

Jan Koniarik · IA158 - Scheduler · March 26, 2020 6 / 23

Scheduler requirements

Implementation

I will check your implementation of the scheduler - write it in a
way that I can understand it.

Code quality is a necessity for a good scheduler, as the code has
to be easy to understand and debug.
You are free to structure the code however you see fit.

Given that your result should be a desktop application, I will not
restrict you from the usage of dynamic memory, but it should not
be necessary.

Jan Koniarik · IA158 - Scheduler · March 26, 2020 7 / 23

API introduction

API introduction

Jan Koniarik · IA158 - Scheduler · March 26, 2020 8 / 23

API introduction

Interface

The interface is in file api.h provided to you in the skeleton
folder.
Our tasks are defined in tasks.h/tasks.c in the skeleton, feel free
to inspect them.
Do not submit modified tasks files. We will check them on
submission and replace them.

Jan Koniarik · IA158 - Scheduler · March 26, 2020 9 / 23

API introduction

Tasks

The three provided tasks have these properties, all values are in
milliseconds: 2

led period: 250, deadline: 50, max. exec. time: 1
uart period: 251, deadline: 251, max. exec. time: 40
fac period: 1499, deadline: 249, max. exec. time: 40

The led task will be implemented as an example in this seminar.
However, our implementation is in the project for the project.

2We will not change the values for tests. Hardcoded solutions for
these numbers will be denied.

Jan Koniarik · IA158 - Scheduler · March 26, 2020 10 / 23

Example task

Example task

Jan Koniarik · IA158 - Scheduler · March 26, 2020 11 / 23

Example task

Assignment
1. Download project skeleton IA158_skeleton.zip from IS
2. Check that you can compile it (find how to use CMake properly,
you can do that)

3. Open IA158_sched.c file

Jan Koniarik · IA158 - Scheduler · March 26, 2020 12 / 23

https://is.muni.cz/auth/go/td5x2t?lang=en

Example task

Step 1: Write job function

The led task blinks the LED present on the board. For the desktop
version, we will use print as a replacement.

#include " api . h"

uint32_t i = 0;

void led_job (void ∗) {
pr intf (" Status of green led : %i " , i) ;
i = (i + 1) % 2;

}

Using a global variable is ugly, but we will live with that for now.

Jan Koniarik · IA158 - Scheduler · March 26, 2020 13 / 23

Example task

Step 2: Write an instantion of task structure

We want the job of blinking LED to be executed at the 250ms period.
This gives us 4 blinks per second. The maximum execution time is
estimated at 1 ms. 3

struct task LED_TASK_SIMPLE = { . period = 250 ,
. max_execution_time = 1 ,
. relative_deadline = 50 ,
. job = &led_job ,
. data = nullptr } ;

3All time units are in milliseconds

Jan Koniarik · IA158 - Scheduler · March 26, 2020 14 / 23

Example task

Step 3: Write simple scheduler

As an example, we can show a simple execution of one task - simple
while loop. In the example, we use busy wainting to ensure the
period the task has specified. 4

void run_single_task (struct task ∗ task_ptr) {
while (true) {

uint32_t end_time = time () + task_ptr−>period ;
task_ptr−>job (task_ptr−>data) ;
SysTick_DelayMs (end_time − SysTick_GetTime ()) ;

}
}

4SysTick* are our functions provided in sys_tick.h/sys_tick.c

Jan Koniarik · IA158 - Scheduler · March 26, 2020 15 / 23

Example task

Assignment
Implement all three steps in previous slides.

Jan Koniarik · IA158 - Scheduler · March 26, 2020 16 / 23

Example task

More complex task

We just made a really simple task with the scheduler capable of
executing only that one task.
This task only prints something based on the global variable.
Usage of the global variable is not optimal - what if we would
want to have multiple tasks with this job function?

That can be necessary for a lot of non-trivial tasks!

We will fix that in the following modification!

Jan Koniarik · IA158 - Scheduler · March 26, 2020 17 / 23

Example task

Step 4: Data structure

The idea is to use different data for tasks with the same job function.
For each task, remember a pointer for data and pass it to the function
each time it is called. Given that we are working with C, we have to
use a generic pointer to datasets - void*.

struct led_task_data {
uint8_t i ;

} ;
struct led_task_data LED_DATA = { . i = 0 } ;
struct task LED_TASK = { . period = 250 ,

. max_execution_time = 20 ,

. relative_deadline = 50 ,

. job = &led_job2 ,

. data = (void ∗)&LED_DATA } ;

Jan Koniarik · IA158 - Scheduler · March 26, 2020 18 / 23

Example task

Step 5: Modify function

Now, we can use that data structure in the function itself:

void led_job (void ∗void_data) {
struct led_task_data ∗data = void_data ;
pr intf (" Status of green led : %i " , data−>i) ;
data−>i = (data−>i + 1) % 2;

}

Jan Koniarik · IA158 - Scheduler · March 26, 2020 19 / 23

Example task

Assignment
Implement the fourth and fifth steps.
Make a new instance of led task, with different data instances
and same function.

Jan Koniarik · IA158 - Scheduler · March 26, 2020 20 / 23

Example task

API Summary

Summary of the API:
The basic unit is struct task, contains:

timing constraints - period, relative deadline and execution time
job function and job data

API uses void pointer to pass data - you have to convert the
pointer types manually

Jan Koniarik · IA158 - Scheduler · March 26, 2020 21 / 23

Example task

Project

Now implement the schedulers for tasks defined in tasks.h,
remember to add your own task (which can do whatever you
want it to do).
There will be examination dates in the IS for project submission
- you have to sign up.

Once the reservation for the exam date ends (and you can no
longer cancel it), I will open the homework vault.
The homework vault will be open until the examination date -
you have to submit your project in that time period
In case you fail to submit the project, you lose one of the
attempts for submission.

Jan Koniarik · IA158 - Scheduler · March 26, 2020 22 / 23

Example task

Communication

Given current conditions, I will establish multiple ways for you to
communicate with me (Jan Koniarik):

email 433337@mail.muni.cz
discussion group in IS

https://is.muni.cz/auth/go/fiyaqc

Non-official way of communication: (That implies that you have no
official guarantees about anything and that everything that I say on
discord can be changed later)

discord https://discord.gg/H6TsGJc - join IA158 room,
account Veverak with verified authority status

Jan Koniarik · IA158 - Scheduler · March 26, 2020 23 / 23

https://is.muni.cz/auth/go/fiyaqc
https://discord.gg/H6TsGJc

	Project information
	Scheduler requirements
	API introduction
	Example task

