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George Pdlya: How to Solve It?

What is the difference between method and device?

A method is a device which you used twice.

Andrew Hamilton, rektor Oxford University, Respekt 7/2015

Je nutné mit na paméti, Ze my studenty nepripravujeme na konkrétni
povolani, ale trénujeme jejich mysl, aby byli co nejlépe pFipraveni na
zmény, jeZ nas nevyhnutelné Cekaji, a které budou nejspis dosti
dramatické.
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Complexity of Problems and
Algorithms



A strikingly modern thought

“ As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question

will arise— By what course of calculation can these results be arrived at by

the machine in the shortest time? ” — Charles Babbage (1864)

how many times do you
have to turn the crank?
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Analytic Engine



Models of computation: Turing machines

Deterministic Turing machine. Simple and idealistic model.

NO®
1:0 #:1
\®#:#—> BED HALT@®
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YES @
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Running time. Number of steps.
Memory. Number of tape cells utilized.

Caveat. No random access of memory.
* Single-tape TM requires > n2 steps to detect n-bit palindromes.
* Easy to detect palindromes in < cn steps on a real computer.



Models of computation: word RAM

Word RAM / assume w = loga n
* Each memory location and input/output cell stores a w-bit integer.
» Primitive operations: arithmetic/logic operations, read/write memory,
array indexing, following a pointer, conditional branch, ...

™~

constant-time C-style operations
(w=64)

program

Running time. Number of primitive operations.
Memory. Number of memory cells utilized.

Caveat. At times, need more refined model (e.g., multiplying n-bit integers).



Brute force

Brute force. For many nontrivial problems, there is a natural brute-force
search algorithm that checks every possible solution.

* Typically takes 2" steps (or worse) for inputs of size n.

» Unacceptable in practice.

Ex. Stable matching problem: test all n! perfect matchings for stability.



Polynomial running time

Desirable scaling property. When the input size doubles, the algorithm
should slow down by at most some constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exist constants ¢ > 0 and d > 0 such that,
for every input of size n, the running time of the algorithm
is bounded above by c nd primitive computational steps. <«— (hoose ¢ =2¢

Edmonds
(1965)

von Neumann
(1953)




Polynomial running time

We say that an algorithm is efficient if it has a polynomial running time.
Theory. Definition is (relatively) insensitive to model of computation.

Practice. It really works!
« The poly-time algorithms that people develop have both
small constants and small exponents.
« Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem. n120

/

Map graphs in polynomial time

Exceptions. Some poly-time algorithms in the wild
have galactic constants and/or huge exponents.

Abstract

WADS

Q. Which would you prefer: 204'? or p!+002Inn ?




Worst-case analysis

Worst case. Running time guarantee for any input of size n.
» Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice
because the worst-case instances don’t arise.

1 .

grep
THEREFORE. 1 A!

Optimal 1
solution

y
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simplex algorithm Linux grep k-means algorithm



Other types of analyses

Probabilistic. Expected running time of a randomized algorithm.
Ex. The expected number of compares to quicksort n elements is ~ 2n In n.

Amortized. Worst-case running time for any sequence of n operations.
Ex. Starting from an empty stack, any sequence of n push and pop
operations takes O(n) primitive computational steps using a resizing array.

Also. Average-case analysis, smoothed analysis, competitive analysis, ...



PROBLEM COMPLEXITY

algorithm complexity versus problem complexity

° of the problem complexity

proof techniques
° of the problem complexity

e complexity of the particular algorithm solving the problem

given by a lower and upper bound
tight bounds



LOWER BOUND PROOF TECHNIQUES

information-theoretic arguments

decision tree

problem reduction

adversary arguments



INFORMATION-THEORETIC ARGUMENTS

based on counting the number of items in the problems’ input that must
be processed and the number of output items that need to be produced

list all permutations of n-elements sequence
the number of permutation is n!; lower bound is (n!); problem
complexity is ©(n!)

evaluate a polynomial of degree n at a given point x
lower bound is Q(n); problem complexity is ©(n)

product of two n-by-n matrices
lower bound is Q(n?) (size of the result); upper bound is O(n'°827);
problem complexity is 777

Traveling Salesperson
lower bound is Q(n?) (number of graph edges); upper bound is
exponential; problem complexity is 777



DECISION TREES

many algorithms work by comparing items of their inputs

we study performance of such algorithms with a device called the
decision tree

decision tree represents computations on inputs of length n

each internal node represents a key comparison

node's degree is proportional to the number of possible answers and
node's subtrees contain information about subsequent comparisons

each leaf represents a possible outcome; the number of leaves must
be at least as large as the number of possible outcomes

the algorithms's work on a particular input of size n can be traced
by a path from the root to a leaf

10



DECISION TREES AND LOWER BOUNDS

e a tree with a given number of leaves has to be tall enough
e a tree with degree k and / leaves has depth at least [log, /]

e Q(log/(n)) is the lower bound for problem complexity
(I(n) is the number of possible outputs for inputs of length n)

11



DECISION TREES FOR SEARCHING A SORTED ARRAY

Input sorted sequence of numbers (xi, ..., x,), number x
Output index 7 such that x; = x or NONE

e key comparisons

e n+ 1 possible outcomes

e lower bound is tight

12



DECISION TREES FOR SORTING ALGORITHMS

Input sequence of pairwise different numbers (xi, ..., xp)
Output permutation I1 such that xp1) < xne) < ... < xn()

e key comparisons: x; < X;

e n! possible outcomes (number of permutations)

o Q(log n!)
log n! € (viz Stirling formulae)

lower bound is tight



PROBLEM REDUCTION

then

@ element uniqueness problem in (xi,...,x,)7?
P Euclidean minimum spanning tree problem

lower bound for the element uniqueness problem is Q(nlog n)

reduction graph with vertices (xi,0), ... (xn,0)
checking whether the minimum spanning tree contains a zero-length
edge answers the question about uniqueness of the given numbers

claim lower bound for the Euclidean minimum spanning tree problem is

Q(nlog n) 14



ADVERSARY ARGUMENTS

The idea is that an all-powerful malicious adversary pretends to choose
an input for the algorithm. When the algorithm asks a question about
the input, the adversary answers in whatever way will make the algorithm
do the most work. If the algorithm does not ask enough queries before
terminating, then there will be several different inputs, each consistent
with the adversary’s answers, that should result in different outputs. In
this case, whatever the algorithm outputs, the adversary can 'reveal’ an
input that is consistent with its answers, but contradists the algorithm’s
output, an then claim that that was the input that he was using all

along.

15



ADVERSARY FOR THE MAXIMUM PROBLEM

The adversary originally pretends that x; = i for all i, and answers all
comparison queries accordingly. Whenever the adversary reveals that x; < x;, he
marks x; as an item that the algorithm knows (or should know) is not the
maximum element. At most one element x; is marked after each comparison.
Note that x, is never marked. If the algorithm does less than n — 1 comparisons
before it terminates, the adversary must have at least one other unmarked
element xy # x,. In this case, the adversary can change the value of x, from k
to n+ 1 making xi the largest element, without being inconsistent with any of
the comparisons that the algorithm has performed. However, x, is the maximum
element in the original input, and xy is the largest element in the modified

input, so the algorithm cannot possibly give the correct answer for both cases.

The decision tree model gives lower bound log, n. 16



ADVERSARY FOR THE MAXIM. AND MINIM. PROBLEM

Similar arguments as for the maximum problem. Whenever the adversary
reveals that x; < x;, he marks x; as an item that the algorithm knows is
not the maximum element, and he marks x; as an item that the
algorithm knows is not the minimum element. Whenever two already
marked elements are compared, at most one new mark can be added. If
the algorithm does less than |n/2] 4+ n — 2 comparisons before it
terminates, the adversary must have at least two elements that can be
both the maximum or both minimum, so the algorithm cannot possibly
give the correct answer .

17



Algorithm Complexity Analysis



Algorithm Complexity Analysis

Recursive algorithms



5. DiviDE AND CONQUER

» median and selection

SECTION 9.3



Median and selection problems

Selection. Given n elements from a totally ordered universe, find k smallest.

* Minimum: k=1; maximum: k= n.

* Median: k=|(n+1)/2].

* O(n) compares for min or max.

* O(nlog n) compares by sorting.

* O(nlog k) compares with a binary heap. «<— max heap with k smallest

Applications. Order statistics; find the “top k”; bottleneck paths, ...

Q. Can we do it with O(n) compares?
A. Yes! Selection is easier than sorting.

43



Randomized quickselect

* Pick a random pivot element p € A.
+ 3-way partition the array into L, M, and R.
* Recur in one subarray—the one containing the k smallest element.

QUICK-SELECT(A, k)

Pick pivot p € A uniformly at random.

(L, M, R) <= PARTITION-3-WAY(A, p). <—— O®)

IF (k = ILI) RETURN QUICK-SELECT(L, k). <—— T(i)

ELSEIF (k >ILl+IMI) RETURN QUICK-SELECT(R, k—ILI—IMI) «—— T(mn-i-1)

ELSEIF (k = |LI) RETURN p.

a4



Randomized quickselect analysis

Intuition. Split candy bar uniformly = expected size of larger piece is %.

Tn) < TB3n/4) +n = Tn) < 4n )
<

not rigorous: can’t assume
E[T(®] = T(ELD)

Def. T(n, k) = expected # compares to select kit smallest in array of length < n.
Def. T(n) = maxx T(n, k).

Proposition. T(n) < 4n.

Pf. [ by strong induction on n]
can assume we always recur of
« Assume true for 1.2 n—1 larger of two subarrays since 7(n)
[ ) is monotone non-decreasing
* T(n) satisfies the following recurrence: /

Tn) =n +1/n[ 2T(n/2)+ ... +2T(n-3) +2T(n-2) + 2T(n - 1) ]

n+1/n[ 8n/N+...+8n-3)+8n-2)+8(n-1)]

A

inductive hypothesis

A

n +1/n@GBn2)

4n. = tiny cheat: sum should start at 7(|n/2])
45



Selection in worst-case linear time

Goal. Find pivot element p that divides list of n elements into two pieces so
that each piece is guaranteed to have < 7/10 n elements.

Q. How to find approximate median in linear time?
A. Recursively compute median of sample of < 2/10 n elements.

. o) ifn=1
™ = 710 + T@10R + O®)  otherwise

\

two subproblems
of different sizes!

= T(n) = On)

we'll need to show this

46



ing the pivot element

Choos

a).

tr

* Divide n elements into |n/5] groups of 5 elements each (plus ex

®@®6E
PO®®O
®EeE®®



Choosing the pivot element

* Divide n elements into |n /5] groups of 5 elements each (plus extra).
» Find median of each group (except extra).

medians

o o o

48



Choosing the pivot element

* Divide n elements into |n /5] groups of 5 elements each (plus extra).
» Find median of each group (except extra).
* Find median of |n /5] medians recursively.
+ Use median-of-medians as pivot element.

medians

median of

medians @ 0 e



Median-of-medians selection algorithm

MOM-SELECT(A, k)

n<I1Al
IF (n < 50)

RETURN kth smallest of element of A via mergesort.

Group A into |1/ 5] groups of 5 elements each (ignore leftovers).
B < median of each group of 5.

p < MOM-SELECT(B, |[n/ 10]) <—— median of medians

(L, M, R) <= PARTITION-3-WAY(A, p).
IF (k < ILI) RETURN MOM-SELECT(L, k).
ELSEIF (k > |L1+|IMI|) RETURN MOM-SELECT(R, k—I|L1—1M]I)

ELSE RETURN p.



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.

medians

median of
medians p @ @ e



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.
* Atleast [|n/5]/2]=|n/10] medians < p.

medians <p

median of
medians p 0



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.
* Atleast [|n/5]/2]=|n/10] medians < p.
* At least 3 |n/10] elements < p.

medians <p

median of
medians p



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians > p.

medians

median of
medians p @ @ e



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians > p.
* Atleast [|n/5]/2]=|n/10] medians = p.

medians = p

median of
medians p @ e



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians > p.
* Atleast [|n/5]/2]=|n/10] medians = p.
* At least 3 |n/10] elements = p.

medians = p

median of
medians p



Median-of-medians selection algorithm recurrence

Median-of-medians selection algorithm recurrence.
* Select called recursively with |n/5] elements to compute MOM p.
* At least 3 |n/10] elements < p.
* Atleast3|n/10] elements = p.
* Select called recursively with at most n -3 |n/10] elements.

Def. C(n) = max # compares on any array of n elements.

C(n) < C(In/5)) + C(n—3[n/10]) + Ln

median of recursive computing median of 5
medians select (< 6 compares per group)

partitioning
(< n compares)
Intuition.
* C(n) is going to be at least linear in n = C(n) is super-additive.
* Ignoring floors, this implies that C(n) < C(n/5+n-3n/10)+11/5n
COOn/10) + 11/5 n
= C(n) < 22n.



Median-of-medians selection algorithm recurrence

Median-of-medians selection algorithm recurrence.
* Select called recursively with |n/5] elements to compute MOM p.
* At least 3 |n/10] elements < p.
* Atleast3|n/10] elements = p.
* Select called recursively with at most n -3 |n/10] elements.

Def. C(n) = max # compares on any array of n elements.

C(n) < C(In/5)) + C(n—3[n/10]) + Ln

median of recursive computing median of 5
medians select (< 6 compares per group)
partitioning

(< n compares)

Now, let’s solve given recurrence.
* Assume n is both a power of 5 and a power of 10?
* Prove that C(n) is monotone non-decreasing.



Divide-and-conquer: quiz 4

Consider the following recurrence

0
C(n) =
C(ln/5]) + C(n — 3|n/10)) + Ln
Is C(n) monotone non-decreasing?
Yes, obviously.

Yes, but proof is tedious.

Yes, but proof is hard.

o n =w »

No.

ifn<1

ifn>1



inductive
hypothesis

Median-of-medians selection algorithm recurrence

Analysis of selection algorithm recurrence.
* T(n) = max # compares on any array of < n elements.
* T(n) is monotone non-decreasing, but C(n) is not!
6n if n < 50
T(n) <
max{ T(n — 1), T(|n/5]) + T(n —3|n/10]) + £n) } ifn>50
Claim. T(n) < 44n.
Pf. [ by strong induction ]
* Base case: T(n) < 6n for n < 50 (mergesort).
* Inductive hypothesis: assume true for 1,2,...,n—1.
* Induction step: for n = 50, we have either T(n) < T(n—1) < 44n or

T(n)

IA

T(n/5)) + Tn-3|n/10])+ 11/5n

e

A

44(|n/5) + 4 (-3 |n/10)+ 11/5n

IA

44(n/5) + 44n-44(n/4)+ 11/5Sn «—— for n=50,3[n/10] = n/4
44n. =



»

Divide-and-conquer: quiz 5 o

Suppose that we divide r» elements into |n/r| groups of r elements each,
and use the median-of-medians of these [n/r| groups as the pivot.
For which r is the worst-case running time of select O(n) ?

A. r=3

B. r=17

C. Both A and B.
D. Neither A nor B.

61



Lineartime selection retrospective

Proposition. [Blum-Floyd-Pratt-Rivest-Tarjan 1973] There exists a
compare-based selection algorithm whose worst-case running time is O(n).

Time Bounds for Selection*

ManuverL BLum, RoBert W. FLoYD, VAUGHAN PRATT,
RonaLD L. Rivest, AND Roeert E. TARJAN

Department of Computer Science, Stanford University, Stanford, California 94305
Received November 14, 1972

"The number of comparisons required to select the i-th smallest of n numbers is shown
to be at most a linear function of by analysis of a new selection algorithm—PICK.
Specifically, no more than 5.4305 n comparisons are ever required. This bound is
improved for extreme values of 1, and a new lower bound on the requisite number
of comparisons is also proved.

Theory.
* Optimized version of BFPRT: < 5.4305 n compares.
* Upper bound: [Dor-Zwick 1995] < 2.95 n compares.
* Lower bound: [Dor-Zwick 1999] = (2 +2-80) n compares.

Practice. Constants too large to be useful.
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1. STABLE MATCHING

» stable matching problem

JON KLEINBERG - EVA TARDOS

\{ lgorithm Design

SECTION 1.1



Matching med-school students to hospitals

Goal. Given a set of preferences among hospitals and med-school students,
design a self-reinforcing admissions process.

Unstable pair. Hospital # and student s form an unstable pair if both:
* h prefers s to one of its admitted students.
+ s prefers h to assigned hospital.

Stable assignment. Assignment with no unstable pairs.
+ Natural and desirable condition.
« Individual self-interest prevents any hospital-student side deal.




Stable matching problem: input

Input. A set of n hospitals H and a set of n students S.
* Each hospital » € H ranks students. N

one student per hospital (for now)
* Each student s € S ranks hospitals.

favorite least favorite favorite

Xavier  Yolanda Zeus Xavier Boston Atlanta  Chicago

Yolanda Xavier Zeus \IETGEN  Atlanta Boston Chicago

Xavier Yolanda Zeus

hospitals’ preference lists

least favorite

Atlanta Boston Chicago

students’ preference lists



Perfect matching

Def. A matching M is a set of ordered pairs h—s with hE Hand s € S s.t.
* Each hospital » € H appears in at most one pair of M.
* Each student s € S appears in at most one pair of M.

Def. A matching M is perfect if IMI=IHI=1S|=n.

1st 3rd 1st 2nd 3rd

Atlanta Xavier  Yolanda Zeus Xavier Boston Atlanta = Chicago

Yolanda Xavier Zeus \IETGEN  Atlanta Boston Chicago
Xavier Yolanda Zeus Atlanta Boston  Chicago

a perfect matching M = { A-Z, B-Y, C-X }



Unstable pair

Def. Given a perfect matching M, hospital 4 and student s form an
unstable pair if both:

* h prefers s to matched student.

* s prefers h to matched hospital.

Key point. An unstable pair 2—s could each improve by joint action.

1st 3rd 1st 2nd 3rd

Atlanta Xavier Yolanda Zeus Xavier Boston Atlanta ~ Chicago

Yolanda Xavier Zeus \IETGEN  Atlanta Boston Chicago

Xavier Yolanda Zeus

A-Y is an unstable pair for matching M = { A-Z, B-Y, C-X }

Atlanta Boston Chicago



Stable matching: quiz 1

Which pair is unstable in the matching { A-X, B-Z, C-Y } ?

A, A-Y.
B. B-X.
C. B-Z

D. None of the above.

1st 3rd

Atlanta Xavier Yolanda Zeus

Yolanda Xavier Zeus
Xavier Yolanda Zeus

1st 2nd 3rd
Xavier Boston Atlanta  Chicago
\ZIEGER  Atlanta Boston | Chicago

Atlanta Boston Chicago



Stable matching problem

Def. A stable matching is a perfect matching with no unstable pairs.

Stable matching problem. Given the preference lists of n hospitals and
n students, find a stable matching (if one exists).

1st 3rd 1st 2nd 3rd

Atlanta Xavier Yolanda Zeus Xavier Boston Atlanta  Chicago

Yolanda Xavier Zeus \IETGEN  Atlanta Boston Chicago
Xavier Yolanda Zeus Atlanta Boston | Chicago

a stable matching M = { A-X, B-Y, C-Z }



Stable roommate problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.
* 2n people; each person ranks others from 1 to2n—1.
« Assigh roommate pairs so that no unstable pairs.

B c D no perfect matching is stable
A-B, C-D = B-C unstable
. RN
A-C,B-D = A-Bunstable
A-D, B-C = A-C unstable
. [P

Observation. Stable matchings need not exist.



1. STABLE MATCHING

» Gale-Shapley algorithm

JON KLEINBERG - EVA TARDOS
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Gale-Shapley deferred acceptance algorithm

An intuitive method that guarantees to find a stable matching.

GALE-SHAPLEY (preference lists for hospitals and students)

INITIALIZE M to empty matching.
WHILE (some hospital 4 is unmatched and hasn’t proposed to every student)
s < first student on /’s list to whom /% has not yet proposed.
IF (s is unmatched)
Add h—s to matching M.
ELSE IF (s prefers A to current partner ')
Replace h'—s with h—s in matching M.
ELSE

s rejects h.

RETURN stable matching M.



Proof of correctness: termination

Observation 1. Hospitals propose to students in decreasing order of

preference.

Observation 2. Once a student is matched, the student never becomes
unmatched; only “trades up.”

Claim. Algorithm terminates after at most »n? iterations of WHILE loop.
Pf. Each time through the wHILE loop, a hospital proposes to a new student.

Thus, there are at most n2 possible proposals. =

w

X

Y

X
Y
\
w

ENEIED
v w X

x = < <

< x = < =<

z

z

.

C
N
N -
.

n(n-1) + 1 proposals

E

A
B

C

EEIEEIES
C D E A

o 0



Proof of correctness: perfect matching

Claim. Gale-Shapley outputs a matching.

Pf.
* Hospital proposes only if unmatched. = matched to < 1 student
» Student keeps only best hospital. = matched to < 1 hospital

Claim. In Gale-Shapley matching, all hospitals get matched.
Pf. [by contradiction]
* Suppose, for sake of contradiction, that some hospital € H is
unmatched upon termination of Gale-Shapley algorithm.
* Then some student, say s €S, is unmatched upon termination.
* By Observation 2, s was never proposed to.
* But, & proposes to every student, since # ends up unmatched.

Claim. In Gale-Shapley matching, all students get matched.
Pf. [by counting]

* By previous claim, all n hospitals get matched.

* Thus, all n students get matched. =



Proof of correctness: stability

Claim. In Gale-Shapley matching M*, there are no unstable pairs.

Pf. Consider any pair h—s that is not in M*.

* Case 1: h never proposed to s.

) hospitals propose in
= h prefers its Gale-Shapley partner s’ to s. «— decreasing order
of preference

= h-s is not unstable.

* Case 2: h proposed to s.
= s rejected i (either right away or later)
= s prefers Gale-Shapley partner ' to h.
= h-s is not unstable.

students only trade up

* In either case, the pair 2-s is not unstable. =

h—s

Gale-Shapley matching M*



Summary

Stable matching problem. Given n hospitals and » students, and their
preference lists, find a stable matching if one exists.

Theorem. [Gale-Shapley 1962] The Gale-Shapley algorithm guarantees
to find a stable matching for any problem instance.

COLLEGE ADMISSIONS AND THE STABILITY OF MARRIAGE
D. GALE® axp L. S. SHAPLEY, Brown University and the RAND Corporation

1. Introduction. The problem with which we shall be concerned relates to
the following typical situation: A college is considering a set of # applicants of
which it can admit a quota of only ¢. Having evaluated their qualifications, the
admissions office must decide which ones to admit. The procedure of offering
admission only to the ¢ best-qualified applicants will not generally be satisfac-
tory, for it cannot be assumed that all who are offered admission will accept.
Accordingly, in order for a college to receive g acceptances, it will generally have
to offer to admit more than g applicants. The problem of determining how many
and which ones to admit requires some rather involved guesswork. It may not
be known (a) whether a given applicant has also applied elsewhere; if this is
known it may not be known (b) how he ranks the colleges to which he has
applied; even if this is known it will not be known (c) which of the other colleges
will offer to admit him. A result of all this uncertainty is that colleges can ex-
pect only that the entering class will come reasonably close in numbers to the
desired quota, and be reasonably close to the attainable optimum in quality.



Stable matching: quiz 2 o

Do all executions of Gale-Shapley lead to the same stable matching?
A. No, because the algorithm is nondeterministic.
B. No, because an instance can have several stable matchings.
C. Yes, because each instance has a unique stable matching.

D. Yes, even though an instance can have several stable matchings
and the algorithm is nondeterministic.

A
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» hospital optimality
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Understanding the solution

For a given problem instance, there may be several stable matchings.

an instance with two stable matchings: S = { A-X,B-Y,C-Z}and S’ = { A-Y,B-X,C-Z}



Understanding the solution

Def. Student s is a valid partner for hospital & if there exists any stable
matching in which # and s are matched.

Ex.
« Both X and Y are valid partners for A.
* Both X and Y are valid partners for B.
« Zis the only valid partner for C.

an instance with two stable matchings: S = { A-X,B-Y,C-Z}and S’ = { A-Y,B-X,C-Z}



Stable matching: quiz 3

Who is the best valid partner for W in the following instance?

A 6 stable matchings
{ A-wW, B-X, C-Y, D-Z}

B. { A-X, B-W, C-Y, D-Z }
{ A-X, B-Y, C-W, D-Z }
{ A-Z, B-W, C-Y, D-X }
D. { A-Z, B-Y, C-W, D-X }
{ A-Y, B-Z, C-W, D-X }

Y zZ X D C
z Y w X C B A D
w Y X z C B A D
X z W Y D A B C




Understanding the solution

Def. Student s is a valid partner for hospital & if there exists any stable
matching in which # and s are matched.

Hospital-optimal assignment. Each hospital receives best valid partner.
« Is it a perfect matching?
« Is it stable?

Claim. All executions of Gale-Shapley yield hospital-optimal assignment.
Corollary. Hospital-optimal assignment is a stable matching!



Hospital optimality

Claim. Gale-Shapley matching M* is hospital-optimal.

Pf.

[by contradiction]
Suppose a hospital is matched with student other than best valid partner.
Hospitals propose in decreasing order of preference.

= some hospital is rejected by a valid partner during Gale-Shapley

Let & be first such hospital, and let s be the first valid
partner that rejects .

Let M be a stable matching where # and s are matched.
When s rejects & in Gale-Shapley, s forms (or re-affirms)

h-s
h—s'

commitment to a hospital, say #'.

=>| s prefers i’ to h. | stable matching M

Let s’ be partner of 4’ in M.
K’ had not been rejected by any valid partner
because this is the first

(including s') at the point when /4 is rejected by s. «<—— . iion by a valid partner
Thus, 4’ had not yet proposed to s' when &’ proposed to s.

=>| h' prefers s to s'. |
Thus, A'=s is unstable in M, a contradiction. =




Student pessimality

Q. Does hospital-optimality come at the expense of the students?
A. Yes.

Student-pessimal assignment. Each student receives worst valid partner.

Claim. Gale-Shapley finds student-pessimal stable matching m*.

Pf.

[by contradiction]

Suppose h-s matched in M* but & is not the worst valid partner for s.
There exists stable matching M in which s is paired with a hospital,
say h', whom s prefers less than h.

=| s prefers hto 7. | ,
Let s’ be the partner of 4 in M.

By hospital-optimality, s is the best valid partner for h.
=| h prefers sto s'. |

Thus, h—s is an unstable pair in M, a contradiction. = S 3
stable matching M




N

Stable matching: quiz 4 o

Suppose each agent knows the preference lists of every other agent
before the hospital propose-and-reject algorithm is executed.
Which is true?

A. No hospital can improve by falsifying its preference list.
B. No student can improve by falsifying their preference list.
C. Both A and B.

D. Neither A nor B.

26
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Extensions

Extension 1. Some agents declare others as unacceptable.

Extension 2. Some hospitals have more than one position. med-school student
) . unwilling to work
Extension 3. Unequal number of positions and students. in Cleveland

> 43K med-school students;
only 31K positions

Def. Matching M is unstable if there is a hospital 4 and student s such that:
* hand s are acceptable to each other; and
* Either s is unmatched, or s prefers i to assigned hospital; and
* Either h does not have all its places filled, or i prefers s to at least
one of its assigned students.

Theorem. There exists a stable matching.
Pf. Straightforward generalization of Gale-Shapley algorithm.



Historical context

National resident matching program (NRMP).
« Centralized clearinghouse to match med-school students to hospitals.
« Began in 1952 to fix unraveling of offer dates.
L M ” . AN hospitals began making
+ Originally used the “Boston Pool” algorithm. ofiis ey e ciicn,
+ Algorithm overhauled in 1998. up to 2 years in advance
- med-school student optimal
- deals with various side constraints
(e.g., allow couples to match together) «— ¢ e o onaer

The Redesign of the Matching Market for American Physicians:
Some Engineering Aspects of Economic Design

By ALVIN E. RoTH AND ELLIOTT PERANSON*

We report on the design of the new clearinghouse adopted by the National Resident
Matching Program, which annually fills approximately 20,000 jobs for new physi-
cians. Because the market has complementarities between applicants and between
positions, the theory of simple matching markets does not apply directly. However,
computational experiments show the theory provides good approximations. Fur-
thermore, the set of stable matchings, and the opportunities for strategic manipu-
lation, are surprisingly small. A new kind of “core convergence” result explains
this; that each applicant interviews only a small fraction of available positions is
important. We also describe engineering aspects of the design process. (JEL CT8,

’ MATCH



2012 Nobel Prize in Economics

Lloyd Shapley. Stable matching theory and Gale-Shapley algorithm.

COLLEGE ADMISSIONS AND THE STABILITY OF MARRIAGE

D. GALE* axp L. S. SHAPLEY, Brown University and the RAND Corporation
1. Introduction. The problem with which we shall be concerned relates to original applications:
the following typical situation: A college is considering a set of # appli of college admissions and
which it can admit a quota of only ¢. Having evaluated their qualifications, the ge ;
opposite-sex marriage

admissions office must decide which ones to admit. The procedure of offering
admission only to the g best-qualified applicants will not generally be satisfac-
tory, for it cannot be assumed that all who are offered admission will accept.

Alvin Roth. Applied Gale-Shapley to matching med-school students with
hospitals, students with schools, and organ donors with patients.

Lloyd Shapley Alvin Roth



New York City high school match

8th grader. Ranks top-5 high schools.
High school. Ranks students (and limit).
Goal. Match 90K students to 500 high school programs.

How Game Theory Helped Improve New
York City’s High School Application Process

By TRACY TULLIS  DEC. 5, 2014 o o e ° m

Tuesday was the deadline for eighth graders in New York City to submit
applications to secure a spot at one of 426 public high schools. After
months of school tours and tests, auditions and interviews, 75,000
students have entrusted their choices to a computer program that will
arrange their school assignments for the coming year. The weeks of
research and deliberation will be reduced to a fraction of a second of
mathematical calculation: In just a couple of hours, all the sorting for the
Class of 2019 will be finished.



Questbridge national college match

Low-income student. Ranks colleges.
College. Ranks students willing to admit (and limit).
Goal. Match students to colleges.

QUEST @BRIDGE

0 eofn O
NATIONAL

i




A modern application

Content delivery networks. Distribute much of world’s content on web.

User. Preferences based on latency and packet loss. (
Web server. Preferences based on costs of bandwidth and co-location.
Goal. Assign billions of users to servers, every 10 seconds.

Algorithmic Nuggets in Content Delivery

Bruce M. Maggs Ramesh K. Sitaraman

Duke and Akamai UMass, Amherst and Akamai
bmm@cs.duke.edu ramesh@cs.umass.edu
This asticle is an editorial note submitted to CCR. Tt has
The authors take full responsibility for this article’s technical content. Comments can be posted throngh CCR Online.

ABSTRACT
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Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time),
produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union—find, ....

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.
Ex. Array, linked list, binary heap, binary search tree, hash table, ...




Appetizer

Goal. Design a data structure to support all operations in O(1) time.
* INIT(n): create and return an initialized array (all zero) of length n.
* READ(4, i): return element i in array.
* WRITE(A, i, value): set element i in array to value.
PTG, true in C or C++, but not Java
* Can MALLOC an uninitialized array of length »n in O(1) time.
* Given an array, can read or write element i in O(1) time.

Remark. An array does INIT in ©(n) time and READ and WRITE in ©(1) time.



Appetizer

Data structure. Three arrays A[l..n], B[1..n], and C[1..n], and an integer k.
* A[i] stores the current value for READ (if initialized).
* k= number of initialized entries.
* Cl[jl = index of j* initialized element for j=1,...,k.
* If Cljl=1i, then B[i] =j forj=1,...,k.

Theorem. A[i] is initialized iff both 1 < B[i] <k and C[B[i]] = i.
Pf. Ahead.

A[l 2 22 55 99 ? 33 ? 2
BIl 2?2 3 4 1 2 2 2?2 72
c[] 4 6 2 3 ? 2 72 2

k=4

A[4]=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order



Appetizer

INIT (A, n) READ (A, i)

k < 0. IF (IS-INITIALIZED (A[{]))
A <= MALLOC(n). RETURN A[i].

B < MALLOC(n). ELSE

C <= MALLOC(n). RETURN 0.

IS-INITIALIZED (A, i)

IF (1 = B[i] =< k) and (C[B[i]] = i)
RETURN true.

ELSE
RETURN false.

WRITE (A, i, value)
IF (IS-INITIALIZED (A[{]))
Ali] < value.
ELSE
k<—k+1.
Ali] < value.
BIi] < k.
Clk] < i.



Appetizer

Theorem. A[i] is initialized iff both 1 <B[i]< kand C[B[i]] = i.
Pf. =

* Suppose A[i] is the j# entry to be initialized.

* Then C[jl =i and B[i] =j.

* Thus, C[B[i]] = i.

A[l 2 22 55 99 ? 33 ? ?

cf[y 4 6 02 3 0?2 2?2 1?2 7?2
k=4

A[4]=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order



Appetizer

Theorem. A[i] is initialized iff both 1 <B[i]< kand C[B[i]] = i.
Pf. <=
* Suppose A[i] is uninitialized.
 If B[i] <1 or B[i] > k, then A[i] clearly uninitialized.
* If 1 < B[i] < k by coincidence, then we still can’t have C[B[i]] = i
because none of the entries C[1..k] can equal i. =

A[l 2 22 55 99 ? 33 ? ?

cf[y 4 6 02 3 0?2 2?2 1?2 7?2
k=4

A[4]=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order
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Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure

operation as function of the input size n.

can be too pessimistic if the only way to
encounter an expensive operation is when
there were lots of previous cheap operations

Amortized analysis. Determine worst-case running time of a sequence
of n data structure operations.

Ex. Starting from an empty stack implemented with a dynamic table, any
sequence of n push and pop operations takes O(n) time in the worst case.



Amortized analysis: applications

« Splay trees.

» Dynamic table.

» Fibonacci heaps.

» Garbage collection.

+ Move-to-front list updating.

+ Push-relabel algorithm for max flow.

+ Path compression for disjoint-set union.

« Structural modifications to red-black trees.
 Security, databases, distributed computing, ...

SIAM J. ALG. DISC. METH. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 2, April 1985 o16

AMORTIZED COMPUTATIONAL COMPLEXITY*
ROBERT ENDRE TARJANt

Abstract. A powerful techniq analysis of data structures is amortization, or averaging
over time. Amortized running time is a realistic but robust complexity measure for which we can obtain
surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing
algorithms whose amortized complexity is low, we obtain “self-adjusting” data structures that are simple,
fiexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

ASM(MOS) subject classifications. 68C25, 68E05
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Binary counter

Goal. Increment a k-bit binary counter (mod 2).
Representation. a;=j* least significant bit of counter.

prlNCOCEON
0 00000000
1 0000O0O00O01
2 00000010
3 00000O0OT11
4 00000100
5 00000101
6 00000110
7 00000111
8 00001000
9 00001001
10 00001010
11 00001011
12 00001100
13 00001101
14 00001110
15 00001111
16 000100O0O00

Cost model. Number of bits flipped.



Binary counter

Goal. Increment a k-bit binary counter (mod 2).
Representation. a;=j* least significant bit of counter.

Counter A, P N

value QAN ?§ ?g*\?;“—\}\v\}\\\?,\“
0 0
0
0
0

7,
7

=l

cocococococococococococoo0oo

cococoo
cococococococococoocooo0O0O

co
oH—~——~—~—~—~—~Boococoocococo
o~~~ —Bococor~~~~—8co
o~Bor~BokH~doH~Bo
SR EEEE G R

cococococoocoocoo
—goocococccoccocoo

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(nk) bits. <—— overly pessimistic upper bound
Pf. At most k bits flipped per increment. =



Aggregate method (brute force)

Aggregate method. Analyze cost of a sequence of operations.

S Total
cost

ORI
000000

\?’\b\

%

Counter
value

0

2!
23
25

cog—~——~—ococog~——=—=Ho
cocoococoo@—~———~———Ho
coococoococoo0o0o000olg—~
CoO0000000000000O
Cooco0O000O0O00C0O0OOO
cocoococoo0oco00O00CO0O0O0O0O

— NN O~ 0O

Nt n o

14



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit 0 flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.
* Bitj flips | n/2/] times. -
. . . = 1
+ The total number of bits flipped is " {%J < nzg
j=0

=0

= 2n =

Remark. Theorem may be false if initial counter is not zero.



Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i* operation. can be more or less
than actual cost
* ¢; =actual cost of i*» operation.
* ¢ =amortized cost of i operation = amount we charge operation i.
* When & > ¢;, we store credits in data structure D; to pay for future ops;
when & < ¢, we consume credits in data structure D..

Initial data structure Dy starts with 0 credits.

Credit invariant. The total number of credits in the data structure = 0.

} :(@, _ 2 :(“ >0 our job is to choose suitable amortized
B = costs so that this invariant holds
=1 i=1




Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i* operation. can be more or less
. than actual cost
* ¢; =actual cost of i*» operation.
* ¢ =amortized cost of i operation = amount we charge operation i.
* When & > ¢;, we store credits in data structure D; to pay for future ops;
when ¢ < ¢, we consume credits in data structure D;.

Initial data structure Dy starts with 0 credits.

Credit invariant. The total number of credits in the data structure = 0.

e —> >0
i=1 i=1

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.
Pf. The amortized cost of the sequence of n operations is: > & > Y ¢ «

i=1 i=1 .
credit

invariant

Intuition. Measure running time in terms of credits (time = money). .



Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).

increment



Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
* Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit ;.

increment



Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
* Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit ;.



Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
* Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit ;.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
the rightmost 0 bit

Pf. (unless counter overflows)

* Each INCREMENT operation flips at most one 0 bit to a 1 bit,

so the amortized cost per INCREMENT < 2.
* Invariant = number of credits in data structure > 0.
* Total actual cost of n operations < sum of amortized costs < 2n. =

f

accounting method theorem



Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:
« ®(Dy) = 0.
+ ®(D;) = 0 for each data structure D..

Actual and amortized costs.
* ¢ = actual cost of i operation.
* & =ci+ D) - D) = amortized cost of i operation.



Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:
« ®(Dy) = 0.
+ ®(D;) = 0 for each data structure D..

Actual and amortized costs.
* ¢ = actual cost of i operation.
* & =ci+ D) - D) = amortized cost of i operation.

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.
Pf. The amortized cost of the sequence of operations is:

n
E ¢
i=1

Z (ci +®(D;) — ©(Dj-1))

i=1

= ici + ®(D,,) — ®(Do)

n
E C; m
i=1

[\



Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
« ®(Dy) = 0.
* ®(D;) = 0 for each D..

increment
7 6 5 4 3 2 1 0
- (S,
AL
o 1 0 0 1 1 1 1 = pg-%



Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
« ®(Dy) = 0.
* ®(Dy) = 0 for each D..

increment

6 5 4 3 2 1 0




Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
« ®(Dy) = 0.
* ®(D;) = 0 for each D..



Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
« ®(Dy) = 0.

* ®(D;) = 0 for each D..

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

Suppose that the i” INCREMENT operation flips 7 bits from 1 to 0.
* The actual cost ci<ti+1l. < operation flips at most one bit from 0 to 1

(no bits flipped to 1 when counter overflows)
* The amortized cost & = ¢i + P(Di)) — P(Di-1)

< ¢i + 1 — t; «<—— potential decreases by 1 for ¢ bits flipped from 1 to 0
2 and increases by 1 for bit flipped from 0 to 1

A

<
Total actual cost of n operations < sum of amortized costs < 2n. =

f

potential method theorem



Famous potential functions

Fibonacci heaps. ®(H) = 2trees(H) + 2 marks(H)

Splay trees. ®(T) = »_ |log; size(z)]
zeT

Move-to-front. ®(L) = 2 inversions(L, L")

Preflow-push. ®(f) = Z height(v)

v:excess(v) >0

Red-black trees. @(T) = w(z)

if x is red
if # is black and has no red children
if = is black and has one red child

if = is black and has two red children

8
SRS mM
S



AMORTIZED ANALYSIS

» multi-pop stack

SECTION 17.4



Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* Popr(S): remove and return the most-recently added element.
* MuULTI-POP(S, k): remove the most-recently added k elements.

MuLTI-PoP (S, k)

FOrR i=1TOk
Popr(S).

Exceptions. We assume Pop throws an exception if stack is empty.



Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* Popr(S): remove and return the most-recently added element.
* MuULTI-POP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of
PusH, Pop, and MULTI-POP operations takes O(n2) time.
Pf.
. . i overly pessimistic
+ Use a singly linked list. upper bound
* Pop and PusH take O(1) time each.
* MuLTI-POP takes O(n) time. =

top [ | ] 4 N | 3




Multipop stack: aggregate method

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* Popr(S): remove and return the most-recently added element.
* MuULTI-POP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of
PusH, Pop, and MULTI-POP operations takes O(n) time.

P.

« An element is popped at most once for each time that it is pushed.

* There are < n PusH operations.
* Thus, there are < n POP operations
(including those made within MuULTI-POP). =



Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or Pop.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future
* Por(S): charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MuLTI-POP operations takes O(n) time.
Pf.

* Invariant = number of credits in data structure > 0.

* Amortized cost per operation < 2.

* Total actual cost of n operations < sum of amortized costs < 2n. =

f

accounting method theorem



Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
« ®(Dy) = 0.
* ®(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MuULTI-POP operations takes O(n) time.

Pf. [Case 1: push]
* Suppose that the i operation is a PUSH.
* The actual cost ¢; = 1.
* The amortized cost ¢ = ¢; +®D) — PDi) = 1 + 1 = 2.



Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
« ®(Dy) = 0.
* ®(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MuULTI-POP operations takes O(n) time.

Pf. [Case 2: pop]
» Suppose that the i operation is a Pop.
* The actual cost ¢; = 1.
* The amortized cost ¢ = ¢; +®(D) — ®PDi)) =1 -1 = 0.



Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
« ®(Dy) = 0.
* ®(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MuULTI-POP operations takes O(n) time.

Pf. [Case 3: multi-pop]
* Suppose that the i operation is a MULTI-PopP of k objects.
* The actual cost ¢; =k.
* The amortized cost é = ¢i +®(D) — ®Di) =k —k =0. =



Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
« ®(Dy) = 0.
* ®(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MuULTI-POP operations takes O(n) time.

Pf. [putting everything together]
. Amortized cost ¢ < 2. «— 2 for push; 0 for pop and multi-pop
* Sum of amortized costs ¢; of the n operations < 2 n.
* Total actual cost < sum of amortized cost< 2n. =

f

potential method theorem
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Heaps

Disjoint-sets Data Structures
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Priority queues performance cost summary

linked list binary heap binomial heap F|bona<J:rC| heap

MAKE-HEAP o(1) o(1) o(l) o(l)
IS-EMPTY o(l) o) o(l) o(1)
INSERT o) O(log n) O(log n) o(l)
EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
DECREASE-KEY o(l) O(log n) O(log n) o(1)
DELETE o(1) O(log n) O(log n) O(log n)
MELD o(l) 0o(n) O(log n) o(1)
FIND-MIN 0o(n) o(1) O(log n) o(l)

1t amortized

Ahead. O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.



Fibonacci heaps

Theorem. [Fredman-Tarjan 1986] Starting from an empty Fibonacci heap,
any sequence of m INSERT, EXTRACT-MIN, and DECREASE-KEY operations
involving n INSERT operations takes O(m + nlog n) time.

History.
 Ingenious data structure and application of amortized analysis.
« Original motivation: improve Dijkstra’s shortest path algorithm
from O(m log n) to O(m + n log n).
» Also improved best-known bounds for all-pairs shortest paths,

assignment problem, minimum spanning trees.



Fibonacci heap: structure

« Set of heap-ordered trees.

\

each child no smaller
than its parent

heap-ord
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Fibonacci heap: structure

» Set of marked nodes.

\

used to keep trees bushy
(stay tuned)

min

17 24 23 7 3

30 46 | \
52 41

h H marked |
L 35 <
44



Fibonacci heap: structure

Heap representation.
- Store a pointer to the minimum node.
» Maintain tree roots in a circular, doubly-linked list.

min

17 24 23 7 3

30 46 | \
52 41

h H
. 35



Fibonacci heap: representation

Node representation. Each node stores:
* A pointer to its parent.
« A pointer to any of its children.
« A pointer to its left and right siblings.
* Its rank = number of children.
* Whether it is marked.

children are in a /

heap H . . .
circular doubly-linked list




Fibonacci heap: representation

Operations we can do in constant time:

heap H

Determine rank of a node.

Find the minimum element.

Merge two root lists together.

Add or remove a node from the root list.

Remove a subtree and merge into root list.

Link the root of a one tree to root of another tree.




Fibonacci heap: notation

notation meaning
n number of nodes

rank(x) number of children of node x

rank(H) max rank of any node in heap H

trees(H) number of trees in heap H

marks(H) number of marked nodes in heap H

n=14 rank(H) = 3 trees(H) = 5 marks(H) = 3 .
min
rank = 1 17 24 23 7 3 rank = 3
30 46 | \
52 41
heap H
; |

12



Fibonacci heap: potential function

Potential function.

D(H) =trees(H) + 2 - marks(H)

OH)=5+2-3=11 trees(H) = 5 marks(H) = 3 .
min
17 24 23 7 3
30 46 | \
52 41
hep |
L 35

13
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Fibonacci heap: insert

+ Create a new singleton tree.
+ Add to root list; update min pointer (if necessary).

insert 21
21
min
17 24 23 7 3
30 46 | \
52 41

eap H
44



Fibonacci heap: insert

+ Create a new singleton tree.
+ Add to root list; update min pointer (if necessary).

insert 21
min
17 24 23 7 21 3
30 46 | \
52 41

eap H
44



Fibonacci heap: insert analysis

Actual cost. ¢ =0(1).

one more tree;

Change in potential. A® = ®(H) - P(Hi1) = +1. < hange in marks

Amortized cost. & = ¢ + AD =0(1).

D(H) =trees(H) + 2 - marks(H)

min

17 24 23 7 21 3

30 46 | \
52 41

h H |
Y 35
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Linking operation

Useful primitive. Combine two trees T; and T» of rank k.
+ Make larger root be a child of smaller root.
* Resulting tree T' has rank k + 1.

tree T1 tree Tz tree T’

15 B] 3
56/24\33 ]8/52\4] 15 ]8/ 52\4]
| | | N |

56 24 33

77 39 44 39 44

77
still heap-ordered



Fibonacci heap: extract the minimum

+ Delete min; meld its children into root list; update min.

min
7 24 23 17 3
30 46 52 41

35 44



Fibonacci heap: extract the minimum

+ Delete min; meld its children into root list; update min.

35



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

current




Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

rank
0 1 2 3
. { e o
{ current
min 7 24 23 17 52
30 46

41

44



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

{ l current

min 7 24 23 17 52

41

44



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

{ l current

min 7 24 23 17 52

41

44



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

link 23 to 17

{ l current

min 7 24 23 17 52




Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

link 17 to 7 0 1 2 3

{ l current

min 7 24 17 52

41

44



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

rank
link 24 to 7 1 2 3
o o .
l N current
24 7 52
46 17 30

35 23

41

44



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

current

52

24 17 30

46 23

35

41

44



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

min current

7 52

24 17 30

46 23

35

41

44



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

0 1 2 3
I R
min J current
7 52 41
24 17 30

44

46 23

35



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

rank
link 41 to 18 o 1 2 3
I O ¢
N J current
7 52 41
24 17 30 44
46 23

35



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

0o 1 2 3
I o o g
i J current
7 52

24 17 30 41

46 23 44

35



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

rank
0 1 2 3
I o o
N current
7 52
24 17 30 41
46 23 44

35



Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

stop (no two trees have same rank)

52

min
/ 7
24 17 30

46 23

35

41

44



Fibonacci heap: extract the minimum analysis

Actual cost. ¢ = O(rank(H)) +O(trees(H)).
* O(rank(H)) to meld min’s children into root list. «<— = rank(H) children
* O(rank(H)) + O(trees(H)) to update min. «— < rank(H) + trees(H) - 1 root nodes
* O(rank(H)) + O(trees(H)) to consolidate trees. <— number of roots decreases by 1 after
each linking operation
Change in potential. A® < rank(H') + 1 - (trees(H).
* No new nodes become marked.

* trees(H') < rank(H') + 1. <— no two trees have same rank after consolidation

Amortized cost. O(log n).
* ¢ = ci + AD = O(rank(H)) + O(rank(H')).
* The rank of a Fibonacci heap with n elements is O(log n).

N

Fibonacci lemma
(stay tuned)

D(H) =trees(H) + 2 - marks(H)




Fibonacci heap vs. binomial heaps

Observation. If only INSERT and EXTRACT-MIN operations, then all trees are
binomial trees.

we link only trees of equal rank

Bo B, B, Bs
- I\ m
Binomial heap property. This implies rank(H) < logzn.

Fibonacci heap property. Our DECREASE-KEY implementation will not preserve
this property, but we will implement it in such a way that rank(H) < log,n.
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Fibonacci heap: decrease key

Intuition for deceasing the key of node x.

* If heap-order is not violated, decrease the key of x.

* Otherwise, cut tree rooted at x and meld into root list.

decrease-key of x from 30 to 7

30 28] 22 48

45 32 24 50

55

29 10 44

31 17



Fibonacci heap: decrease key

Intuition for deceasing the key of node x.

* If heap-order is not violated, decrease the key of x.
* Otherwise, cut tree rooted at x and meld into root list.

decrease-key of x from 23 to 5

28] 22 48 31 17 55

24 50

32

40



Fibonacci heap: decrease key

Intuition for deceasing the key of node x.
* If heap-order is not violated, decrease the key of x.
* Otherwise, cut tree rooted at x and meld into root list.

decrease-key of 22 to 4
decrease-key of 48 to 3
decrease-key of 31 to 2 6 7
decrease-key of 17 to 1

22 48 31 17 55

50



Fibonacci heap: decrease key

Intuition for deceasing the key of node x.
* If heap-order is not violated, decrease the key of x.
* Otherwise, cut tree rooted at x and meld into root list.
« Problem: number of nodes not exponential in rank.

rank = 4, nodes = 5

42



Fibonacci heap: decrease key

Intuition for deceasing the key of node x.
* If heap-order is not violated, decrease the key of x.
* Otherwise, cut tree rooted at x and meld into root list.
» Solution: as soon as a node has its second child cut,
cut it off also and meld into root list (and unmark it).

min
7 38
marked node: / \
one child already cut 24 17 23 21 41
46 30 52

35 88 72

43



Fibonacci heap: decrease key

Case 1. [heap order not violated]
* Decrease key of x.
« Change heap min pointer (if necessary).

decrease-key of x from 46 to 29

ﬁ/ [
| x
88 72

35

21 41

a4



Fibonacci heap: decrease key

Case 1. [heap order not violated]
* Decrease key of x.
« Change heap min pointer (if necessary).

decrease-key of x from 46 to 29

ﬁ/ T
| X
88 72

35

21 41

45



Fibonacci heap: decrease key

Case 2a. [heap order violated]
* Decrease key of x.

decrease-key of x from 29 to 15

ﬁ/ T
| X
88 72

35

21 41

46



Fibonacci heap: decrease key

Case 2a. [heap order violated]
* Decrease key of x.

decrease-key of x from 29 to 15

ﬁ/w )
| X
88 72

35

21 41

47



Fibonacci heap: decrease key

Case 2a. [heap order violated]

* Cut tree rooted at x, meld into root list, and unmark.

decrease-key of x from 29 to 15

21 41

/15 30 52
| .
88 72

35

48



Fibonacci heap: decrease key

Case 2a. [heap order violated]

If parent p of x is unmarked (hasn’t yet lost a child), mark it;

decrease-key of x from 29 to 15

min
X 15 7 38
72 24 17 23 21 41
- |
30 52

35 88

49



Fibonacci heap: decrease key

Case 2a. [heap order violated]

If parent p of x is unmarked (hasn’t yet lost a child), mark it;

decrease-key of x from 29 to 15

min
X 15 7 38
72 17 23 21 41
| |
30 52

35 88



Fibonacci heap: decrease key

Case 2b. [heap order violated]
* Decrease key of x.

decrease-key of x from 35 to 5

min
15 7 38
72 17 23 21 41
P 30 52



Fibonacci heap: decrease key

Case 2b. [heap order violated]

* Cut tree rooted at x, meld into root list, and unmark.

decrease-key of x from 35 to 5

min
15 7 38
72 17 23 21 41
P 30 52



Fibonacci heap: decrease key

Case 2b. [heap order violated]

* Cut tree rooted at x, meld into root list, and unmark.

decrease-key of x from 35 to 5

X min

72

88

52



Fibonacci heap: decrease key

Case 2b. [heap order violated]

Otherwise, cut p, meld into root list, and unmark

decrease-key of x from 35 to 5

X min

72 21 41

7
17 23
second child cut

\ | |

P 30 52

88



Fibonacci heap: decrease key

Case 2b. [heap order violated]

Otherwise, cut p, meld into root list, and unmark

decrease-key of x from 35 to 5

X min p

26 7
72 88 e/w 23 21 41

30 52




Fibonacci heap: decrease key

Case 2b. [heap order violated]

(and do so recursively for all ancestors that lose a second child).

decrease-key of x from 35 to 5

X min p

72 88 p’ 17 23

/]

second child cut 30

21 41

52



Fibonacci heap: decrease key

Case 2b. [heap order violated]

(and do so recursively for all ancestors that lose a second child).

decrease-key of x from 35 to 5

"

X min p p
15 5 26 24

7
| but don’t | \
17 23

72 88

mark parent 21 41
if it’s a root | |

30 52



Fibonacci heap: decrease key analysis

Actual cost. ¢ = 0O(c), where c is the number of cuts.
* O(1) time for changing the key.
* 0(1) time for each of ¢ cuts, plus melding into root list.

Change in potential. A® = O(1) - c.

* trees(H') = trees(H) + c.
each cut (except first) unmarks a node

U
) markS(H) = marks(H) —c+2 last cut may or may not mark a node

*AD <c+ 2 (c+2) =4 - c.

Amortized cost. & = c¢i + AD = O(1).

O(H) =trees(H) + 2 - marks(H)
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Analysis summary

Insert. o(l).
Delete-min. O(rank(H)) amortized.
Decrease-key. O(1) amortized.

Fibonacci lemma. Let H be a Fibonacci heap with n elements.
Then, rank(H) = O(log n).

\

number of nodes is
exponential in rank



Bounding the rank

Lemma 1. Fix a point in time. Let x be a node of rank k, and let y,, ..., y,
denote its current children in the order in which they were linked to x.

Then:
0 ifi=1 .
1?1 =
ank(y;) >
ran (y){i—Q iti>2 //\
i v S

b3

Pf.
« When y, was linked into x, x had at leasti — 1 children y,, ..., y;;.
- Since only trees of equal rank are linked, at that time
rank(y;) = rank(x) = i —1.
- Since then, y; has lost at most one child (or y; would have been cut).
 Thus, right now rank(y;) = i— 2. =



Bounding the rank

Lemma 1. Fix a point in time. Let x be a node of rank k, and let y,, ..., y,
denote its current children in the order in which they were linked to x.

Then:
0 ifi=1 .
1?2 =
ank(y;) >
mn(y){i_Q i£i>2 //\
Y1 Y2 Vi

Def. Let 7, be smallest possible tree of rank k satisfying property.

To T

LA Ay Ay,

5
F2=1 F3=2 Fa=3 Fs=5 Fe=8 F7=13



Bounding the rank

Lemma 1. Fix a point in time. Let x be a node of rank k, and let y,, ..., y,
denote its current children in the order in which they were linked to x.

Then:
0 ifi=1 .
1?2 =
ank(y;) >
mn(y){i_Q i£i>2 //\
Y1 Y2 Vi

Def. Let 7, be smallest possible tree of rank k satisfying property.

Ts Ts Te
Fo=8 F7=13 Fe=Fs+F7=8+13=21



Bounding the rank

Lemma 2. Let s, be minimum number of elements in any Fibonacci heap of
rank k. Then s, = Fin, Where Fy is the k# Fibonacci number.

Pf. [by strong induction on k]
* Base cases: so=1 and s; = 2.
+ Inductive hypothesis: assumes; > Fi.> fori=0,...,k—1.
« Asin Lemma 1, let let y,, ..., y, denote its current children in the order in
which they were linked to x.

v

Sk 1+1+4+ (so+ 81 +...+ Sk2) (Lemma 1)

v

(I1+F)+ Fo + F3 +...+ Fx (inductive hypothesis)

= Fiy2. ® (Fibonacci fact 1)



Bounding the rank

Fibonacci lemma. Let H be a Fibonacci heap with n elements.
Then, rank(H) < log,n, where ¢ is the golden ratio = (1 +v5)/2=1618.

Pf.
* Let His a Fibonacci heap with n elements and rank «.
* Then n = Frioo = q)k.

1

Lemma 2 Fibonacci
Fact 2

+ Taking logs, we obtain rank(H) =k < log,n. =



Fibonacci fact 1

Def. The Fibonacci sequence is: 0,1,1,2,3,5,8,13,21,...

0 ifk=0
Fr,=<1 ifk=1
Frp 1+ Fy o ifk>2

Fibonacci fact 1. For all integers k=0, Fi, = 1+Fo+Fi+... + Fy.
Pf. [by induction on k]

« Base case: F,=1+Fy=2.

« Inductive hypothesis: assume F,,, = 1+ Fo+ Fi + ... + Fi1.

Frio = Fr + Fra (definition)

Fr + (1+Fo+Fi+ ...+ Fr1) (inductive hypothesis)

= 1l+Fo+Fi+...+Fri+Fr = (algebra)



Fibonacci fact 2

Def. The Fibonacci sequence is: 0,1,1,2,3,5,8,13,21,...

P =

0 ifk=0
1 ifk=1
Frp 1+ Fy o ifk>2

Fibonacci fact 2. F,,, = ¢ where ¢ = (1 +v5)/2=1.618.

Pf. [by induction on k]
« Base cases: F,=1=1,

+ Inductive hypotheses:

Fk+2 =

v

Fy=2 = ¢.
assume F, = ¢t and F,,, > ¢i+!

Fv + Fis (definition)

Gk=1 4 k-2 (inductive hypothesis)
OF-2(1 + ¢) (algebra)

PF-2 ¢? @=¢+1)

q)k, n (algebra)
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Fibonacci heap: meld

Meld. Combine two Fibonacci heaps (destroying old heaps).

Recall. Root lists are circular, doubly-linked lists.

23

heap Hi

35

46

heap H: |

70



Fibonacci heap: meld

Meld. Combine two Fibonacci heaps (destroying old heaps).

Recall. Root lists are circular, doubly-linked lists.

23 24 17 7 3 21
30 46 \
52 41
e |
heap H 24



Fibonacci heap: meld analysis

Actual cost. ¢ =0(1).
Change in potential. A® = 0.
Amortized cost. & = c¢i + AD =O(1).

D(H) =trees(H) + 2 - marks(H)

min
23 24 17 7 3 21
30 46 \
52 41
o |
heap H 44

72



Fibonacci heap: delete

Delete. Given a handle to an element x, delete it from heap H.
* DECREASE-KEY(H, x, -©).
* EXTRACT-MIN(H).

Amortized cost. & = O(rank(H)).
* O(1) amortized for DECREASE-KEY.
* O(rank(H)) amortized for EXTRACT-MIN.

O(H) = trees(H) + 2 - marks(H)

73



Priority queues performance cost summary

linked list binary heap binomial heap F|bonaSrC| GEL

MAKE-HEAP o(l) o(l) o(l) o(l)
IS-EMPTY o(l) o(1) o(l) o(1)
INSERT o) O(log n) O(log n) o(1)
EXTRACT-MIN Oo(n) O(log n) O(log n) O(log n)
DECREASE-KEY o(l) O(log n) O(log n) o(1)
DELETE o(l) O(log n) O(log n) O(log n)
MELD o(1) Oo(n) O(log n) o(1)
FIND-MIN O(n) o(1) O(log n) o(1)

1t amortized

Accomplished. O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.



Heaps of heaps

b-heaps.

 Fat heaps.

+ 2-3 heaps.

* Leaf heaps.

* Thin heaps.
« Skew heaps.

« Leftist heaps.
» Quake heaps.
+ Pairing heaps.

Splay heaps.
Weak heaps.

 Violation heaps.

* Run-relaxed heaps.

Rank-pairing heaps.
Skew-pairing heaps.

» Rank-relaxed heaps.

» Lazy Fibonacci heaps.

76
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Disjoint-sets data type

Goal. Support three operations on a collection of disjoint sets.
* MAKE-SET(x): create a new set containing only element x.
* FIND(x): return a canonical element in the set containing x.
* UNION(x,y): replace the sets containing x and y with their union.

Performance parameters.
* m= number of calls to MAKE-SET, FIND, and UNION.
* n=number of elements = number of calls to MAKE-SET.

Dynamic connectivity. Given an initially empty graph G, <— disjoint sets =
. connected components
support three operations.
* ADD-NODE(x): add node u. <«—— 1 MAKE-SET operation
* ADD-EDGE(u,v): add an edge between nodes u and v. «— 1 union operation

* IS-CONNECTED(u, v): is there a path between uand v? «— 2 Fino operations



Disjoint-sets data type: applications

Original motivation. Compiling EQUIVALENCE, DIMENSION, and COMMON
statements in Fortran.

An Improved Equivalence
Algorithm

BerNARD A. GALLER AND MicHAEL J. FISHER
University of Michigan, Ann Arbor, Michigan

An algorithm for assigning storage on the basis of EQUIV-
ALENCE, DIMENSION and COMMON declarations is pre-
sented. The algorithm is based on a tree structure, and has
reduced computation time by 40 percent over a previously
published algorithm by identifying all equivalence classes
with one scan of the EQUIVALENCE declarations. The method
is applicable in any problem in which it is necessary to identify
equivalence classes, given the element pairs defining the
equivalence relation.

Note. This 1964 paper also introduced key data structure for problem.



Disjoint-sets data type: applications

Applications.
« Percolation.
» Kruskal’s algorithm.
+ Connected components.
+ Computing LCAs in trees.
« Computing dominators in digraphs.
« Equivalence of finite state automata.
« Checking flow graphs for reducibility.
» Hoshen-Kopelman algorithm in physics.
+ Hinley-Milner polymorphic type inference.
» Morphological attribute openings and closings.
« Matlab’s Bw-LABEL function for image processing.
« Compiling EQUIVALENCE, DIMENSION and COMMON statements in Fortran.
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» naive linking
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Disjoint-sets data structure

Parent-link representation. Represent each set as a tree of elements.
« Each element has an explicit parent pointer in the tree.
« The root serves as the canonical element (and points to itself).
* FIND(x): find the root of the tree containing x.
* UNION(x,y): merge trees containing x and y.

UNION(3, 5)

root

(3 parent of 3 is 8 ~
() %
(2 OO,

(=D
©



Disjoint-sets data structure

Parent-link representation. Represent each set as a tree of elements.
« Each element has an explicit parent pointer in the tree.
« The root serves as the canonical element (and points to itself).
* FIND(x): find the root of the tree containing x.
* UNION(x,y): merge trees containing x and y.

UNION(3, 5)




Disjoint-sets data structure

Array representation. Represent each set as a tree of elements.
» Allocate an array parent[] of Iength n. <—— must know number of elements 7 a priori
* parent[i] = j means parent of element i is element ;.

parent[] 715 7 8|7 (5|7 8| 8

(3 parent of 3 is 8 \

/ 6
© ONONO
ONO

Note. For brevity, we suppress arrows and self loops in figures.



Naive linking

Naive linking. Link root of first tree to root of second tree.

UNION(5, 3)



Naive linking

Naive linking. Link root of first tree to root of second tree.

UNION(5, 3)




Naive linking

Naive linking. Link root of first tree to root of second tree.

MAKE-SET(x)

parent[x] < x.

FIND(x)
WHILE (x # parent|x])
X < parent[x].

RETURN x.

UNION(x, y)

r < FIND(x).
s < FIND(y).

parent[r] < s.



Naive linking: analysis

Theorem. Using naive linking, a UNION or FIND operation can take O(n) time
in the worst case, where #n is the number of elements.

max number of links on any
path from root to leaf node

Pf. /

 In the worst case, FIND takes time proportional to the height of the tree.
* Height of the tree is n— 1 after the sequence of union operations:
UNION(1, 2), UNION(2, 3), ..., UNION(n — 1, 7).

height = 2 height = 3 height = n-1

f
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Link-by-size

Link-by-size. Maintain a tree size (number of nodes) for each root node.
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

UNION(5, 3)

size = 4 size = 6



Link-by-size

Link-by-size. Maintain a tree size (number of nodes) for each root node.
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

UNION(5, 3)




Link-by-size

Link-by-size. Maintain a tree size (number of nodes) for each root node.
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

MAKE-SET(x)

parent[x] < x.

size[x] < 1.

FIND(x)
WHILE (x # parent[x])
X < parent|x].

RETURN x.

UNION(x, y)

r < FIND(x).

s < FIND(y).

IF (r=s) RETURN.

ELSE IF (size[r] > size[s])

parent[s] < r.

size[r] < size[r] + size[s].

ELSE

parent[r] < s.

size[s] < size[r] + size[s].

<«—— link-by-size



Link-by-size: analysis

Property. Using link-by-size, for every root node r: size[r] = 2 height(,
Pf. [ by induction on number of links ]
* Base case: singleton tree has size 1 and height 0.
* Inductive hypothesis: assume true after first i links.
* Tree rooted at r changes only when a smaller (or equal) size tree
rooted at s is linked into r.
* Case 1. [ height(r) > height(s) ] size'[r] > size[r]

7 height(r) <«—— inductive hypothesis

v

2 height'(r)

size =8
(height = 2)

size =3
(height = 1)




Link-by-size: analysis

Property. Using link-by-size, for every root node r: size[r] = 2 height(,
Pf. [ by induction on number of links ]
* Base case: singleton tree has size 1 and height 0.
* Inductive hypothesis: assume true after first i links.
* Tree rooted at r changes only when a smaller (or equal) size tree
rooted at s is linked into r.
* Case 2. [ height(r) < height(s) ] size'[r] = size[r] + size[s]

> 2 size[s] <«—— link-by-size
> 2 - 2 heigh(s) «—— inductive hypothesis
size = 6
(height = 1) = D height(s) + 1

size = 4 = Dheigh’(r), m
(height = 2)

-
-




Link-by-size: analysis

Theorem. Using link-by-size, any UNION or FIND operation takes O(log n) time
in the worst case, where #n is the number of elements.
Pf.

» The running time of each operation is bounded by the tree height.

* By the previous property, the heightis < |Ign]. =

t

lgn=1logxn

Note. The UNION operation takes O(1) time except for its two calls to FIND.



A tight upper bound

Theorem. Using link-by-size, a tree with n nodes can have height = 1g n.
Pf.

* Arrange 2¢—1 calls to UNION to form a binomial tree of order k.

* An order-k binomial tree has 2* nodes and height k. =

T ATl

B,
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Link-by-rank

Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of
smaller rank to root of larger rank; if tie, increase rank of new root by 1.

UNION(7, 3)

rank = 1 rank = 2

Note. For now, rank = height.



Link-by-rank

Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of
smaller rank to root of larger rank; if tie, increase rank of new root by 1.

Note. For now, rank = height.



Link-by-rank

Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of
smaller rank to root of larger rank; if tie, increase rank of new root by 1.

MAKE-SET(x)

parent[x] < x.

rank[x] < O.

FIND(x)
WHILE (x # parent|[x])
X < parent[x].

RETURN x.

UNION(x, y)

r < FIND(x).

s < FIND(y).

IF (r=s5) RETURN.

ELSE IF (rank[r] > rank[s])
parent[s] < r.

ELSE IF (rank[r] < rank[s])
parent[r] < s.

ELSE
parent[r] < s.

rank[s] < rank[s] + 1.

<«—— link-by-rank



Link-by-rank: properties

PROPERTY 1. If x is not a root node, then rank[x] < rank[parent[x]].
Pf. A node of rank k is created only by linking two roots of rank k—1. =

PROPERTY 2. If x is not a root node, then rank[x] will never change again.
Pf. Rank changes only for roots; a nonroot never becomes a root. =

PROPERTY 3. If parent[x] changes, then rank[parent[x]] strictly increases.

Pf. The parent can change only for a root, so before linking parent[x] = x.

After x is linked-by-rank to new root r we have rank[r] > rank[x]. =

rank = 3

rank = 1

rank = 0




Link-by-rank: properties

PROPERTY 4. Any root node of rank k has = 2¥ nodes in its tree.
Pf. [ by induction on k]
* Base case: true for k=0.
* Inductive hypothesis: assume true for k- 1.
* A node of rank k is created only by linking two roots of rank k- 1.
* By inductive hypothesis, each subtree has =2¢-! nodes
= resulting tree has > 2* nodes. =

PROPERTY 5. The highest rank of a node is < |lg n].
Pf. Immediate from PROPERTY 1 and PROPERTY 4. =

rank = 2
(8 nodes)

rank = 2
(4 nodes)

-




Link-by-rank: properties

PROPERTY 6. For any integer k= 0, there are < n/2* nodes with rank «.
Pf.
* Any root node of rank k has = 2f descendants. [PROPERTY 4]
* Any nonroot node of rank k has > 2¢ descendants because:
- it had this property just before it became a nonroot [PROPERTY 4]
- its rank doesn’t change once it became a nonroot [PROPERTY 2]
- its set of descendants doesn’t change once it became a nonroot
» Different nodes of rank k can’t have common descendants. [PROPERTY 1]

L]
rank = 4
(1 node)

rank =3
(1 node)

rank = 2
(2 nodes)

rank =1
(5 nodes)

rank = 0
(11 nodes)



Link-by-rank: analysis

Theorem. Using link-by-rank, any UNION or FIND operation takes O(log n) time
in the worst case, where #n is the number of elements.
Pf.

» The running time of UNION and FIND is bounded by the tree height.

* By PROPERTY 5, the height is < [Ign]. =
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» path compression

SECTION 5.1.4



Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

before path
compression

after path
compression




Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.
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Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.
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Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.



Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.




Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.



Path compression

Path compression. When finding the root r of the tree containing x,

change the parent pointer of all nodes along the path to point directly to r.

FIND(x)

IF (x # parent[x])
this FIND implementation
parent[x] < FIND(parent[x]). changes the tree structure (!)

RETURN parent[x].

Note. Path compression does not change the rank of a node;
SO height(x) < rank[x] but they are not necessarily equal.



Path compression

Fact. Path compression with naive linking can require Q(n) time to perform
a single UNION or FIND operation, where n is the number of elements.

Pf. The height of the tree is n—1 after the sequence of union operations:
UNION(1, 2), UNION(2, 3), ..., UNION(n — 1,n). =

\

naive linking: link root of first tree to root of second tree

Theorem. [Tarjan-van Leeuwen 1984] Starting from an empty data
structure, path compression with naive linking performs any intermixed
sequence of m >n MAKE-SET, UNION, and FIND operations on a set of n
elements in O(m log n) time.

Pf. Nontrivial (but omitted).
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» link-by-rank with path compression
Sanjoy Dasgupta
Christos Papadimitriou
Umesh Vazirani

SECTION 5.1.4



Link-by-rank with path compression: properties

PROPERTY. The tree roots, node ranks, and elements within a tree are the
same with or without path compression.

Pf. Path compression does not create new roots, change ranks, or move
elements from one tree to another. =

before path after path
compression compression




Link-by-rank with path compression: properties

PROPERTY. The tree roots, node ranks, and elements within a tree are the
same with or without path compression.

COROLLARY. PROPERTY 2, 4-6 hold for link-by-rank with path compression.

PROPERTY 1. If x is not a root node, then rank[x] < rank[parent[x]].
PROPERTY 2. If x is not a root node, then rank[x] will never change again.
PROPERTY 3. If parent[x] changes, then rank[parent[x]] strictly increases.
PROPERTY 4. Any root node of rank k has = 2¢ nodes in its tree.

PROPERTY 5. The highest rank of a node is < |lg n].

PROPERTY 6. For any integer k= 0, there are < n/2* nodes with rank «.

Bottom line. PROPERTY 1-6 hold for link-by-rank with path compression.
(but we need to recheck PROPERTY 1 and PROPERTY 3)

40



Link-by-rank with path compression: properties

PROPERTY 3. If parent[x] changes, then rank[parent[x]] strictly increases.
Pf. Path compression can make x point to only an ancestor of parent|x].

PROPERTY 1. If x is not a root node, then rank{x] < rank[parent|x]].

Pf. Path compression doesn’t change any ranks, but it can change parents.
If parent[x] doesn’t change during a path compression, the inequality
continues to hold; if parent[x] changes, then rank[parent[x]] strictly increases.

before path after path
compression compression

41



Iterated logarithm function

Def. The iterated logarithm function is defined by:

g=}

1 0

lo* 1 — 0 ifn<l1 5 X
M= 1+1g (Ign) otherwise

(3,4] 2

(5, 16] 3

[17,65536] 4

(65537, 265536] 5

iterated Ig function

Note. We have Ig*n < 5 unless n exceeds the # atoms in the universe.

42



Analysis

Divide nonzero ranks into the following groups:
{1}
* {2}
* {3,4}
* {5,6,....16}
* {17,18,...,216}
*+ {65537, 65538, ...,265536}

Property 7. Every nonzero rank falls within one of the first 1g* n groups.
Pf. The rank is between 0 and |lgn|. [PROPERTY 5]

43



Creative accounting

Credits. A node receives credits as soon as it ceases to be a root.

If its rank is in the interval {k+1,k+2,...,2%}, we give it 2* credits.
group k

Proposition. Number of credits disbursed to all nodes is < n lg*n.

Pf.

* By PROPERTY 6, the number of nodes with rank = k+ 1 is at most

n n n
ok+1 + ok+2 T ooo0 & ok

* Thus, nodes in group k need at most » credits in total.
* There are < Ig*n groups. [PROPERTY 7] =

a4



Running time of FIND

Running time of FIND. Bounded by number of parent pointers followed.
+ Recall: the rank strictly increases as you go up a tree. [PROPERTY 1]
* Case 0: parent|x] is a root = only happens for one link per FIND.
* Case 1: rank[parent[x]] is in a higher group than rank[x].
* Case 2: rank[parent[x]] is in the same group as rank[x].

Case 1. At most Ig*n nodes on path can be in a higher group. [PROPERTY 7]

Case 2. These nodes are charged 1 credit to follow parent pointer.

* Each time x pays 1 credit, rank[parent[x]] strictly increases. [PROPERTY 1]

* Therefore, if rank[x] is in the group {k+1,...,2%}, the rank of its parent
will be in a higher group before x pays 2* credits.

* Once rank[parent[x]] is in a higher group than rank[x], it remains so
because:
- rank[x] does not change once it ceases to be a root. [PROPERTY 2]
- rank[parent[x]] does not decrease. [PROPERTY 3]
- thus, x has enough credits to pay until it becomes a Case 1 node. =
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Link-by-rank with path compression

Theorem. Starting from an empty data structure, link-by-rank with path
compression performs any intermixed sequence of m = n MAKE-SET, UNION,
and FIND operations on a set of n elements in O(m log*n) time.

46
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Link-by-size with path compression

Theorem. [Fischer 1972] Starting from an empty data structure,
link-by-size with path compression performs any intermixed sequence
of m = n MAKE-SET, UNION, and FIND operations on a set of n elements

in O(m log log n) time.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A. I. LABORATORY

Artificial Intelligence
No. 256 April 1972

EFFICIENCY OF EQUIVALENCE ALGORITHMS

Michael J. Fischer

1. INTRODUCTION

The equivalence problem is to determine the finest partition
on a set that is consistent with a sequence of zssertions of the
form "x = y". A strategy For doing this on a computer processes
the assertions serially, maintaining always in storage a reprasen-
tation of the partition defined by the assertions so far encoun-
tered. To process the command "x = ¥, the equivalence classes of
x and y are determined. If they are the same, nothing further is
done; otherwise the two classes are merged together.

48



Link-by-size with path compression

Theorem. [Hopcroft-Ullman 1973] Starting from an empty data structure,
link-by-size with path compression performs any intermixed sequence
of m = n MAKE-SET, UNION, and FIND operations on a set of n elements

in O(m log*n) time.

SIAM J. Comput
Vol. 2, No. 4, December 1973

SET MERGING ALGORITHMS*

J. E. HOPCROFTY anp J. D. ULLMAN{

Abstract. This paper considers the problem of merging sets formed from a total of n items in such
a way that at any time, the name of a set containing a given item can be ascertained. Two algorithms
using different data structures are discussed. The execution times of both algorithms are bounded by a
constant times nG(n), where G(n) is a function whose asymptotic growth rate is less than that of any
finite number of logarithms of n.

Key words. algorithm. algorithmic analysis, computational complexity. data structure, equivalence
algorithm, merging, property grammar, set, spanning tree
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Link-by-size with path compression

Theorem. [Tarjan 1975] Starting from an empty data structure,
link-by-size with path compression performs any intermixed sequence
of m = n MAKE-SET, UNION, and FIND operations on a set of n elements

in O(m a(m, n)) time, where a(m, n) is a functional inverse of the Ackermann
function.

Efficiency of a Good But Not Linear Set Union Algorithm

ROBERT ENDRE TARJAN

Unawersity of California, Berkeley, California

ABsTRACT. Two types of instructions for mampulating 5 family of disjomt sets which partition
universe of n elements are considered FIND(z) computes the name of the (unique) set containing
element z UNION(A, B, C) combines sets A and B 1nto a new set named . A known algorithm for
implementing sequences of these instructions is examined It 1s shown that, 1f t(m, n) 15 the maximum
time required by & sequence of m > n FINDs and » — 1 intermixed UNIONSs, then kima(m, n) <
t(m, n) < kama(m, n) for some positive constants ki and kz, where a(m, n) is related to a functional
inverse of Ackermann’s function and 1s sery slow-growing.



Ackermann function

Ackermann function. [Ackermann 1928] A computable function that is not
primitive recursive.

n+1 itm=0
A(m,n) = ¢ A(m —1,1) ifm>0andn=0
Am—1,A(m,n—1)) ifm>0andn>0

Zum Hilbertschen Aufbau der reellen Zahlen.
Von
Wilkelm Ackermann in Géttingen.

Um den Beweis fir die von Cantor aufgestellte Vermutung zu er-
bringen, daB sich die Menge der reellen Zahlen, d. h. der zahlentheoretischen
Funktionen, mit Hilfe der Zablen der zweiten Zahlklasse auszahlen s,
benutzt Hilbert oinen speziellen Aufbau der zahlentheoretischen Funktionen.
Wesentlich bei diesem Aufban ist der Begrifi des Typs einer Funktion.
Eine Funktion vom Typ 1 ist eine solche, deren Argumente uod Werte
ganze Zahlen sind, also cine gewdhnliche zablentheoretische Funktion. Die
Funktionen vom Typ 2 sind die Funktionenfunktionen. Eine derartige
Funktion ordnet jeder zahlentheoretischen Funktion eine Zahl zu. Eine
Funktion vom Typ 3 ordnet wieder den Funktionenfunktionen Zahlen zu,
usw. Die Definition der Typen 1aBt sich auch ins Transfinite fortsetzen,
fiir den Gegenstand dieser Arbeit ist das aber nicht von Belang?).

Note. There are many inequivalent definitions.



Ackermann function

Ackermann function. [Ackermann 1928] A computable function that is not
primitive recursive.

n+1 itm=0
A(m,n) = ¢ A(m —1,1) ifm>0andn=0
Am—1,A(m,n—1)) ifm>0andn>0

Inverse Ackermann function.

a(m,n) =min{i > 1: A(4, |m/n]) > logyn}

“ I am not smart enough to understand this easily. ”

— Raymond Seidel




Inverse Ackermann function

Definition.

[n/2] ifk=1
ag(n) =40 ifn=1and k> 2
1+ ag(ag—1(n)) otherwise
Ex.

* ai(n) =[n/2].

* o2(n) =[lgn] = # of times we divide n by 2, until we reach 1.

* as(n) = Ig'n =# of times we apply the Ig function to n, until we reach 1.
* a4(n) = # of times we apply the iterated Ig function to n, until we reach 1.

2

2165536 = 22°
\
65536 times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .. 216 265536 ... 2165536
au(n) 5 6 6 7 7 8 8 215 265535 huge
aa(n) 4 4 4 4 4 4 4 16 65536 2165535
as(n) 3 3 3 3 3 3 3 4 5 65536
au(n) 3 03 3 3 3 3 3 3 3 4



Inverse Ackermann function

Definition. n/2] i£h =1

ak(n) =40 ifn=1and k> 2
1+ ag(ag—1(n)) otherwise

Property. For every n =5, the sequence a(n), a2(n), as(n), ... converges to 3.
Ex. [n=9876!] ai(n)= 1035183, oa(n) = 116812, as(n) = 6, aa(n) = 4, as(n) = 3.

One-parameter inverse Ackermann. o(n) =min { k: ax(n) < 3 }.
Ex. a(9876!) = 5.

Two-parameter inverse Ackermann. a(m,n)=min { k: ox(n) < 3+m/n}.



A tight lower bound

Theorem. [Fredman-Saks 1989] In the worst case, any CELL-PROBE(log n)
algorithm requires Q(m a(m, n)) time to perform an intermixed sequence of
m MAKE-SET, UNION, and FIND operations on a set of n elements.

Cell-probe model. [Yao 1981] Count only number of words of memory
accessed; all other operations are free.

The Cell Probe Complexity of Dynamic Data Structures

Michael L. Fredman ' Michacl E. Saks
Bellcore and U.C. San Diego,
U.C. San Diego Bellcore and
Ruigers University

register size from logn 1o polylog(n) only reduces the time

complexity by a constant factor. On the other hand,
Dynamic data structure problems involve the representation of decreasing the register size from logn 1o 1 increases time

data in memory in such a way as to permit certain types of complexity by a logn factor for one of the problems we

modifications of the data (updates) and certain types of questions consider and only a loglogn factor for some. other

about the data (queries). This paradigm encompasses many ‘problems.

fundamental problems in computer science.

1. Summary of Results

The first two specific data structure problems for which we
‘The purpose of this paper is 1o prove new lower and upper  obtain bounds are
bounds on the time per operation 10 implement solutions to some

familiar dynamic data structure problems including list
representation, subsel ranking, partial sums, and the sel union
problem . The main features of our lower bounds are:

(1) Thev hald in the cell nrahe model af commitation (A Van

List Representation. This problem concems the represention of
an ordered list of at most n (not necessarily distinct) elements
from the universe U =(1,2,..,n). The operations to be
supported are report(k), which returns the £ element of the list,
incort(l u) which incarts element u inte the lict heiween the



Path compaction variants

Path splitting. Make every node on path point to its grandparent.

before path
splitting

after path
splitting



Path compaction variants

Path halving. Make every other node on path point to its grandparent.

before path
halving

after path
halving



Linking variants

Link-by-size. Number of nodes in tree.
Link-by-rank. Rank of tree.

Link-by-random. Label each element with a random real number between
0.0 and 1.0. Link root with smaller label into root with larger label.



Disjoint-sets data structures

Theorem. [Tarjan-van Leeuwen 1984] Starting from an empty data
structure, link-by- { size, rank } combined with { path compression, path
splitting, path halving } performs any intermixed sequence of m > n MAKE-SET,
UNION, and FIND operations on a set of n elements in O(m a(m, n)) time.

Worst-Case Analysis of Set Union Algorithms

ROBERT E. TARJAN

AT&T Bell Laboratories, Murray Hill, New Jersey

AND

JAN VAN LEEUWEN

University of Utrecht, Utrecht, The Netherlands

Abstract. This paper analyzes the asymptotic worst-case running time of a number of variants of the
well-known method of path compression for maintaining a collection of disjoint seis under union, We
show that two one-pass methods proposed by van Leeuwen and van der Weide are asymptotically

optimal, whereas several other methods, including one proposed by Rem and advocated by Dijkstra,
are slower than the best methods.
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Algorithm Design Techniques
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Algorithmic paradigms

Greed. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into independent subproblems;

solve each subproblem; combine solutions to subproblems to form solution
to original problem.

Dynamic programming. Break up a problem into a series of overlapping
subproblems)combine solutions to smaller subproblems to form solution
to large subproblem.

fancy name for
caching intermediate results
in a table for later reuse



PR R et M~
Peak Finding

Closest Pair of Points

Dynamic Programming
Interval Scheduling
Parenthesization Problem
Knapsack Problem
Sequence Alignement

Bellman-Ford Algorithm
Greedy Algorithms

Coin Changing

Interval Scheduling

Interval Partitioning

Scheduling to Minimize Lateness
Optimal Caching

Dijkstra's algorithm

Minimum Spanning Trees



Divide and Conquer



DIVIDE AND CONQUER

Nothing is particularly hard if you divide it into small jobs.

Henry Ford

22



Divide-and-conquer paradigm

Divide-and-conquer.
 Divide up problem into several subproblems (of the same kind).
+ Solve (conquer) each subproblem recursively.
+ Combine solutions to subproblems into overall solution.

Most common usage.
» Divide problem of size n into two subproblems of size n/2. «— 0() time
+ Solve (conquer) two subproblems recursively.
« Combine two solutions into overall solution. «—— o) time

Consequence.
* Brute force: ®(n2).
DIVIDE
* Divide-and-conquer: O(nlog n). ET IMPER A

b

attributed to Julius Caesar



Divide and Conquer

Maximal and minimal elements



NAIVE ALGORITHM

Algorithm: Iterative MaxMin

Input: sequence S[1...n]
Output: maximal and minimal element

1 max < S[1]; min « S[1]
2 for i <~ 2 to ndo
3 L if S[i] > max then max < SJi]

4 if S[i] < min then min < S|[i]

5 return max, min

23
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DIVIDE AND CONQUER ALGORITHM

divide the sequence into two equally sizek subsequences
solve find maximal and minimal elements of both subsequences

combine greater of the maximal elements is the maximal element of the whole
sequence(the same for the minimal element)

Algorithm: MaxMin

Input: sequence S[1...n], indices x, y
Output: maximal and minimal element of S[x...y]
if y = x then return (S[x], S[x])
if y = x + 1 then return (max(S[x], S[y]), min(S[x], S[y]))
if y > x+ 1 then
(h, k) < MaxMin(S, x, [ (x + y)/2])
L (r1, ) < MaxMin(S, [(x+y)/2| +1,y)

return (max(/y, 1), min(h, r2))

24




induction w.r.t. the length of the sequence

1 for n=2

T(n) =
T([n/2])+ T([n/2])+2 forn>2

by induction w.r.t. n we can check that

n=2T(@2)=1land1< 3 2-2
n > 2 assumption: the inequality is true for all i, 2 < i< n
let us prove the inequality for n

T(n)= (L”/QJ) + T([”/QD
Ln/2j 242 (n/21 _242-— gn—2

25



Divide and Conquer

Peak Finding
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Lecture 2: Peak Finding

Prof. Erik Demaine



1D Peak Finding

¢ Given an array A[0..n — 1]:

WY1 2 65 37 4

0123456

» A[i] is a peak if it is not smaller than its
neighbor(s):
Ali— 1] < Ali] = Ali + 1]
where we imagine
A[-1] = A[n] = —o0
* Goal: Find any peak



“Brute Force” Algorithm

* Test all elements for peakyness

for i inrange(n):

return i

if A[i — 1] < A[i] = A[i + 1]

o

o (;50@

+; NP

265
0123

3
4

7
5

4
6



Algorithm 1%

* max(4)

— Global maximum is a local maximum

m=20
for i inrange(1,n):
if A[i] > A[m]:?,0@3e("‘>
m=1i .
return m

6

12 5 37
01 345

N ey



Cleverer Idea

A geak
* Look at any element A[i] and /f\
its neighbors A[i — 1] & A[i + 1]
— If peak: return i 1 ¢

— Otherwise: locally rising on some side
e Must be a peak in that direction J \ vf

* So can throw away rest of array, sy {&Wry vallay
leaving A[: i] or A[i + 1:]

<

0123456



Where to Sample?

* Want to minimize the worst-case remaining
elements in array
— Balance A[: i] of length i
with A[i + 1:] of lengthn —i —1
—i=n—-i—-1
—i = (n—1)/2: middle element

— Reducento(n—1)/2
A:

0123456



Algorithm

peakld(4,i,)):

m = |(i +))/2]

if Alm — 1] < A[m] = A[m + 1]:
return m

elif Afm —1] > A[m]:
return peak1d(4,i,m — 1)

eif Aim] < A[m + 1]:
return peakld(4, m + 1, )

6

126 537
012345




Divide & Conquer

* General design technique: e 1D peak:
1. Divide input into part(s) 1. One half
2. Conquer each part 2. Recurse

recursively 3. Return
3. Combine result(s) to solve

original problem



Divide & Conquer Analysis

1.

2.

Recurrence for time T (n)
taken by problem size n

Divide input into part(s):

Ny, Ny, v, N

Conquer each part
recursively

. Combine result(s)

to solve original problem

T(n) =
divide cost +

T(ny) +T(ny)
+ o+ T(ng)

+ combine cost



1D Peak Finding Analysis

Divide problem into 1 problem of size ~§

Divide cost: 0(1)
Combine cost: 0(1)
Recurrence:

T(n) = T(%) +0(1)




Solving Recurrence

dot use o) ndfofion

& &£ coslait
T(n) =T(Z)+c o kaep frck oo
2

T(n)=T(%)+c+c
T(n)=T(§)+c+c+c
T(n)=T(2n—k)+ck

T(n) = T(%) +clgn
Tn)=TA)+clgn

T(n) = 0(gn)



2D Peak Finding

e Given n X n matrix
of numbers

* Want an entry not
smaller than its (up to)
4 neighbors:




Divide & Conquer #0

* Looking at center
element doesn’t split
the problem into
pieces...

5
5
9
3
6
8
2

»—\OOr—xlwr—xN
R ol D NS



Divide & Conquer #1-

* Consider max element
in each column

* 1D algorithm would
solve max array in
O(Ign) time

 But O(n?) time to
compute max array

UJID—\OOD—\UJP—‘N



Base case: 1 column

Divide & Conquer

Look at center column
Find global max within
If peak: return it

Else:
— Larger left/right neighbor

— Recurse in left/right half

— Return global max within




Analysis #1

e O(n) time to find
max in column

* O(lgn) iterations
(like binary search)

e O(nlgn) time total

e Can we do better?



Divide & Conquer #2

00

0
3
2
38

Look at boundary,
center row, and center
column (window)

Find global max within
If it's a peak: return it
Else:

— Find larger neighbor

— Can’t be in window

— Recurse in quadrant,
including green boundary

()
S




Correctness

* Lemma: If you enter a
quadrant, it contains a
peak of the overall
array [climb up]

e Invariant: Maximum
element of window
never decreases as we
descend in recursion

* Theorem: Peak in
visited quadrant is also
peak in overall array

0
3
2
8
6
0
9
1

S

0]
—%proops n recd‘aﬁm



Analysis #2

000000000

* Reduce n X n matrix to |[UCRRMSIVAR Sk

~§><§ submatrix in 772751 40 370

0(n) time (|window]|) 3 2 g i g LZL g 8

T(n)=T(§)+Cn 90604640

89805300

T(n) =T (3) +c 2+ cn LA UL

000000000
T(n)=T(§)+c%+cg+cn O(v)

T(n)=T(1)+c(1+2+4+---+%+§+n)



Divide and Conquer

Closest Pair of Points



5. DiviDE AND CONQUER

‘ l[][“ M H |b| |H » closest pair of points

JON KLEINBERG - EVA TARDOS

SECTION 5.4



Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points
with the smallest Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
+ Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems




Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points
with the smallest Euclidean distance between them.

Brute force. Check all pairs with ©(»n2) distance calculations.

1D version. Easy O(nlog n) algorithm if points are on a line.

Non-degeneracy assumption. No two points have the same x-coordinate.




Closest pair of points: first attempt

Sorting solution.
» Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.




Closest pair of points: first attempt

Sorting solution.

» Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.




Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.




Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.




Closest pair of points: divide-and-conquer algorithm

Divide: draw vertical line L so that n/2 points on each side.

Conquer: find closest pair in each side recursively.

Combine: find closest pair with one point in each side.

Return best of 3 solutions.

seems like ©(n2)

 ®
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How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 3.
* Observation: suffices to consider only those points within § of line L.

d = min(12,21)

71



How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 3.
* Observation: suffices to consider only those points within § of line L.

* Sort points in 28-strip by their y-coordinate.

» Check distances of only those points within 7 positions in sorted list!

why?

0 = min(12, 21)

72



How to find closest pair with one point in each side?

Def. Let s; be the point in the 2 §-strip, with the i smallest y-coordinate.

Claim. If |j—i| > 7, then the distance between

s;and s; is at least d. L
Pf.
* Consider the 26-by-6 rectangle R in strip i/
whose min y-coordinate is y-coordinate of s,.
+ Distance between s; and any point s; l P C
: P RO : 71
above R is = 0. ; | | 1
. . diameter is o [ ]
* Subdivide R into 8 squares. §/V2<s l : 1 1 7T
« At most 1 point per square. oo R B
Si

* At most 7 other points can be in R. =

\

constant can be improved with more
refined geometric packing argument

20
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Closest pair of points: divide-and-conquer algorithm

CLOSEST-PAIR(p1, P2, -.., Pn)

Compute vertical line L such that half the points
are on each side of the line.

01 <— CLOSEST-PAIR(points in left half).

02 < CLOSEST-PAIR(points in right half).

O < min{d,0:}.

Delete all points further than d from line L.
Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 7 neighbors. If any of these
distances is less than §, update 9.

RETURN 0.

O(n)

T(n/?2)

T(nl?2)

O(n)

O(n log n)

O(n)

74



Divide-and-conquer: quiz é

What is the solution to the following recurrence?

o n = »

e(1)
T(n) =
T(ln/2)) + T([n/2]) + O(nlogn)

T(n) = O(n).
T(n) = O(nlog n).
T(n) = O(n log2n).

T(n) = O@2).

ifn=1

ifn>1



Refined version of closest-pair algorithm

Q. How to improve to O(n log n) ?
A. Don’t sort points in strip from scratch each time.
* Each recursive call returns two lists: all points sorted by x-coordinate,
and all points sorted by y-coordinate.
» Sort by merging two pre-sorted lists.

Theorem. [Shamos 1975] The divide-and-conquer algorithm for finding a
closest pair of points in the plane can be implemented in O(n log n) time.

P () o(1) ifn=1
. T(n) =
T(|n/2]) + T([n/2]) + ©(n) ifn>1
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Divide-and-conquer: quiz 7

What is the complexity of the 2D closest pair problem?

A. On).

B. O(nlog* n).

C. O(nloglogn).

D. O(nlogn).

E. Not even Tarjan knows.



Computational complexity of closest-pair problem

Theorem. [Ben-Or 1983, Yao 1989] In quadratic decision tree model, any
algorithm for closest pair (even in 1D) requires Q(n log n) quadratic tests.

N

(x1 = x2)2 + (y1 = y2)?

Lower Bounds for Algebraic Computation Trees

with Integer Inputs®

Andrew Chi-Chih Yao
Department of Computer Science
Princeton University

Princeton, New Jersey 08544

Theorem. [Rabin 1976] There exists an algorithm to find the closest pair of
points in the plane whose expected running time is O(n).

\

A NOTE ON RABIN'S NEAREST-NEIGHBOR ALGORITHM * not subject to &(n log n) lower bound
because it uses the floor function
Steve FORTUNE and John HOPCROFT

Department of Computer Science, Cornell University, Ithaca, NY, U.S.A.

Received 20 July 1978, revised version received 21 August 1978

Probabilistic algorithms, nearest neighbor, hashing
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Digression: computational geometry

Ingenious divide-and-conquer algorithms for core geometric problems.

i m clever

closest pair O(n?) O(n log n)

farthest pair 0o(n2) O(n log n)
convex hull 0O(n2) O(n log n) CONPTATONL
Delaunay/Voronoi o(n%) O(n log n) i 1'\1

Euclidean MST Oon2) O(n log n)

running time to solve a 2D problem with n points

Note. 3D and higher dimensions test limits of our ingenuity.

79



Convex hull

The convex hull of a set of n points is the smallest perimeter fence
enclosing the points.

.-
o o -

e o 3

° o |

[ ] [ ] [ ] :.‘
o _o :

° (] :

: e
‘e :

e

Equivalent definitions.
« Smallest area convex polygon enclosing the points.
« Intersection of all convex set containing all the points.



Farthest pair

Given n points in the plane, find a pair of points with the largest Euclidean
distance between them.

O
L

Fact. Points in farthest pair are extreme points on convex hull.



Delaunay triangulation

The Delaunay triangulation is a triangulation of » points in the plane
such that no point is inside the circumcircle of any triangle.

no point in the set is
inside the circumcircle

point inside circumcircle
of 3 points

Delaunay triangulation of 19 points

Some useful properties.
* No edges cross.
« Among all triangulations, it maximizes the minimum angle.
+ Contains an edge between each point and its nearest neighbor.



Euclidean MST

Given n points in the plane, find MST connecting them.
[distances between point pairs are Euclidean distances]

Fact. Euclidean MST is subgraph of Delaunay triangulation.
Implication. Can compute Euclidean MST in O(n log n) time.
« Compute Delaunay triangulation.

it's planar

+ Compute MST of Delaunay triangulation. «— edges)



Computational geometry applications

Applications.

Robotics.

VLSI design.

Data mining.

Medical imaging.
Computer vision.
Scientific computing.
Finite-element meshing.
Astronomical simulation.

airflow around an aircraft wing

Models of physical world.
Geographic information systems.
Computer graphics (movies, games, virtual reality).

http://www.ics.uci.edu/~eppstein/geom.html
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Dynamic Programming



DYNAMIC PROGRAMMING - ETYMOLOGY

Jeff Erickson: Algorithms

The dynamic programming paradigm was developed by Richard Bellman
in the mid-1950s, while working at the RAND Corporation. Bellman
deliberately chose the name dynamic programming to hide the
mathematical character of his work from his military bosses, who were
actively hostile toward anything resembling mathematical research. Here,
the word programming does not refer to writing code, but rather to the
older sense of planning or scheduling, typically by filling in a table. For
example, sports programs and theater programs are schedules of
important events; television programming involves filling each available
time slot with a show, degree programs are schedules of classes to be
taken. The Air Force funded Bellman an other to develop methods for
constructing training and logistics schedules, or as they called them,
programs. The word dynamic is meant to suggest that the table is filled
in over time, rather than all at once (as in linear programming).

26



Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.
+ Dynamic programming = planning over time.
Secretary of Defense had pathological fear of mathematical research.
+ Bellman sought a “dynamic” adjective to avoid conflict.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mcmal concepts, hopes, and aspirations of dynamic programming.

‘0 begin with, the theory was created to treat the mathematical
prublems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the <hoice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
production Tines to the scheduling of patients at a medical
m the determination of long-term investment programs for

to the detem\matmn of a replacement policy for ma-
chmery in factories; from the programming of training policies for
skilled and unskilled labor to thc choice of optimal purchasing and in-
ventory policies for department stores and military establishments.




Dynamic programming applications

Application areas.
- Computer science: Al, compilers, systems, graphics, theory, ....
+ Operations research.
* Information theory.
« Control theory.
« Bioinformatics.

Some famous dynamic programming algorithms.
« Avidan-Shamir for seam carving.
+ Unix diff for comparing two files.
« Viterbi for hidden Markov models.
« De Boor for evaluating spline curves.
+ Bellman-Ford-Moore for shortest path.
« Knuth-Plass for word wrapping text in TgX.
« Cocke-Kasami-Younger for parsing context-free grammars.
* Needleman-Wunsch/Smith-Waterman for sequence alignment.



Dynamic programming books
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Dynamic Programming

Interval Scheduling



6. DYNAMIC PROGRAMMING |

» weighted interval scheduling
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JON KLEINBERG - EVA TARDOS

SECTIONS 6.1-6.2



Weighted interval scheduling

+ Job j starts at s;, finishes at f;, and has weight w; > 0.
« Two jobs are compatible if they don’t overlap.
« Goal: find max-weight subset of mutually compatible jobs.

5 W g
| | |
« =B
b
d

time




Earliestfinish-time first algorithm

Earliest finish-time first.
« Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Observation. Greedy algorithm fails spectacularly for weighted version.

weight =999 ——> b

weight =1
weight=1 —— a

time




Weighted interval scheduling

Convention. Jobs are in ascending order of finish time: f, < f,<...<f,.

Def. p(j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 1,[)(7) =3, p(z) =0. \ iis leftmost interval

that ends before j begins

time



Dynamic programming: binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for
subproblem consisting only of jobs 1,2, ...,j.

Goal. OPT(n) = max weight of any subset of mutually compatible jobs.

Case 1. OPT(j) does not select job j.
« Must be an optimal solution to problem consisting of remaining
jobs 1,2, .., j-1.
\ optimal substructure property
Case 2. OPT{(j) selects job j. / (rociiiaiexthangelagument)
* Collect profit w;.
* Can’t use incompatible jobs { p(j) + 1,p(j) +2, ..., j—13}.
+ Must include optimal solution to problem consisting of remaining
compatible jobs 1,2, ..., p(j).

0 ifi=0
Bellman equation. OPT(j) = tJ
max { OPT(j — 1), w; + OPT(p(j))} ifj>0



Weighted interval scheduling: brute force

BRUTE-FORCE (11, 51, « .y Sty fls covs fits Wiy «vns Wn)

Sort jobs by finish time and renumber so that fi < o < ... < fu.
Compute p[1], p[2], ..., p[n] via binary search.

RETURN COMPUTE-OPT(1n).

COMPUTE-OPT(j)
IF(j=0)

RETURN 0.
ELSE

RETURN max {COMPUTE-OPT(j—1), w; + COMPUTE-OPT(p[j]) }.



Dynamic programming: quiz 1 2

What is running time of CoMPUTE-OPT(n) in the worst case?

A. ©O(nlog n)
B. O
C. ©O(1.618"
D. O

COMPUTE-OPT(j)
IF(j=0)

RETURN 0.
ELSE

RETURN max {COMPUTE-OPT(j— 1), w; + COMPUTE-OPT(p[j]) }.



Weighted interval scheduling: brute force

Observation. Recursive algorithm is spectacularly slow because of
overlapping subproblems = exponential-time algorithm.

Ex. Number of recursive calls for family of “layered” instances grows like

Fibonacci sequence.

O ©
& @ @ o

Q00000

p(1) = 0, p() = j-2

ONO)

recursion tree



Weighted interval scheduling: memoization

Top-down dynamic programming (memoization).
* Cache result of subproblem j in M[j].
* Use M[j] to avoid solving subproblem j more than once.

TOP-DOWN(72, S15 «. vy Sy fls «vesfris Wiy oeey Wn)

Sort jobs by finish time and renumber so that fi < f» < ... < fu.
Compute p[l1], p[2], ..., p[n] via binary search.

M[O] <« (). «— global array

RETURN M-COMPUTE-OPT(n).

M-COMPUTE-OPT(j )

IF (M[j] is uninitialized)
M][j] < max { M-COMPUTE-OPT (j—1), w; + M-COMPUTE-OPT(p[,]) }.

RETURN M[j].



Weighted interval scheduling: running time

Claim. Memoized version of algorithm takes O(n log n) time.
Pf.

* Sort by finish time: O(n log n) via mergesort.

* Compute p[j] for each j : O(nlogn) via binary search.

* M-CoMPUTE-OPT(j): each invocation takes O(1) time and either
- (1) returns an initialized value M[;]
- (2) initializes M[j] and makes two recursive calls

* Progress measure ® = # initialized entries among M[1..n].
- initially ® =0; throughout ® < n.

- (2) increases ® by 1 = < 2nrecursive calls.

* Overall running time of M-COMPUTE-OPT(n) is O(n). =



Those who cannot remember the
past are condemned to repeat it.

- Dynamic Programming



Weighted interval scheduling: finding a solution

Q. DP algorithm computes optimal value. How to find optimal solution?
A. Make a second pass by calling FIND-SOLUTION(n).

FIND-SOLUTION(j)
IF (j=0)
RETURN &.
ELSEIF (w; + M[p[j]] > M[j-1])
RETURN {j} U FIND-SOLUTION(p[/]).
ELSE

RETURN FIND-SOLUTION(j—1).

M[j]=max { M[j—11, w; + MIp[jII }.

Analysis. # of recursive calls <n = O().



Weighted interval scheduling: bottom-up dynamic programming

Bottom-up dynamic programming. Unwind recursion.

BOTTOM-UP(71, S1, <.y Sns fls < esfrts Wis «ves Wn)

Sort jobs by finish time and renumber so that fi < f» < ... < f.

Compute p[1], p[2], ..., pln].
M[()] <~ 0. previously computed values

Forj=1TOn / \

M[j]l < max { M[j-1], w; + M[pl[j]] }.

Running time. The bottom-up version takes O(n log n) time.



Dynamic Programming

Parenthesization Problem



PARENTHESIZATION PROBLEM

e given sequence of matrices (A, ..., Ap) of dimension
Po X p1,p1 X P2y Pn—1 X Pn
e compute associative product A; - Ay - ... A, using sequence of

normal matrix multiplies in the order that minimizes cost

e cost to multiply 7 x j with j x k is ijk

27



Parenthesization Example




NUMBER OF PARENTHESIZATIONS

denote the number of alternative parenthesizations if a sequence of
n matrices by P(n)

1 pron=1

Pln)= S0 p(k) . P(n— k) pron> 1

the solution to the recurrence is (2")

brute force algorithm is exponential

28



STRUCTURE OF AN OPTIMAL PARENTHESIZATION

to compute the product A; - Aiy1-...- A; we have first for an index k
compute products A; - ... - Agand Agiq ... - A

Q: which index k ?
A: we have to examine all possibilities

Q: how to compute products A; - ... - Agand Agy1-...-A;?
A: in an optimal way = subproblems of the original problem

29



COST OF AN OPTIMAL SOLUTION

given matrices (A, ..., A,) of dimension
Po X p1,p1 X P2,...,Pn-1 X Pn

let us define a function m: {1,...,n} x {1,...,n} — N where

we can define m(i, j) recursively as follows

..\ def | O ifi=]
m(i.j) =\ . . L
min;<k<j{m(i, k) + m(k +1,j) + pi1pxpj} if i <

o the optimal cost to multiply the sequence (Aq,...,A,) is m(1,n)

30



COMPUTING THE COST FUNCTION RECURSIVELY

Function M(/, )

Input: /,j
Output: value m(i, )
1 if i = then return 0 else
2 t return minj<,<;{M(i, k) + M(k +1,j) + pi—1pcp;}

e let T(n) denote the time complexity of the computation of m(i, )
forn=j—i+1
e for n > 0 and a constant d

n—1 1
T(n)=> (T(k)+ T(n—k))+dn=2> " T(k)+dn
k=1 1

>
|

x
[l

31



COMPUTING THE COST FUNCTION BOTTOM UP

e make use of dependencies

e the order is given by the number of matrices

e m(1,1),m(2,2),...,m(n,n)
m(1,2),m(2,3)...,m(n—1,n)
m(1,3),m(2,4)...,m(n—2,n)

32



COMPUTING THE COST FUNCTION BOTTOM UP

Algorithm: Matrix Multiplication

Input: dimensions pg, p1, p2, - - -, pn Of matrices
Output: value m(1, n)

for i=1to ndo (M(i,i)« 0

for r=2to ndo

fori=1ton—r+1do

j—i+r—-1

M(i,j) < oo

for k=itoj—1do

L q  M(i, k) + M(k + 1,j) + pi-1pxp;
if g < M(i,j) then M(i,j) + q

return M(1,n)

33



1
2
3
4
5

COMPUTING THE OPTIMAL SOLUTION BOTTOM UP

modify line 8 to
if g < M(i,j) then M(i,j) < q,S(i,j) + k

Function PARENTHESIS(S, /, )

Input: function S, indices i/, j
Output: parenthetization of the sequence A;, ..., A;

if i = j then print A; else
print '(’
; PARENTHESIS((S, i, S(i,))))
PARENTHESIS((S, S(i,/) + 1,/))
print ')’

34



ALTERNATIVE SOLUTIONS
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Dynamic Programming

Knapsack Problem
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Knapsack problem

Goal. Pack knapsack so as to maximize total value.

* There are n items: item i provides value v; >0 and weighs w; > 0.

* Knapsack has weight capacity of w.

Assumption. All input values are integral.

Ex. {1,2,5} has value $35 (and weight 10).
Ex. {3.,4} has value $40 (and weight 11).

<> . i Vi wi
mﬂ = 1 $1 1 kg
% s s 2k

O, 3 $18 5k
=TT g
4 $22 6 kg

5 $28 7kg

= &

knapsack instance
Creative Commons Attribution-Share Alike 2.5 (Welght ||mit W = 11)
by Dake



Dynamic programming: adding a new variable

Def. OPT(i,w) = max-profit subset of items 1, ...,i with weight limit w.
Goal. OPT(n,W).

possibly because w;>w
Case 1. OPT(i,w) does not select item i.
* OPT(i,w) selects best of {1,2,...,i—1} using weight limit w.

Case 2. OPT(i,w) selects item i. \ optimal substructure property
/ (proof via exchange argument)

* Collect value v.
* New weight limit =w —w;.
* OPT(i,w) selects best of {1,2,...,i—1} using this new weight limit.

Bellman equation.

0 ifi=0
OPT(i,w) = { OPT(i—1,w) if w; >w
max{ OPT(i — 1,w), v; + OPT(i —1,w —w;) }  otherwise



Knapsack problem: bottom-up dynamic programming

KNAPSACK(n, W, Wi, ..., Wn, Vi, «.y Vi)

FOorR w=0TO W
M[0,w] < 0.

. previously computed values
ForR i=1TOn

FOR w=0TO W / \
IF (wi>w) M[i,w] < M[i-1,w].

ELSE Mli,w] < max {M[i—1,w], vi + M[i—1,w—wi]}.
RETURN M[n, W].
0 if7=0

OPT(i,w) = { OPT(i—1,w) if w; > w

max { OPT(i — 1,w), v; + OPT(i — 1,w —w;) }  otherwise



Knapsack problem: bottom-up dynamic programming demo

1 Vi Wi

1 $1 1 kg 0 ifi=0

2 $6  2kg  oPT(i,w) = { OPT(i —1,w) if w; > w
3 $18 Skg max {OPT (i — 1,w), v; + OPT(i — 1l,w —w;} otherwise
4 $22  6kg

5 $28  7kg

subset

weight limit w

DEEaDOnaonae
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OPT(i, w) = max-profit subset of items 1, ..., i with weight limit w.



Knapsack problem: running time

Theorem. The DP algorithm solves the knapsack problem with » items
and maximum weight W in ©(n W) time and ©(n W) space.
Pf weights are integers
+ Takes O(1) time per table entry. e 1 ] 7
* There are ©(n W) table entries.
« After computing optimal values, can trace back to find solution:
OPT(i,w) takes item i iff M[i,w] > M[i—-1,w]. =



Dynamic programming: quiz 4 oS

Does there exist a poly-time algorithm for the knapsack problem?

O N0 = »

Yes, because the DP algorithm takes ©(n W) time.
No, because ©(n W) is not a polynomial function of the input size.
No, because the problem is NP-hard.

Unknown.



Dynamic Programming

Sequence Alignement



6. DYNAMIC PROGRAMMING Il

» sequence alignment
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String similarity

Q. How similar are two strings?

Ex. ocurrance and occurrence.

6 mismatches, 1 gap 1 mismatch, 1 gap

f =
-
-
]
=]
>
(a]
m

=}
(s}
™

0 mismatches, 3 gaps



Edit distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
* Gap penalty &; mismatch penalty o,
« Cost = sum of gap and mismatch penalties.

CT.GACACG
CTGACACG

cost = & + X + Orp

assuming Oy, = Ooe = Ogg = Opp = 0

Applications. Bioinformatics, spell correction, machine translation,
speech recognition, information extraction, ...

Spokesperson confirms senior government adviser was found
Spokesperson said the senior adviser was found



BLOSUM matrix for proteins
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Dynamic programming: quiz 1

What is edit distance between these two strings?

PALETTE PALATE

Assume gap penalty = 2 and mismatch penalty = 1.

m o 0N ® P
AW N



Sequence alignment

Goal. Given two strings x, x, ...x,, and y, y, ... y,, find a min-cost alignment.

Def. Analignment M is a set of ordered pairs x; - y; such that each character
appears in at most one pair and no crossings.

xi—yjand x; —yy cross if i<i’, but j>j’
Def. The cost of an alignment M is:

costM) = Y a,, + S o+ Y O
(x,»,y/)E M B i :x; unmatched j:yj unmatched

mismatch gap

X1 X2 X3 X4 X5 X6
c T A C C - G
Bl rcarc

Vi Y3 Y4 Y5 e

an alignment of CTACCG and TACATG
M = { X,=y 1, X395, X4=Y35 Xs=V4s X6~V }



Sequence alignment: problem structure

Def. OPT(,j) = min cost of aligning prefix strings x, x, ...x; and y, y, ... ;.
Goal. OPT(m, n).

Case 1. OPT(i,j) matches x;—y;.
Pay mismatch for x;—y;, + min cost of aligning x, x, ...x;, and y, y, ... y.;.

Case 2a. OPT(i,j) leaves x; unmatched.
Pay gap for x; + min cost of aligning x, x, ...x;; and y, y, ... y;.

\ optimal substructure property
Case 2b. OPT(i,)) leaves y; unmatched. / (proof via exchange argument)
Pay gap for y; + min cost of aligning x, x, ...x; and y, y, ... y; ;.

Bellman equation. Jo ifi=0
i6 if j=0
OPT(i,j) = iy + OPT(i—1,5—1)
min{ 6 + OPT(i —1,j) otherwise

§ + OPT(i,j — 1)



Sequence alignment: analysis

Theorem. The DP algorithm computes the edit distance (and an optimal
alignment) of two strings of lengths m and n in ©(mn) time and space.
Pf.

+ Algorithm computes edit distance.

* Can trace back to extract optimal alignment itself. =

Theorem. [Backurs—Indyk 2015] If can compute edit distance of two strings
of length n in O(n**) time for some constant ¢ > 0, then can solve SAT
with n variables and m clauses in poly(m) 20-9 time for some constant 6 > 0.

which would disprove SETH
Edit Distance Cannot Be Computed (strong exponential time hypothesis)
in Strongly Subquadratic Time
(unless SETH is false)*

Arturs Backurs' Piotr Indyk?
MIT MIT



Sequence alignment: traceback

S | M |

0 2 4 6 8

| 2 4 1 3 2
D 4 6 3 3 4
E 6 8 5 5 6
N 8 10 7 7 8
T 10 12 9 9 9
1 12 14 8 10 8
T 14 16 10 10 10
Y 16 18 12 12 12



Sequence alignment: analysis

Theorem. The DP algorithm computes the edit distance (and an optimal
alignment) of two strings of lengths m and n in ©(mn) time and space.
Pf.

+ Algorithm computes edit distance.

* Can trace back to extract optimal alignment itself. =

Theorem. [Backurs—Indyk 2015] If can compute edit distance of two strings
of length n in O(n**) time for some constant ¢ > 0, then can solve SAT
with n variables and m clauses in poly(m) 20-9 time for some constant 6 > 0.

which would disprove SETH
Edit Distance Cannot Be Computed (strong exponential time hypothesis)
in Strongly Subquadratic Time
(unless SETH is false)*

Arturs Backurs' Piotr Indyk?
MIT MIT



Dynamic programming: quiz 3 o

It is easy to modify the DP algorithm for edit distance to...

O N w >

Compute edit distance in O(mn) time and O(m + n) space.
Compute an optimal alignment in O(mn) time and O(m + n) space.
Both A and B.

Neither A nor B.

36 ifi=0
0 =
OPT(i,j) = gy, + OPT(i—1,j—1)
min § 6 + OPT(i — 1, ) otherwise
5 + OPT(i,j — 1)



Dynamic Programming

Shortest Paths — Bellman-Ford Algorithm



Shortest paths with negative weights

Shortest-path problem. Given a digraph G = (V, E), with arbitrary edge
lengths &,., find shortest path from source node s to destination node .

/

assume there exists a path
from every node to ¢

5

C
@

i
é/3 : D

length of shortest path fromstot=9-3 -6 + 11 =11



Shortest paths with negative weights: failed attempts

Dijkstra. May not produce shortest paths when edge lengths are negative.

Reweighting. Adding a constant to every edge length does not necessarily

Dijkstra selects the vertices in the order s, #, w, v
But shortest path from s to ¢ is s—=>v—w—t.

make Dijkstra’s algorithm produce shortest paths.

i 14 :
Adding 8 to each edge weight changes the

10 12 0 shortest path from s—=v—w—t to s—1.

S



Negative cycles

Def. A negative cycle is a directed cycle for which the sum of its edge
lengths is negative.

5 —

$<_ _o<_>@

a negative cycle W : /(W) = Zfe <0
eceW



Shortest paths and negative cycles

Lemma 1. If some v~ path contains a negative cycle, then there does not
exist a shortest v~ path.

Pf. If there exists such a cycle W, then can build a v~ path of arbitrarily
negative length by detouring around W as many times as desired. =

O] Q 0)

w

°UW) < 0



Shortest paths and negative cycles

Lemma 2. If G has no negative cycles, then there exists a shortest v~ path
that is simple (and has < n—1 edges).

Pf.
* Among all shortest v~¢ paths, consider one that uses the fewest edges.
 If that path P contains a directed cycle W, can remove the portion of P
corresponding to W without increasing its length. =

O] Q 0)

w

W) = 0



Shortest-paths and negative-cycle problems

Single-destination shortest-paths problem. Given a digraph G =(V, E) with

edge lengths £, (but no negative cycles) and a distinguished node ¢,

vw

find a shortest v~t path for every node v.

Negative-cycle problem. Given a digraph G = (V, E) with edge lengths ¢

W

find a negative cycle (if one exists).

AT TN T

2 -3

Vb ™ K

shortest-paths tree negative cycle



Dynamic programming: quiz 5

Which subproblems to find shortest v~¢ paths for every node v?

A. OPI(i,v) = length of shortest v~t path that uses exactly i edges.
B. OPI(i,v) = length of shortest v~t path that uses at most edges.

C. Neither A nor B.



Shortest paths with negative weights: dynamic programming

Def. OPT(i,v) = length of shortest v~ path that uses < i edges.

Goal' OPT(n - 1’ v) fOI' eaCh Vo ~— by Lemma 2, if no negative cycles,

there exists a shortest v~t path that is simple

Case 1. Shortest v~ path uses <i—1 edges.

* OPT(i,v) = OPT(i - 1,v). \ optimal substructure property
/ (proof via exchange argument)

Case 2. Shortest v~r path uses exactly i edges.
* if (v,w) is first edge in shortest such v~t path, incur a cost of ¢,,.
* Then, select best w~t path using <i—1 edges.

Bellman equation.

0 ifi=0andv=t
OPT(i,v) = { ifi=0andv#t

min { OPT(i—1,v), min {OPT(i—1,w)+ lyw} } ifi>0
(v,w)EE



Shortest paths with negative weights: implementation

SHORTEST-PATHS(V, E, £, 1)

FOREACH node vE V:
M0, v] < .
MO0, ¢] < 0.
ForRi=1TOn-1
FOREACH node v E V:
Mli,v]< M[i-1,v].
FOREACH edge (v, w) EE:
M[i,v] < min { M[i,v], M[i-1,w]+¢£,, }.

40



Shortest paths with negative weights: implementation

Theorem 1. Given a digraph G = (V, E) with no negative cycles, the DP
algorithm computes the length of a shortest v~ path for every node v
in O(mn) time and ©(n?) space.

Pf.
* Table requires ©(n?) space.
* Each iteration i takes ©(m) time since we examine each edge once. =

Finding the shortest paths.
* Approach 1: Maintain successor[i, v] that points to next node
on a shortest v~t path using < i edges.
* Approach 2: Compute optimal lengths M[i,v] and consider
only edges with M[i,v]=M[i-1,w] + £,,. Any directed path in this
subgraph is a shortest path.

41



Dynamic programming: quiz 6 oS

It is easy to modify the DP algorithm for shortest paths to...

O N ® »

Compute lengths of shortest paths in O(mn) time and O(m + n) space.
Compute shortest paths in O(mn) time and O(m + n) space.
Both A and B.

Neither A nor B.

42



Shortest paths with negative weights: practical improvements

Space optimization. Maintain two 1D arrays (instead of 2D array).
* d[v] = length of a shortest v~¢ path that we have found so far.

* successor[v] = next node on a v~t path.

Performance optimization. If d[w] was not updated in iteration i1,
then no reason to consider edges entering w in iteration i.

43



Bellman-Ford-Moore: efficient implementation

BELLMAN-FORD-MOORE(V, E, ¢, )

FOREACH node vE V' :

d[v] < oo.

successor[v] < null.
d[t] < 0.
Fori=1TONR-1

FOREACH node w € V' :

IF (d[w] was updated in previous pass)
FOREACH edge (v, w) EE :

pass i

IF (d[v] > dw]+ ¢,,) O(m) time

vw.

dlv] < dw]+ L

vw*

successor[v] <= w.

IF (no d['] value changed in pass i) STOP.

a4



Dynamic programming: quiz 7 o

Which properties must hold after pass i of Bellman-Ford-Moore?

d[v] = length of a shortest v~¢ path using < i edges.
d[v] = length of a shortest v~ path using exactly i edges.

Both A and B.

O N0 = »

Neither A nor B.

45



Bellman-Ford-Moore: analysis

Lemma 3. For each node v: d[v] is the length of some v~ path.

Lemma 4. For each node v: d[v] is monotone non-increasing.

Lemma 5. After pass i, d[v] < length of a shortest v~¢ path using <i edges.

Pf. [ by induction oni]

Base case: i =0.

Assume true after pass i.

Let P be any v~t path with < i + 1 edges.

Let (v, w) be first edge in P and let P’ be subpath from w to .
By inductive hypothesis, at the end of pass i, dlw] < c¢(P’)

because P’ is a w~r path with <i edges.
and by Lemma 4,

After considering edge (v,w) in pass i + 1: diw] does not increase

dlv]

/

and by Lemma 4,
d[v] does not increase = E(P) 0

A

va + d[W]

IA

L,,+c(P")

W

46



Bellman-Ford-Moore: analysis

Theorem 2. Assuming no negative cycles, Bellman-Ford—Moore computes
the lengths of the shortest v~t paths in O(mn) time and ©(n) extra space.
Pf. Lemma 2 + Lemma5. =

/ \

shortest path exists and after i passes,
has at most n—1 edges d[v] < length of shortest path
that uses <iedges

Remark. Bellman-Ford-Moore is typically faster in practice.
* Edge (v,w) considered in pass i + 1 only if d[w] updated in pass i.
+ If shortest path has k edges, then algorithm finds it after < k passes.

47



Dynamic programming: quiz 8 2

Assuming no negative cycles, which properties must hold throughout
Bellman-Ford-Moore?

A. Following successor[v] pointers gives a directed v~¢ path.

If following successor[v] pointers gives a directed v~¢ path,
then the length of that v~t path is d[v].

Both A and B.
D. Neither A nor B.

48



Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford—Moore, following the successor[v]
pointers gives a directed path from v to ¢ of length d[v].

Counterexample. Claim is false!
* Length of successor v~¢ path may be strictly shorter than d[v].

consider nodes in order: t, 1, 2,

successor(2] =1 successor[1] =1t
d[2] =20 d[1]1=10 d[]=0

(2 10 =1 o 10 =y

! 1

successor[3] =t

di31=1 -



Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford—Moore, following the successor[v]
pointers gives a directed path from v to ¢ of length d[v].

Counterexample. Claim is false!
* Length of successor v~¢ path may be strictly shorter than d[v].

consider nodes in order: t, 1, 2, 3

successor[1] =3
dl1]1=2 d[t]=0

O—r—>Pp—r1—50

1

successor[3] =t
d3]=1



Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford—Moore, following the successor[v]
pointers gives a directed path from v to ¢ of length d[v].

Counterexample. Claim is false!

« If negative cycle, successor graph may have directed cycles.

consider nodes in order: t, 1, 2, 3,

d[3]1=10 d2]=8

bov &

dl4] =11 dl1]1=5 51



Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford—Moore, following the successor[v]
pointers gives a directed path from v to ¢ of length d[v].

Counterexample. Claim is false!

« If negative cycle, successor graph may have directed cycles.

consider nodes in order: t, 1, 2, 3, 4

d[3]1=10 d2]=8

S N

dl4] =11 dl1]1=3 52



Bellman-Ford-Moore: finding the shortest paths

Lemma 6. Any directed cycle Win the successor graph is a negative cycle.

Pf.

* |If successor[v] =w, we must have d[v] = d[w] + L.
(LHS and RHS are equal when successor[v] is set; d[w] can only decrease;
d[v] decreases only when successor[v] is reset)

« Letvi—wv.— ... = v — v be the sequence of nodes in a directed cycle w.
* Assume that (v, vi) is the last edge in W added to the successor graph.

 Just prior to that: d[v] >
d[v2] >
dlviil]l =
d[vk] >

d[v2]
d[v3]

d[vi]
d[v1]

+ E(V1, V2)

+ £(v2, v3)

+ L(Vie1, Vi)

holds with strict inequality

i £(vk’ vl) since we are updating d[v«]

» Adding inequalities yields £(vi,v2) + £(v2,v3) + ... + 8(Vi-1, Vi) + LV, v1) < 0. =

W is a negative cycle



Bellman-Ford-Moore: finding the shortest paths

Theorem 3. Assuming no negative cycles, Bellman-Ford—Moore finds
shortest v~t paths for every node v in O(mn) time and ©(n) extra space.
Pf.

» The successor graph cannot have a directed cycle. [Lemma 6]

* Thus, following the successor pointers from v yields a directed path to .

* Letv=vi—=w— ... > =1 be the nodes along this path P.

* Upon termination, if successor[v] = w, we must have d[v] = d[w] + L.

(LHS and RHS are equal when successor[v] is set; d[-] did not change)

* Thus, gl = div] + Lvi,v) N
since algorithm
d[vZ] = d[v3] + E(Vz,V3) terminated
dlvici] = dlvil  + €1, v)

* Adding equations yields d[v] = d[f] + £(vi,v2) + L(v2,v3) + ... + L(Vi-1, &) ®

/o1

min length of any v~ path 0
(Theorem 2)

length of path P



Single-source shortest paths with negative weights

1955 o) Shimbel

1956 O(m n*> W) Ford

1958 O(m n) Bellman, Moore

1983 Om** m log W) Gabow

1989 O(m n'” log(nW)) Gabow-Tarjan

1993 O(m n'? log W) Goldberg

2005 O(n** W) Sankowsi, Yuster-Zwick
2016 O(n'"" log W) Cohen-Madry-Sankowski-Vladu
20xx ?@’

o o o

single-source shortest paths with weights between -W and W



DYNAMIC PROGRAMMING SUMMARY

e number of subproblems is polynomial
e problem solution can be easily deduced from solutions of
subproblems

e subproblems can be naturally ordered from smallest to largest

e simple to understand

e no need to dictate the ordering of subproblems

e no recursion overhead
o lower space complexity

e simple complexity analysis

36



Greedy Algorithms



Algorithmic paradigms

Greed. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into independent subproblems;

solve each subproblem; combine solutions to subproblems to form solution
to original problem.

Dynamic programming. Break up a problem into a series of overlapping
subproblems)combine solutions to smaller subproblems to form solution
to large subproblem.

fancy name for
caching intermediate results
in a table for later reuse



Greedy Algorithms

Coin Changing



4. GREEDY ALGORITHMS |

» coin changing




Coin changing

Goal. Given U. S. currency denominations { 1, 5, 10, 25, 100 },
devise a method to pay amount to customer using fewest coins.

Ex. 34¢.

Cashier’s algorithm. At each iteration, add coin of the largest value that
does not take us past the amount to be paid.

Ex. $2.89.




Cashier’s algorithm

At each iteration, add coin of the largest value that does not take us past
the amount to be paid.

CASHIERS-ALGORITHM (x, c1, €2, ..., Cpn)

SORT n coin denominations so that 0 < c; <c2< ... < ¢p.
S «— . «—— multiset of coins selected
WHILE (x > 0)
k < largest coin denomination ¢ such that ¢k < x.
IF no such k, RETURN “no solution.”
ELSE
X <X — Ck
S < SU{k}.

RETURN §.



Greedy algorithms I: quiz 1 e

Is the cashier’s algorithm optimal?

O 0N = >

Yes, greedy algorithms are always optimal.
Yes, for any set of coin denominations ci<c2 < ... <c, provided ¢; = 1.
Yes, because of special properties of U.S. coin denominations.

No.




Cashier’s algorithm (for arbitrary coin denominations)

Q. Is cashier’s algorithm optimal for any set of denominations?

A. No. Consider U.S. postage: 1,10, 21, 34, 70, 100, 350, 1225, 1500.
» Cashier’s algorithm: 140¢=100+34+1+1+1+1+1+1.
+ Optimal: 140¢ =70+ 70.

AD,USA]C

A. No. It may not even lead to a feasible solution if c;>1: 7, 8, 9.
« Cashier’s algorithm: 15¢ =9 + 2.
« Optimal: 15¢ =7+ 8.



Properties of any optimal solution (for U.S. coin denominations)

Property. Number of pennies < 4.
Pf. Replace 5 pennies with 1 nickel.

Property. Number of nickels < 1.
Property. Number of quarters < 3.

Property. Number of nickels + number of dimes < 2.

Pf.
* Recall: =< 1nickel.
* Replace 3 dimes and 0 nickels with 1 quarter and 1 nickel;
+ Replace 2 dimes and 1 nickel with 1 quarter.

dollars quarters dimes nickels pennies
(100¢) (25¢) (10¢) (5¢) (1¢)



Optimality of cashier’s algorithm (for U.S. coin denominations)

Theorem. Cashier’s algorithm is optimal for U.S. coins { 1, 5, 10, 25, 100 }.
Pf. [ by induction on amount to be paid x ]
+ Consider optimal way to change ¢, < x<c¢,,, : greedy takes coin k.
* We claim that any optimal solution must take coin k.
- if not, it needs enough coins of type ¢, ...,c,; to add up to x
- table below indicates no optimal solution can do this
 Problem reduces to coin-changing x — ¢, cents, which, by induction,
is optimally solved by cashier’s algorithm. =

& ¢ all optimal solutions max value of coin denominations
« must satisfy €1, €2, ..., Ck-1 iN Any optimal solution

1 1 P <4 -

2 5 N =1 4

3 10 N+D <2 4+5=9
4 25 0=<3 20+4 =24

5 100 no limit 75 +24 =99



Greedy Algorithms

Interval Scheduling



4. GREEDY ALGORITHMS |

» interval scheduling

g lmm Im Design

JON KLEINBERG - EVA TARDOS

SECTION 4.1



Interval scheduling

* Job j starts at 5; and finishes at f;.
« Two jobs compatible if they don’t overlap.
+ Goal: find maximum subset of mutually compatible jobs.

jobs d and g
7 are incompatible




Greedy algorithms |: quiz 2 o

Consider jobs in some order, taking each job provided it’s compatible
with the ones already taken. Which rule is optimal?

A. [Earliest start time] Consider jobs in ascending order of s;.

B. [Earliest finish time] Consider jobs in ascending order of f,.

C. [Shortest interval] Consider jobs in ascending order of f; —s;.

D. None of the above.



Interval scheduling: earliestfinish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST (1, $1, 82, « .., Sn 5 f1, f25 <+ s [fn)

SORT jobs by finish times and renumber so that fi < o < ... < f,.
S < . «— setof jobs selected
FOR j=1TO n
IF job j is compatible with §
S <SU{j}.

RETURN §.

Proposition. Can implement earliest-finish-time first in O(n log n) time.
* Keep track of job j* that was added last to S.
* Job jis compatible with S iff s; = f..
* Sorting by finish times takes O(n log n) time.



Interval scheduling: analysis of earliestfinish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
» Assume greedy is not optimal, and let’s see what happens.
. Let iy, i, ... idenote set of jobs selected by greedy.
- Letj, j, --- j, denote set of jobs in an optimal solution with
i\ =Jj1»iy=Ja, - i, = j, fOr the largest possible value of r.

job i,,, exists and finishes no later than j,,,

Greedy: &

Optimal: Ji h Jr

/ T

job j,.,, exists why not replace
because m >k job j..; with job i,,,?



Interval scheduling: analysis of earliestfinish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
» Assume greedy is not optimal, and let’s see what happens.
. Let iy, i, ... idenote set of jobs selected by greedy.
- Letj, j, --- j, denote set of jobs in an optimal solution with
i\ =Jj1»iy=Ja, - i, = j, fOr the largest possible value of r.

job i,,; exists and finishes before j,,

|

: :
‘ |
Greedy: i iy i Irel | %
| |
| |
‘ ‘
3 3
. . . ] . ! .

!

solution still feasible and optimal
(but contradicts maximality of r)



Greedy algorithms |: quiz 3 s

Suppose that each job also has a positive weight and the goal is to
find a maximum weight subset of mutually compatible intervals.
Is the earliest-finish-time-first algorithm still optimal?

Yes, because greedy algorithms are always optimal.
Yes, because the same proof of correctness is valid.

No, because the same proof of correctness is no longer valid.

o n w >

No, because you could assign a huge weight to a job that overlaps
the job with the earliest finish time.



Greedy Algorithms

Interval Partitioning
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Interval partitioning

* Lecture j starts at s; and finishes at .

» Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 4 classrooms to schedule 10 lectures.

jobseandg
are incompatible

9 9:30 10 10:30

11

11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

time



Interval partitioning

* Lecture j starts at s; and finishes at .
» Goal: find minimum number of classrooms to schedule all lectures

so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 3 classrooms to schedule 10 lectures.

intervals are open
(need only 3 classrooms at 2pm)

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time



Greedy algorithms I: quiz 4 o

Consider lectures in some order, assigning each lecture to first
available classroom (opening a new classroom if none is available).
Which rule is optimal?

A. [Earliest start time] Consider lectures in ascending order of s;.

B. [Earliest finish time] Consider lectures in ascending order of f,.

C. [Shortest interval]l Consider lectures in ascending order of f;—s;.

D. None of the above.



Interval partitioning: earliest-starttime-first algorithm

EARLIEST-START-TIME-FIRST (11, $1, 82, «+ s S » f15/2, ++ -5 f0)

SORT lectures by start times and renumber so that s1 < s> <
d <— (0. <«<— number of allocated classrooms
FOrR j=1TOR
IF lecture j is compatible with some classroom
Schedule lecture j in any such classroom k.
ELSE
Allocate a new classroom d + 1.
Schedule lecture j in classroom d + 1.

d<d+1.

RETURN schedule.

IA



Interval partitioning: earliest-starttime-first algorithm

Proposition. The earliest-start-time-first algorithm can be implemented in
O(n log n) time.

Pf. Store classrooms in a priority queue (key = finish time of its last lecture).
* To determine whether lecture j is compatible with some classroom,
compare s; to key of min classroom k in priority queue.
* To add lecture j to classroom k, increase key of classroom k to f.
* Total number of priority queue operations is O(n).
 Sorting by start times takes O(n log n) time. =

Remark. This implementation chooses a classroom k whose finish time
of its last lecture is the earliest.



Interval partitioning: lower bound on optimal solution

Def. The depth of a set of open intervals is the maximum number of
intervals that contain any given point.

Key observation. Number of classrooms needed > depth.
Q. Does minimum number of classrooms needed always equal depth?

A. Yes! Moreover, earliest-start-time-first algorithm finds a schedule
whose number of classrooms equals the depth.

depth = 3

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time



Interval partitioning: analysis of earliest-start-time-first algorithm

Observation. The earliest-start-time first algorithm never schedules two
incompatible lectures in the same classroom.

Theorem. Earliest-start-time-first algorithm is optimal.
Pf.
* Let d = number of classrooms that the algorithm allocates.
* Classroom d is opened because we needed to schedule a lecture, say j,
that is incompatible with a lecture in each of d—1 other classrooms.
+ Thus, these d lectures each end after s,
+ Since we sorted by start time, each of these incompatible lectures start
no later than s;.
+ Thus, we have d lectures overlapping at time s; + ¢.
* Key observation = all schedules use = d classrooms. =



Greedy Algorithms

Scheduling to Minimize Lateness
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Scheduling to minimizing lateness

Single resource processes one job at a time.

Job j requires 1; units of processing time and is due at time d;.

If j starts at time s, it finishes at time f;=s; +
Lateness: ¢ =max {0, f;—d; }.

l‘j.

Goal: schedule all jobs to minimize maximum lateness L = max; £;.

t

lateness = 2

/

(1]2]3]4]5]6
3 2 1 4 3 2
6 8 9 9 14 15

lateness = 0

/

max lateness = 6




Greedy algorithms I: quiz 5 o

Schedule jobs according to some natural order. Which order minimizes
the maximum lateness?

A. [shortest processing time] Ascending order of processing time .

B. [earliest deadline first] Ascending order of deadline d,.

C. [smallest slack] Ascending order of slack: d;— .

D. None of the above.

26



Minimizing lateness: earliest deadline first

EARLIEST-DEADLINE-FIRST (1, t1, t2, ..., tn ,d1, d>, ..., dn)

SORT jobs by due times and renumber so thatd) < d> < ...

t<0.

FOorR j=1TOR
Assign job j to interval [#, ¢ + #].
sj=t; fi=t+1.
t<—t+1.

RETURN intervals [s1, fi], [s2, /21, ..., [Sn, fal.

max lateness L = 1

IA

dn.




Minimizing lateness: no idle time

Observation 1. There exists an optimal schedule with no idle time.

an optimal schedule d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 11
an optimal schedule d=4 d=6 d=12
with no idle time 0 1 % 3 4 5 6 7 8 9 10 11

Observation 2. The earliest-deadline-first schedule has no idle time.



Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i <jbutjis scheduled before i.

inversion if i < j
an inversion

recall: we assume the jobs are numbered so thatdi <dr < ... <d,

Observation 3. The earliest-deadline-first schedule is the unique idle-free
schedule with no inversions.



Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i <jbutjis scheduled before i.

inversion if i < j
an inversion

recall: we assume the jobs are numbered so thatdi <dr < ... <d,

Observation 4. If an idle-free schedule has an inversion, then it has an
adjacent inversion.
pf. >
* Let i-j be a closest inversion.
* Let k be element immediately to the right of j.
* Case 1. [j> k] Then j—kis an adjacent inversion.
* Case 2. [j< k] Then i—kis a closer inversion since i <j< k. %

two inverted jobs scheduled consecutively



Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:

i <jbutjis scheduled before i.

inversion if i < j
chans I
exchange J
chan ]
exchange J

Key claim. Exchanging two adjacent, inverted jobs i and j reduces the
number of inversions by 1 and does not increase the max lateness.
Pf. Let ¢ be the lateness before the swap, and let ¢’ be it afterwards.

c U=t forall k=i,;.

* =1

* Ifjobjis late, ¢ = fj — dj <« definition

= fi - dj <«— jnow finishes at time f;

A

< fi—-di <«—i<j=d=d

IA
o~

<«—— definition



Minimizing lateness: analysis of earliest-deadline-first algorithm

Theorem. The earliest-deadline-first schedule S is optimal.
optimal schedule can
Pf. [by contradiction] / IR S
Define S* to be an optimal schedule with the fewest inversions.
* Can assume $* has no idle time. «<—— Observation 1
* Case 1. [ S* has no inversions ] Then S = S*, <«— Observation 3
» Case 2. [ S* has an inversion ]
- let i—j be an adjacent inversion <«—— Observation 4
- exchanging jobs i and j decreases the number of inversions by 1
without increasing the max lateness <«— key claim
- contradicts “fewest inversions” part of the definition of §* %



Greedy analysis strategies

Greedy algorithm stays ahead. Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm’s.

Structural. Discover a simple “structural” bound asserting that every
possible solution must have a certain value. Then show that your algorithm
always achieves this bound.

Exchange argument. Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

Other greedy algorithms. Gale-Shapley, Kruskal, Prim, Dijkstra, Huffman, ...



Greedy Algorithms

Optimal Caching
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Optimal offline caching

Caching.

* Cache with capacity to store k items.

+ Sequence of m item requests d,,d,, ..., d,,.
+ Cache hit: item in cache when requested.
« Cache miss: item not in cache when requested.

(must evict some item from cache and bring requested item into cache)

Applications. CPU, RAM, hard drive, web, browser, ....

Goal. Eviction schedule that minimizes the number of evictions.

cache cache miss
(eviction)

Ex. k=2, initial cache = ab, requests: a,b,c,b,c,a, b.
Optimal eviction schedule. 2 evictions.

o
ST AT T\

<«——— si1sanbaa



Optimal offline caching: greedy algorithms

LIFO/FIFO. Evict item brought in least (most) recently.
LRU. Evict item whose most recent access was earliest.
LFU. Evict item that was least frequently requested.

cache

S)

z FIFO: eject a

)

z LRU: eject d

Q

2

Z

=
QU AU A=

Q

Z

a e LIFO: eject e
\ cache miss

(which item to eject?)

1
FLLLL L
N .
> - s =T = =
=

S




Optimal offline caching: farthestin-future (clairvoyant algorithm)

Farthest-in-future. Evict item in the cache that is not requested until
farthest in the future.

cache

S
U

Q

S}

cache miss
(which item to eject?)

.Q
HN

? ?

(W

FF: eject d

Theorem. [Bélady 1966] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

40



Greedy algorithms |: quiz 6 e

Which item will be evicted next using farthest-in-future schedule?

A.
B.
C.
g
c
m
D. é
E.

cache
D B Y A
D B C
D E C A

P 2 " cache miss
: : . (which item to eject?)

A

4



Reduced eviction schedules

Def. A reduced schedule is a schedule that brings an item d into the cache
in step j only if there is a request for d in step j and d is not already in the
cache.

a d enters cache a b c
without a request

a ¢ b d enters cache a ¢ b
even though already

d c b /incache d c b

an unreduced schedule a reduced schedule



Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S’ with no more evictions.
Pf. [ by induction on number of steps j |

* Suppose S brings d into the cache in step j without a request.

* Let ¢ be the item S evicts when it brings d into the cache.

+ Case la: devicted before next request for d.

unreduced schedule S S’

Cc

c

QU
]
[
o

step j —d -— fl enters cache @ .
without a request might as well
d -d ¢ <«— leave cin cache
until d is evicted
-d d -d c
., d evicted before
step ) @ ¢ next request for d

e

.!
[

43



Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S’ with no more evictions.
Pf. [ by induction on number of steps j |

* Suppose S brings d into the cache in step j without a request.

* Let ¢ be the item S evicts when it brings d into the cache.

+ Case la: devicted before next request for d.

* Case 1b: next request for d occurs before d is evicted.

unreduced schedule S S’

step j —d < d enters cache

without a request might as well
<«— leave c in cache

until d is requested

d
a
o

L
o
U
o

d still in cache before

step j’ q next request for d

J
a
QU /A

|
U
U

a4



Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced

schedule S’ with no more evictions.

Pf. [ by induction on number of steps j |

* Suppose S brings d into the cache in step j even though d is in cache.

* Let ¢ be the item S evicts when it brings d into the cache.
+ Case 2a: d evicted before it is needed.

step j

step j’

unreduced schedule S

U

di
di
di
d
di
c
c

c

Cc

ds enters cache

even though d is
/i <« already in cache

d3 <«— d3not needed
ds
b <«— dsevicted

d; <«— dsneeded

R 's N N S

ds

might as well
leave c in cache
until ds in evicted

45



Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S’ with no more evictions.

Pf. [ by induction on number of steps j |

step j

step j’

Suppose S brings d into the cache in step j even though d is in cache.

Let ¢ be the item S evicts when it brings d into the cache.
Case 2a: d evicted before it is needed.
Case 2b: d needed before it is evicted.

unreduced schedule S

U

d

di
di
di
d
di
c
c

c

a

Cc
c

d; enters cache

even though d is
<«— already in cache

d3
ds
d3
ds

<«— ds not needed

<«— d; needed

am'sssssvz

U

ds

might as well
leave c in cache
until d3 in needed

46



Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S’ with no more evictions.
Pf. [ by induction on number of steps j |
* Case 1: S brings d into the cache in step j without a request. v
* Case 2: S brings d into the cache in step j even though d is in cache.
* If multiple unreduced items in step j, apply each one in turn,
dealing with Case 1 before Case 2. =

\

resolving Case 1 might trigger Case 2

v

47



Farthest-infuture: analysis

Theorem. FF is optimal eviction algorithm.
Pf. Follows directly from the following invariant.

Invariant. There exists an optimal reduced schedule S that has the same
eviction schedule as S through the first j steps.
Pf. [ by induction on number of steps ;]
Base case: j=0.
Let S be reduced schedule that satisfies invariant through j steps.
We produce S’ that satisfies invariant after j+ 1 steps.
* Let d denote the item requested in step j + 1.
+ Since S and S have agreed up until now, they have the same cache
contents before step j+ 1.
» Case 1: dis already in the cache.
S’ = § satisfies invariant.
« Case 2: dis not in the cache and S and S, evict the same item.
S' = § satisfies invariant.

48



Farthestin-future: analysis

Pf. [continued]
« Case 3: dis not in the cache; Sy evicts ¢; S evicts f # e.
- begin construction of S’ from S by evicting e instead of f

same e f step j same e f

same e d step j+1 same d f

- now S’ agrees with Sy for first j+ 1 steps; we show that having item f

in cache is no worse than having item e in cache

- let S’ behave the same as S until ' is forced to take a different action
(because either S evicts e; or because either e or f is requested)



Farthest-infuture: analysis

Let j' be the first step after j+ 1 that ' must take a different action from S;
let ¢ denote the item requested in step j'. 1

involves either e or f (or both)

-
same e step j same f

S S’

S" agrees with Srr through first j + 1 steps

* Case 3a: g=e. e
Can’t happen with FF since there must be a request for f before e.

* Case 3b: g=f.
Element f can’t be in cache of S; let ¢’ be the item that S evicts.
- ife'=e¢, S' accesses f from cache; now S and S’ have same cache
- if ¢ 2e, we make S’ evict ¢’ and bring e into the cache;
now S and S’ have the same cache
We let S’ behavﬁ\exactly like S for remaining requests.

S’ is no longer reduced, but can be transformed into a
reduced schedule that agrees with FF through first j + 1 steps 50



Farthest-infuture: analysis

Let j' be the first step after j+ 1 that ' must take a different action from S;
let ¢ denote the item requested in step j'. 1

involves wither e or f (or both)

-
same e step j same f

otherwise S’ could have taken the same action

|

* Case 3c: g#e,f. Sevicts e.
- make S evict f.

same g step j’ same g

- now S and S’ have the same cache
- let S’ behave exactly like S for the remaining requests =



Caching perspective

Online vs. offline algorithms.
« Offline: full sequence of requests is known a priori.
* Online (reality): requests are not known in advance.
« Caching is among most fundamental online problems in CS.

LIFO. Evict item brought in most recently.
LRU. Evict item whose most recent access was earliest.

FF with direction of time reversed!

Theorem. FF is optimal offline eviction algorithm.
« Provides basis for understanding and analyzing online algorithms.
* LIFO can be arbitrarily bad.
* LRU is k-competitive: for any sequence of requests o, LRU(0) < k FF(0) + k.

. Raaning is O(log k)-competitive.

see SECTION 13.8



Greedy Algorithms

Shortest Paths — Dijkstra’s algorithm
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Single-pair shortest path problem

Problem. Given a digraph G =(V, E), edge lengths £, = 0, source sV,
and destination r €V, find a shortest directed path from s to .

Q- @

source s 2 3

) @G{;@\ :
c!v/ MO \@

20

destination t

length of path =9 + 4 + 1 + 11 = 25



Single-source shortest paths problem

Problem. Given a digraph G =(V, E), edge lengths £, = 0, source sV,
find a shortest directed path from s to every node.

Assumption. There exists a path from s to every node.

15 @

/7@ 7
i :8\ ) 5
9 @6 7N\
R AN
o ®

shortest-paths tree



Shortest paths: quiz 1

Suppose that you change the length of every edge of G as follows.
For which is every shortest path in G a shortest path in G'?

A. Add 17.
B. Multiply by 17.
C. Either A or B.

D. Neither A nor B.



Shortest paths: quiz 2 e

Which variant in car GPS?

A.

B
C.
D

Single source: from one node s to every other node.
Single sink: from every node to one node t.
Source-sink: from one node s to another node .

All pairs: between all pairs of nodes.

v : E
m? West San Carlos Street. (cA-sz) ' ul




Shortest path applications

+ PERT/CPM.

* Map routing.

» Seam carving.

+ Robot navigation.

» Texture mapping.

» Typesetting in LaTeX.

 Urban traffic planning.

« Telemarketer operator scheduling.

» Routing of telecommunications messages.
» Network routing protocols (OSPF, BGP, RIP).
» Optimal truck routing through given traffic congestion pattern.

Network Flows: Theory, Algorithms, and Applications,
by Ahuja, Magnanti, and Orlin, Prentice Hall, 1993.




Dijkstra’s algorithm (for single-source shortest paths problem)

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined d[u] = length of a shortest s~u path.

« Initialize S < {s}, d[s] < 0.

* Repeatedly choose unexplored node v & S which minimizes

w(v) = min dlu] + ¢,
( ) e=(u,v) : u€S [ } ¢ \ the length of a shortest path from s

to some node u in explored part S,
followed by a single edge ¢ = (u, v)




Dijkstra’s algorithm (for single-source shortest paths problem)

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined d[u] = length of a shortest s~u path.

« Initialize S < {s}, d[s] < 0.

* Repeatedly choose unexplored node v & S which minimizes

w(v) = min dlu] + ¢,
( ) e=(u,v) : u€S [ } +Le \ the length of a shortest path from s
to some node u in explored part S,
add v to S, and set d[v] < n(v). followed by a single edge e = (1, v)

* To recover path, set pred[v] < e that achieves min.

d[v]

dlu]




Dijkstra’s algorithm: proof of correctness

Invariant. For each node u & S: d[u] = length of a shortest s~u path.
Pf. [ by induction on |S]]
Base case: |S|=1is easy since S={s} and d[s] =0.
Inductive hypothesis: Assume true for |S| > 1.
* Let v be next node added to S, and let (u,v) be the final edge.
* A shortest s~u path plus (u,v) is an s~»v path of length n(v).
* Consider any other s~v path P. We show that it is no shorter than n(v).
* Let e=(x,y) be the first edge in P that leaves S,
and let P’ be the subpath from s to x.

* The length of P is already = m(v) as soon - @ : )
as it reaches y: 5
S
WP) = UP)+E > diX+l = T0) = T0) . @
t ) t t
non-negative inductive definition Dijkstra chose v

lengths hypothesis of m(y) instead of y



Dijkstra’s algorithm: efficient implementation

Critical optimization 1. For each unexplored node v S :
explicitly maintain z[v] instead of computing directly from definition

m(v) = min dlu] + £,

e=(u,v) : u€S

* For each vé& S : 7(v) can only decrease (because set S increases).

* More specifically, suppose u is added to S and there is an edge e = (u,v)
leaving u. Then, it suffices to update:

7[v] <= min { [v], 7[u] + L) }

\ recall: for each u € S,
7t[u] = d[u] = length of shortest s~u path

Critical optimization 2. Use a min-oriented priority queue (PQ)
to choose an unexplored node that minimizes z[v].



Dijkstra’s algorithm: efficient implementation

Implementation.
* Algorithm maintains z[v] for each node v.
* Priority queue stores unexplored nodes, using =[] as priorities.
* Once u is deleted from the PQ, z[u] = length of a shortest s~u path.

DUKSTRA (V, E, £, 5)
FOREACH VvV # s : m[v] < %, pred[v] < null; x[s] < 0.
Create an empty priority queue pq.
FOREACH v € V : INSERT(pq, v, 7[v]).
WHILE (IS-NOT-EMPTY(pq))

u <— DEL-MIN(pq).

FOREACH edge e = (u, v) € E leaving u:

IF (z[v] > m@[u] + L)
DECREASE-KEY(pq, v, mlu] + £.).

wt[v] <= 7wtlu] + Le; pred[v] < e.



Dijkstra’s algorithm: which priority queue?

Performance. Depends on PQ: n INSERT, n DELETE-MIN, < m DECREASE-KEY.
« Array implementation optimal for dense graphs. «— ©@) edges

 Binary heap much faster for sparse graphs. <— o) edges

« 4-way heap worth the trouble in performance-critical situations.

priority queue INSERT DELETE-MIN DECREASE-KEY “

unordered array

binary heap

d-way heap
(Johnson 1975)

Fibonacci heap
(Fredman-Tarjan 1984)

integer priority queue
(Thorup 2004)

o(1)

O(log n)

O(d loga n)

o(1)

o(l)

O(n)

O(log n)

O(d loga n)

O(log n) *

O(log log n)

o(1)

O(log n)

O(loga n)

o)t

o(l)

0O(n?)

O(m log n)

O(m 1ogmm n)

O(m + nlog n)

O(m + nlog log n)

+ amortized 13



Shortest paths: quiz 3 o

How to solve the the single-source shortest paths problem in
undirected graphs with positive edge lengths?

A. Replace each undirected edge with two antiparallel edges of same
length. Run Dijkstra’s algorithm in the resulting digraph.

B. Modify Dijkstra’s algorithms so that when it processes node u,
it consider all edges incident to u (instead of edges leaving u).

C. Either A or B.

D. Neither A nor B.



Shortest paths: quiz 3 9

Theorem. [Thorup 1999] Can solve single-source shortest paths problem
in undirected graphs with positive integer edge lengths in O(m) time.

Remark. Does not explore nodes in increasing order of distance from s.

Undirected Single Source Shortest Paths with
Positive Integer Weights in Linear Time

Mikkel Thorup
AT&T Labs—Research

paths problem (SSSP) is one of the classic problems in algorithmic
ly weighted graph G with a source vertex s, find the shortest path

The single source short

P for general directed and undirected graphs
he vertices in order of increasing distance from

have been based on Dijkstra’s algorithm, visiting
s. Thus, any implementation of Dijkstra’s algorithm sorts the vertices according to their distances
from s. However, we do not know how to sort in linear time.

Here, a deterministic linear time and linear space algorithm is presented for the undirected
single source shortest paths problem with positive integer weights. The algorithm avoids the
sorting bottle-neck by building a hierarchical bucketing structure, identifying vertex pairs that

may be visited in any order.



Extensions of Dijkstra’s algorithm

Dijkstra’s algorithm and proof extend to several related problems:
* Shortest paths in undirected graphs: afv] < a{u] + £(u, v).
* Maximum capacity paths: afv] = min { #{u], c(u, v) }.
* Maximum reliability paths: av] = #{u] x y(u,v) .

Key algebraic structure. Closed semiring (min-plus, bottleneck, Viterbi, ...).

at+b=b+a
a+(b+c)=(a+b)+c
a+0=a
a-(b-c)=(a-b)-c
a-0=0-a=0
a-l=1-a=a
a-(b+c)=a-b+a-c
(a+b)-c=a-c+b-c

a*=1+a-a"=1+a"-a




Greedy Algorithms

Minimum Spanning Trees — Prim, Kruskal
and Boriivka
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Cycles

Def. A path is a sequence of edges which connects a sequence of nodes.

Def. A cycle is a path with no repeated nodes or edges other than the
starting and ending nodes.

path P = {(1, 2),(2,3),(3,4),(4,5),(5,6) }
cycle C = {(1, 2), (2, 3), 3, 4), (4,5), (5, 6), (6, 1) }



Cuts

Def. A cutis a partition of the nodes into two nonempty subsets S and V —S.

Def. The cutset of a cut Sis the set of edges with exactly one endpoint in S.

cutS= {4,5,8}
cutset D ={(3,4),(3,5),(5,6),(57),(8,7) }



Minimum spanning trees: quiz 1

Consider the cut S = { 1, 4, 6, 7 }. Which edge is in the cutset of S?

A. S is not a cut (hot connected)

B. 1-7
C. 57
D. 2-3

24



Minimum spanning trees: quiz 2

Let C be a cycle and let D be a cutset. How many edges do C and D
have in common? Choose the best answer.

A. 0

B. 2

C. notl

D. an even number

25



Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.

cycle C = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) }
cutset D = {(3,4),(3,5),(5,6),(5,7),(8,7) }
intersectionCN D = {(3,4),(5,6) }



Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.
Pf. [by picture]




Spanning tree definition

Def. Let H=(V,T) be a subgraph of an undirected graph G = (V, E).
H is a spanning tree of G if H is both acyclic and connected.

graph G = (V, E)
spanning tree H = (V, T)



Minimum spanning trees: quiz 3 2

Which of the following properties are true for all spanning trees H?

A. Contains exactly |V|-1 edges.
B. The removal of any edge disconnects it.
C. The addition of any edge creates a cycle.

D. All of the above.

spanning tree H = (V, T) 29



Spanning tree properties

Proposition. Let H=(V,T) be a subgraph of an undirected graph G = (V, E).
Then, the following are equivalent:

* His a spanning tree of G.

* His acyclic and connected.

* His connected and has | V| -1 edges.

* His acyclic and has | V| — 1 edges.

* His minimally connected: removal of any edge disconnects it.

* H is maximally acyclic: addition of any edge creates a cycle.

spanning tree H = (V, T)






Minimum spanning tree (MST)

Def. Given a connected, undirected graph G = (V, E) with edge costs c,,
a minimum spanning tree (V,T) is a spanning tree of G such that the sum
of the edge costs in T is minimized.

<< 7

10 14 d
> Y
MSTcost=50=4+6+8+5+11+9+7

Cayley’s theorem. The complete graph on n nodes has n72 spanning trees.

f

can't solve by brute force



Minimum spanning trees: quiz 4

Suppose that you change the cost of every edge in G as follows.
For which is every MST in G an MST in G’ (and vice versa)?
Assume c(e) > O for each e.

c'(e)=c(e) + 17.
c'(e) =17 x c(e).

c'(e) = logi7 c(e).

S 0 & >

All of the above.



Applications

MST is fundamental problem with diverse applications.

Dithering.

Cluster analysis.

Max bottleneck paths.

Real-time face verification.

LDPC codes for error correction.

Image registration with Renyi entropy.

Find road networks in satellite and aerial imagery.

Model locality of particle interactions in turbulent fluid flows.

Reducing data storage in sequencing amino acids in a protein.
Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
Network design (communication, electrical, hydraulic, computer, road).

Network Flows: Theory, Algorithms, and Applications,
by Ahuja, Magnanti, and Orlin, Prentice Hall, 1993.



Fundamental cycle

Fundamental cycle. Let H=(V,T) be a spanning tree of G=(V,E).
* For any non tree-edge e €E: T U { e} contains a unique cycle, say C.
* Foranyedgef&C: T U{e}-{f} is aspanning tree.

graph G = (V, E)
spanning tree H = (V, T)

Observation. If c. < ¢, then (V,T) is not an MST.



Fundamental cutset

Fundamental cutset. Let H=(V,T) be a spanning tree of G=(V,E).
* Forany tree edgef€T: T — {f} contains two connected components.
Let D denote corresponding cutset.
* ForanyedgeeeD: T-{f}U{e} is a spanning tree.

-

spanning tree H = (V, T)

Observation. If c. < ¢, then (V,T) is not an MST.



The greedy algorithm

Red rule.
* Let C be a cycle with no red edges.
*+ Select an uncolored edge of C of max cost and color it red.

Blue rule.
* Let D be a cutset with no blue edges.
* Select an uncolored edge in D of min cost and color it blue.

Greedy algorithm.
+ Apply the red and blue rules (nondeterministically!) until all edges
are colored. The blue edges form an MST.
* Note: can stop once n—1 edges colored blue.



Greedy algorithm: proof of correctness

Color invariant. There exists an MST (V, T*) containing every blue edge
and no red edge.
Pf. [ by induction on number of iterations ]

Base case. No edges colored = every MST satisfies invariant.



Greedy algorithm: proof of correctness

Color invariant. There exists an MST (V, T*) containing every blue edge
and no red edge.
Pf. [ by induction on number of iterations ]

Induction step (blue rule). Suppose color invariant true before blue rule.
* let D be chosen cutset, and let f be edge colored blue.
 if fe T*, then T* still satisfies invariant.
* Otherwise, consider fundamental cycle C by adding fto T*.
* let e € C be another edge in D.
* eis uncolored and ¢, = ¢ since
- eET* = enotred
- blue rule = enot blue and ¢, > ¢ T+
* Thus, T* U {f} - { e} satisfies invariant.




Greedy algorithm: proof of correctness

Color invariant. There exists an MST (V, T*) containing every blue edge
and no red edge.
Pf. [ by induction on number of iterations ]

Induction step (red rule). Suppose color invariant true before red rule.
* let C be chosen cycle, and let e be edge colored red.
* if e & T*, then T* still satisfies invariant.
* Otherwise, consider fundamental cutset D by deleting e from T*.
* let f€ D be another edge in C.
* fis uncolored and c. = ¢ since
- f&T* = f notblue
- red rule = fnotredandc. > ¢ T+
* Thus, T U {f} - {e} satisfies invariant. =

40



Greedy algorithm: proof of correctness

Theorem. The greedy algorithm terminates. Blue edges form an MST.
Pf. We need to show that either the red or blue rule (or both) applies.
* Suppose edge ¢ is left uncolored.
+ Blue edges form a forest.
+ Case 1: both endpoints of e are in same blue tree.
= apply red rule to cycle formed by adding e to blue forest.

Case 1

41



Greedy algorithm: proof of correctness

Theorem. The greedy algorithm terminates. Blue edges form an MST.
Pf. We need to show that either the red or blue rule (or both) applies.
* Suppose edge ¢ is left uncolored.
+ Blue edges form a forest.
+ Case 1: both endpoints of e are in same blue tree.
= apply red rule to cycle formed by adding e to blue forest.
» Case 2: both endpoints of ¢ are in different blue trees.
= apply blue rule to cutset induced by either of two blue trees. =

Case 2
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SECTION 6.2

4. GREEDY ALGORITHMS I

» Prim, Kruskal, Boruvka



Prim’s algorithm

Initialize S = any node, T= .

Repeat n—1 times:
* Add to T a min-cost edge with one endpoint in S.
* Add new node to S.

by construction, edges in
cutset are uncolored

Theorem. Prim’s algorithm computes an MST. \
Pf. Special case of greedy algorithm (blue rule repeatedly applied to §). =

Q O

a4



Kruskal’s algorithm

Consider edges in ascending order of cost:
+ Add to tree unless it would create a cycle.

Theorem. Kruskal’s algorithm computes an MST.
Pf. Special case of greedy algorithm.
) X all other edges in cycle are blue
* Case 1: both endpoints of ¢ in same blue tree.
= color e red by applying red rule to unique cycle.
* Case 2: both endpoints of e in different blue trees.

= color e blue by applying blue rule to cutset defined by either tree. =

AN

no edge in cutset has smaller cost
(since Kruskal chose it first)

o0

46



Kruskal’s algorithm: implementation

Theorem. Kruskal’s algorithm can be implemented to run in O(m log m) time.
+ Sort edges by cost.
+ Use union—find data structure to dynamically maintain connected
components.

KRUSKAL (V, E, ¢)

SORT m edges by cost and renumber so that c(e1) < c(e2) <... < c(em).
T<@.

FOREACH v € V: MAKE-SET(V).

FOR i=1TO m

(u,v) < ei.

are y and v in

IF (FIND-SET(4) # FIND-SET(v)) <— _ =~ component?

T < T U{ei}.
UNION(M v) make u and v in
r o same component

RETURN T.

47



Reverse-delete algorithm

Start with all edges in T and consider them in descending order of cost:
* Delete edge from T unless it would disconnect T.

Theorem. The reverse-delete algorithm computes an MST.
Pf. Special case of greedy algorithm.
* Case 1. [ deleting edge e does not disconnect T']
= apply red rule to cycle C formed by adding e to another path
in T between its two endpoints AN no edge in C is more expensive
(it would have already been considered and deleted)
* Case 2. [ deleting edge e disconnects T']
= apply blue rule to cutset D induced by either component =

N\

e is the only remaining edge in the cutset
(all other edges in D must have been colored red / deleted)

Fact. [Thorup 2000] Can be implemented to run in O(m log n (log log n)3) time.



Review: the greedy MST algorithm

Red rule.
* Let C be a cycle with no red edges.
*+ Select an uncolored edge of C of max cost and color it red.

Blue rule.
* Let D be a cutset with no blue edges.
* Select an uncolored edge in D of min cost and color it blue.

Greedy algorithm.
+ Apply the red and blue rules (nondeterministically!) until all edges
are colored. The blue edges form an MST.
* Note: can stop once n—1 edges colored blue.

Theorem. The greedy algorithm is correct.
Special cases. Prim, Kruskal, reverse-delete, ...

49



Bordvka’s algorithm

Repeat until only one tree.
« Apply blue rule to cutset corresponding to each blue tree.

+ Color all selected edges blue.

o g . assume edge
Theorem. Bortivka’s algorithm computes the MST. «—— e are distnct

Pf. Special case of greedy algorithm (repeatedly apply blue rule). =



Bordvka’s algorithm: implementation

Theorem. Bordvka’s algorithm can be implemented to run in O(m log n) time.
Pf.
* To implement a phase in O(m) time:
- compute connected components of blue edges
- for each edge (u,v) €EE, check if u and v are in different components;
if so, update each component’s best edge in cutset
* < log, n phases since each phase (at least) halves total # components. =



Function BORUVKA(V, E, )

K<« 0
count <— COUNTANDLABEL(K)
while count > 1 do
for i =1 to count do S[i] + NIL
forall the (u,v) € E do
if label(u) # label(v) then
L if c(u,v) < w(S[label(u)]) then S[label(u)] < (u,v)
(

00 N O G~ WN -

if c(u,v) < w(S[label(v)]) then S[label(v)] < (u,v)

9 for i = 1 to count do if S[i] # NIL then add S[i] to K
10 count <— COUNTANDLABEL(K)

11 return K




BoriGvka’s algorithm on planar graphs

Theorem. Bordvka’s algorithm (contraction version) can be implemented to
run in O(n) time on planar graphs.
Pf.
 Each Boruvka phase takes O(n) time:
- Fact 1: m < 3n for simple planar graphs.
- Fact 2: planar graphs remains planar after edge contractions/deletions.
« Number of nodes (at least) halves in each phase.
* Thus, overall running time < cn+cn/2+cn/d+cn/8+... =0(n). =

planar K33 not planar 55



A hybrid algorithm

Borivka-Prim algorithm.
+ Run Boruvka (contraction version) for log> log> n phases.
* Run Prim on resulting, contracted graph.

Theorem. Boruvka-Prim computes an MST.
Pf. Special case of the greedy algorithm.

Theorem. Borlvka-Prim can be implemented to run in O(m log log n) time.
Pf.
+ The log; logz n phases of Borlvka’s algorithm take O(m log log n) time;
resulting graph has < n/log, n nodes and < m edges.
* Prim’s algorithm (using Fibonacci heaps) takes O(m + n) time on a
graph with n/log, n nodes and m edges. = \

O|lm+ o log o
logn logn



Does a lineartime compare-based MST algorithm exist?

worst case discovered by

1975 Otm log log n) 1ao iterated logarithm function
1976 O(m log log n) Cheriton-Tarjan " 0 ifn<1
ge= 1+1g"(lgn) ifn>1
1984 O(mlog*n), O(m + nlog n) Fredman-Tarjan
1986 O(m log (log* n)) Gabow-Galil-Spencer-Tarjan n Ig*n
hazell =t 0
Chazelle
1997 O(m a(n) log a(n)) w .
2000 O(m a(n)) Chazelle (2,4] 2
. 4,16 3
2002 asymptotically optimal Pettie-Ramachandran @, 16]
(16,2106] 4
20xx O(m) ?ﬁ?? v (216,265536] 5

deterministic compare-based MST algorithms

Theorem. [Fredman-Willard 1990] O(m) in word RAM model.
Theorem. [Dixon-Rauch-Tarjan 1992] O@m) MST verification algorithm.
Theorem. [Karger-Klein-Tarjan 1995] O(m) randomized MST algorithm.



Part IV

Network Flows
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The Ford-Fulkerson Method
Ford-Fulkerson Algorithm
Capacity-Scaling Algorithm
Shortest Augmenting Path
Dinitz' Algorithm

The Push-Relabel Method

Network Flows — Applications
Bipartite Matching
Disjoint Paths
Multiple Sources and Sinks

Circulations with Supplies and Demands
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The Ford-Fulkerson Method



The Ford-Fulkerson Method

Problem Formulation
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Flow network

A flow network is a tuple G=(V,E,s.t,c¢).
* Digraph (V, E) with source s€V and sink t€ V.
* Capacity c(e) >0 for each e € E. \

assume all nodes are reachable from s

Intuition. Material flowing through a transportation network;
material originates at source and is sent to sink.
capacity

NI
NN
@{w ~T




Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r€ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e out of A

capacity = 10+5+15:



Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r€ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e out of A

oo
)
(~)

> 0

/ don’t include edges

from Bto A

capacity:10+8+16: ‘_]6_)‘\,/



Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r€ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e out of A

Min-cut problem. Find a cut of minimum capacity.

N\

capacity:10+8+10: '—



Network flow: quiz 1

Which is the capacity of the given st-cut?
A. 11 20+25-8-11-9-6)
B. 34 8+11+9+6)
C. 45 (20+25)
D

79 20+25+8+11+9+6)

g ]\L 16\4/25 i!f



Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 < fle) < cle) [capacity]
* ForeachvevV-{s,i}: > fle) = Y fle [flow conservation]
e in to v e out of v
flow capacity
inflowatv = 5+5+0 =10
5/9 outflowatv = 10+0 =10
Q \5 1 s
o\ s / %

N

_5/8_)T_10/10—) t
7 KN
@ ois \Q\

/s

10/16



Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 < fle) < cle) [capacity]
« ForeachveEV—{s,i}: Y. fle) = > fle) [flow conservation]
e in to v e out of v

Def. The value of a flow f is: wal(f) = Y fle) = Y f(e)

e out of s ein to s
5/9
\\Q f// J‘//
° s ©
5/5 m—gp 5/8 10710 (1)
s, \\°
AN

0/
/s
value = 5+10+10 =@ \

10/16



Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 < fle) < cle) [capacity]
« ForeachveEV—{s,i}: Y. fle) = > fle) [flow conservation]
e in to v e out of v

Def. The value of a flow f is: wal(f) = Y fle) = Y f(e)

e out of s ein to s

Max-flow problem. Find a flow of maximum value.

8/9
Q 2 S
A\ s =
\ 7 /
R s (4
5/5 m—p 8/8 10/10 @
7 Q
Y 8 o\
6 A

Z s
value = 10+5+ 13 = \

13/16



The Ford-Fulkerson Method

Ford-Fulkerson Algorithm
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Toward a max-flow algorithm

Greedy algorithm.

+ Start with f(e) =0 for each edge e € E.

flow network G and flow f

.

U 0/2

@ o0

flow capacity
N/
0/4

/

Q

o 0/6 -
o /

0/9 O 0/10

value of flow

/
@ 0



Toward a max-flow algorithm

Greedy algorithm.

* Find an s~¢ path P where each edge has f(e) < c(e).

flow network G and flow f
0/6 o

Q/ o
Q\\ 0/2 25 75

o 0/9\~Q_w_,@o



Toward a max-flow algorithm

Greedy algorithm.

* Augment flow along path P.

flow network G and flow f

8
0/10 O 0/9 C)-ﬁ/lo_)@ 0+8=8



Toward a max-flow algorithm

Greedy algorithm.

+ Repeat until you get stuck.

flow network G and flow f

0/4

O B 29/2 LR

Q

0/6

0/10 O ©/9

>

o

~
‘o

10
+/10mp(1) 8+2=10



Toward a max-flow algorithm

Greedy algorithm.

+ Repeat until you get stuck.

flow network G and flow f

O o

N\

@ 10+6=16



Toward a max-flow algorithm

Greedy algorithm.
+ Start with f(e) =0 for each edge e € E.
* Find an s~¢ path P where each edge has f(e) < c(e).
* Augment flow along path P.
+ Repeat until you get stuck.

ending flow value = 16

flow network G and flow f

Q——Q

@ 6/10 O 8/9 O 10/10



Toward a max-flow algorithm

Greedy algorithm.
+ Start with f(e) =0 for each edge e € E.
* Find an s~¢ path P where each edge has f(e) < c(e).
* Augment flow along path P.
+ Repeat until you get stuck.

but max-flow value = 19

flow network G and flow f

“&

@ 9/10 O 9/9 O 10/10



Why the greedy algorithm fails

Q. Why does the greedy algorithm fail?
A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.
* The unique max flow has f*(v,w) =0.
* Greedy algorithm could choose s—v—w—t as first augmenting path.

flow network G

Bottom line. Need some mechanism to “undo” a bad decision.



Residual network

Original edge. ¢=(u,v) € E. original flow network G

* Flow f(e). @ 617 @

* Capacity c(e). / \

flow capacity

Reverse edge. ereverse = (y, y).
* “Undo” flow sent.

residual network Gt residual
Residual capacity. 4 capacity
7 11 v
(©) cle) — f(e) ifeeFE /
crle) = . . 6
f f(e) lf ereverbe 6 E \
reverse edge
edges with positive

residual capacity

Residual network. Gf= v, Ef, S, t, Cf). where flow on a reverse edge

negates flow on
0 Ef ={e:f(e)< cle)} U {°: f(e) > 0}/ corresponding forward edge

+ Key property: f'is a flow in G,iff f+f'is a flow in G.



Augmenting path

Def. An augmenting path is a simple s~z path in the residual network G;.

Def. The bottleneck capacity of an augmenting path P is the minimum
residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G;,.
Then, after calling f' <= AUGMENT(f, ¢, P), the resulting f' is a flow and
val(f') = val(f) + bottleneck(Gy, P).

AUGMENT(, ¢, P)

O < bottleneck capacity of augmenting path P.
FOREACH edgee € P:

IF(e €E) f(e) < f(e) + .

ELSE  f(ereverse) < f(ereverse) — §.

RETURN f.



Network flow: quiz 2 9

Which is the augmenting path of highest bottleneck capacity?
AL A-F—-G—H
B. A-B—-C—D—H
C A—-F—-B—-G—H
D

A-F—-B—-G—=C—=D—H

residual capacity

2 8/ /E\f/ 3

. NG

©
w )

5 target 2



Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
+ Start with f(e) =0 for each edge e € E.
* Find an s~t path P in the residual network G;.
* Augment flow along path P.
+ Repeat until you get stuck.

FORD-FULKERSON(G)

FOREACH edge e EE: f(e) < 0.
Gy < residual network of G with respect to flow f.
WHILE (there exists an s~t path P in Gy)

f < AUGMENT(f, c, P).

Update G. augmenting path

RETURN f.
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Ford-Fulkerson algorithm demo

network G and flow f

o)

<:> 0/10

residual network G

N

@

0/2

flow

0/4

“&

0/9

capacity

Q

0/6

O

value of flow

/
0/10 @ 0

residual capacity

4

[4

10 <:>



Ford-Fulkerson algorithm demo

network G and flow f

Q 0/4

e
) 3

@ 0/10 Q 0/9

residual network G

PG S—

0/6

‘o

O 10 e ()



Ford-Fulkerson algorithm demo

network G and flow f

@ 8+2=10

@. 04— Q)
o
\Q%\\Q 29/2 o 0/6 4
2 10
@ 0/10 O %/9 Q 8/10
residual network G
g Q
%
2 & 6 ‘o
% *
N

20



Ford-Fulkerson algorithm demo

network G and flow f

@

Q
S 2/2

\Q\

©

©/10

residual network G

0/4

“&

=/

6
®Q
6 6/6 —
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Ford-Fulkerson algorithm demo

network G and flow f

\Q\

@ /10

residual network G

N

(——>

6

N 0202 &

O ©/4

O 8/9

fixes mistake from
second augmenting path

/.
7

6/6

6

%
S e

10/10

@ 16+2=18



Ford-Fulkerson algorithm demo

network G and flow f

Q——Q

0/2 ® 6/6
/ s /

N
O

@ 8/10 Q 8/9 O 10/10 @ 1841=19

&
S o

residual network G




The Ford-Fulkerson Method

Max-Flow Min-Cut Theorem
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Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (4, B).

val(f) = Z fle) — Z f(e)

e out of A ein to A

net flow across cut = 5+ 10 + 10 = 25

. 5/9 \

Q s S
A\ - =
7 7
\o\ s o\
QO ;@ s @—0/0P) valweorfow = 23
2 N
-

/s
@— o/ ./



Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (4, B).

val(f) = Z fle) — Z f(e)

e out of A ein to A

net flow across cut = 10 + 5 + 10 = 25

5/9
\\Q y//j‘ J\//
\0 ®
5/5* 5/8 10/10 t value of flow
‘o \\°
23 O

10/16

25



Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (4, B).

val(f) = Z fle) — Z f(e)

e out of A ein to A

net flow across cut = (10 +10 +5+10+0+0)-(5+5+0+0) =

—5 /9 —
/I\ edges from Bto A
5
0/4 $ e
< T T—m/lo_)t value of flow

Q

N

0/4 0/15 \Q\

\¢

10/16

25



Network flow: quiz 3

Which is the net flow across the given cut?
A. 11 20+25-8-11-9-6)
26 20+22-8-4-4)

B
C. 42 (20+22)
D

45 (20 +25)
flow capacity
ﬁzwzo_» <8/8—>\/\—4/10—> )
/ 8/8 =, 4/9 4/8
.— —>.— 14/16 — 22/25_>fj:3



Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (4, B).

val(f) = Z fle) — Z f(e)

e out of A ein to A
Pf. val(f) = D fle) = > fle)
e out of s ein to s
by flow conservation, all terms o
except for v=sare 0 - Z ( Z f(e) - Z f(€)>
veEA e out of v e in to v

= > flo - Y fle.

e out of A einto A



Relationship between flows and cuts

Weak duality. Letf be any flow and (A, B) be any cut. Then, val(f) < cap(A, B).

Pf.
val(f) = Z fle) — Z f(e)
/ e out of A ein to A
flow value < Z f(e)
lemma e out of A
< Z c(e)
e out of A
= cap(A,B) =
89 — () e M
W I . I\, J
@ 1 ’f\l /o\ 10
% 15— 718 —0— 9710 ) < — ® (
RN ) l ‘
%
\/l\ 12/ lﬁ\l/ \ N -
N —-—> e Y

IA

value of flow = 27 capacity of cut = 30



Certificate of optimality

Corollary. Let f be a flow and let (A, B) be any cut.
If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

weak duality

Pf.
* For any flow f': val(f') < cap(A, B) =val(f).
* For any cut (A’,B'): cap(A',B') = val(f) = cap(A,B). =

AN

weak duality

M) 8/9 / N

) /|\ . |\ . /‘<‘
N AN : |

GE w1 (O w18 —3 w0110 D N .
N, ™ | / /!
/{y l 3/6 l \a\\Q 19
\;i;t— >/

value of flow = 28 = capacity of cut = 28



Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

strong duality

MAXIMAL FLOW THROUGH A NETWORK

. B. Dantzig
D. R. Fulkerson

L. R. FORD, Jr. axp D. R. FUL

RSON

Introduction. The problem discussed in this paper was formulated by
T. Harris as follows:

“Consider a rail network connecting two cities by way of a number of
intermediate cities, where each link of the network has a number assigned to
it representing its capacity. Assuming a steady state condition, find a maximal
flow from one given city to the other.”

Jl |~-&szs.3t

ON THE MAX PLOW MIN CUT THEOREM OF NETWORKS

A Note on the Maximum Flow Through a Network”

P. ELIASY, A. FEINSTEIN}, AND C. E. SHANNON§

Summary ~This note discusses the problem of maximizing the from one terminal to the other in the original network
rate of flow from one terminal to another, through a network which s through at least one branch in the b In th
ull of a number of branches, each of which has a limited capa- P255¢S through at least one branch in the cut-set. In the
\ain result is a theorem: The maximum possible flow from network above, some examples of cut-sets are (d, ¢, f),
1=n to vight through a network 1§ equal to the minimum value among and (b, c, ¢, g, h), (d, g, h, ). By a simple cut-set we will
s ¢ € 0, h), (d g, ) v

imple cut-sets. This theorem is applied to solve a more general ot
problom, n which & mumber of npat nodes and a mumber of outpat AN & €U
nodes are used. 1

such um if any branch is omitted it is no
f) and (b, ¢, e, g, k) are simple
I ek ot i




Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (A4, B) such that cap(A, B) = val(f).

ii. fisa max flow.

if Ford—Fulkerson terminates,
then fis max flow

iii. There is no augmenting path with respect to f. «—

[i=ii]
* This is the weak duality corollary. =



Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (A4, B) such that cap(A, B) = val(f).

ii. fisa max flow.

iii. There is no augmenting path with respect to f.

[ii = iii] We prove contrapositive: —iii = =ii.
* Suppose that there is an augmenting path with respect to f.
* Can improve flow f by sending flow along this path.
* Thus, f is not a max flow. =



Max-flow min-cut theorem

[iii=i]
* Let f be a flow with no augmenting paths.
* Let A be set of nodes reachable from s in residual network Gy
* By definition of A: s € A.
* By definition of flow £ ¢ & A. e P e

must have f(e) =0
original flow network G

val(f) = Y fle) = > flo

e out of A ein to A & B
flow value
lemma = E c(e) -0 @
e out of A
— cap(4,B) -

=5

edgee=(v,w) withvEA,wEB
must have f(e) = c(e)



The Ford-Fulkerson Method

Capacity-Scaling Algorithm



7. NETWORK FLow |

» capacity-scaling algorithm

g lmm Im Design

JON KLEINBERG - EVA TARDOS

SECTION 7.3



Analysis of Ford-Fulkerson algorithm (when capacities are integral)

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e)

and residual capacity c;(e) is an integer.

Pf. By induction on the number of augmenting paths. = consider cut A={s}
(assumes no parallel edges)

Theorem. Ford-Fulkerson terminates after at most val(f*) < nC

augmenting paths, where f* is a max flow.

Pf. Each augmentation increases the value of the flow by at least 1. =

Corollary. The running time of Ford—Fulkerson is O(mnC).

Pf. Can use either BFS or DFS to find an augmenting path in O(m) time. =
f(e) is an integer for every e

Integrality theorem. There exists an integral max flow f*.

Pf. Since Ford-Fulkerson terminates, theorem follows from integrality

invariant (and augmenting path theorem). =



Ford-Fulkerson: exponential example

Q.

A.

Is generic Ford-Fulkerson algorithm poly-time in input size?

m, n, and log C

No. If max capacity is C, then algorithm can take > C iterations.

S—>V—>Ww—>t
S—Ww—>v—>t
S—>V—>Ww—>t

SSEW—y—>1

S—>Vv—=>w—>1

S—wW—>y—>1

—

each augmenting path
sends only 1 unit of flow
(# augmenting paths = 2C)




Network flow: quiz 4 o

The Ford-Fulkerson algorithm is guaranteed to terminate if the edge
capacities are ...

Rational numbers.
Real numbers.

Both A and B.

S N0 = »

Neither A nor B.



Choosing good augmenting paths

Use care when selecting augmenting paths.
« Some choices lead to exponential algorithms.
+ Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee
that Ford-Fulkerson terminates (or converges to a maximum flow)!

Goal. Choose augmenting paths so that:
+ Can find augmenting paths efficiently.
* Few iterations.

40



Choosing good augmenting paths

Choose augmenting paths with:
+ Max bottleneck capacity (“fattest”). <—— how to find?
« Sufficiently large bottleneck capacity. «—— next
+ Fewest edges. «—— ahead

Theoretical Improvements in Algorithmic Efficiency

Dokl. Akad. Nauk SSSR Soviet Math. Dokl.
for Network Flow Problems Tom 194 (1970), No. 4 Vol. 11 (1970), No.5
JACK EDMONDS ALGORITHM FOR SOLUTION OF A PROBLEM OF MAXIMUM FLOW IN A NETWORK WITH
University of Waterloa, Waterlo, Ontario, Canada POWER ESTIMATION

. upC 518.5
AND E.A.DINIC

RICHARD M. KARP
Different variants of the formulation of the problem of maximal stationary flow in a network and
Cniversity of California, Berkeley, California its many applications are given in [1]. There also is given an algorithm solving the problem in the
case where the initial data are integers (or, what is equivalent, commensurable). In the general case
swsmuact. This paper presents new algorithms for the maximum flow problem, the Hiteheock this algorithm requires preliminary rounding off of the initial data, i.c. only an approximate solution
transportation problem, and the general minimum-cost flow problem. Upper bounds on the
numbers of steps in these algorithms are derived, and are shown to compare favorably with
upper bounds o5 the numbers of steps required by earlier algorithms

of the problem is possible. In this connection the rapidity of convergence of the algorithm is inverse-

Iy proportional to the relative precision.

Edmonds-Karp 1972 (USA) Dinitz 1970 (Soviet Union)

invented in response to a class
exercises by Adel’son-Vel'skif
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Capacity-scaling algorithm

Overview. Choosing augmenting paths with “large” bottleneck capacity.
* Maintain scaling parameter A. \though not necessarily largest
* Let G¢(A) be the part of the residual network containing
only those edges with capacity = A.
* Any augmenting path in G;(A) has bottleneck capacity = A.

N ‘2, N ‘0,
Q ! O  Q O
2, & 2 &

Gr Gr(A), A =100 w2



Capacity-scaling algorithm

CAPACITY-SCALING(G)

FOREACH edge e EE: f(e) < 0.

A < largest power of 2 < C.

WHILE (A = 1)

G (A) < A-residual network of G with respect to flow f.
WHILE (there exists an s~ path P in Gr(A))

f < AUGMENT(f, c, P).

Update G/'(A). A-scaling phase
A<—A/2.

RETURN f.
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Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter A is a power of 2.
Pf. Initially a power of 2; each phase divides A by exactly 2. =

Integrality invariant. Throughout the algorithm, every edge flow f(e) and
residual capacity c(e) is an integer.
Pf. Same as for generic Ford-Fulkerson. =

Theorem. If capacity-scaling algorithm terminates, then fis a max flow.
Pf.

+ By integrality invariant, when A=1 = G,(A) =G;.

* Upon termination of A =1 phase, there are no augmenting paths.

* Result follows augmenting path theorem =

a4



Capacity-scaling algorithm: analysis of running time

Lemma 1. There are 1 + |log, C| scaling phases.
Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let fbe the flow at the end of a A-scaling phase.
Then, the max-flow value < val(f) + m A.
Pf. Next slide.

Lemma 3. There are < 2m augmentations per scaling phase.

or equivalently,
Pf. at the end

* Let fbe the flow at the beginning of a A-scaling phase. SRS inglohase

* Lemma 2 = max-flow value =< val(f) +m (2 A).
* Each augmentation in a A-phase increases val(f) by at least A. =

Theorem. The capacity-scaling algorithm takes O(m? log C) time.
Pf.
* Lemma 1 + Lemma 3 = O(mlog C) augmentations.

* Finding an augmenting path takes O(m) time. = s



Capacity-scaling algorithm: analysis of running time

Lemma 2. Let fbe the flow at the end of a A-scaling phase.
Then, the max-flow value =< val(f) + m A.

Pf.

val(f)

flow value
lemma

We show there exists a cut (A4, B) such that cap(A, B) < val(f) + m A.
Choose 4 to be the set of nodes reachable from s in G4(A).

By definition of A: s € A.

By definition of flow £ & A. edge ¢ = (v, w) with v E B,w € A

must have f(e) < A
original flow network

= Y flo - > fo A B

e out of A ein to A

> Y C@-4- % 4 2
e out of A ein to A

>

Z cle) — Z A — Z A
e out of A e out of A einto A %
cap(A,B) — mA /

edgee=(v,w) withvEA,wEB
must have f(e) > c(e) — A

A%
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The Ford-Fulkerson Method

Shortest Augmenting Path



7. NETWORK FLow |

» shortest augmenting paths

SECTION 17.2



Shortest augmenting path

Q. How to choose next augmenting path in Ford-Fulkerson?
A. Pick one that uses the fewest edges.

can find via BFS

SHORTEST-AUGMENTING-PATH(G)

FOREACHe EE: f(e) < 0.

Gy < residual network of G with respect to flow f.
WHILE (there exists an s~ path in Gy)

( P < BREADTH—FIRST—SEARCH(Gf).)
f < AUGMENT(f, c, P).
Update Gy.

RETURN f.
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Shortest augmenting path: overview of analysis

Lemma 1. The length of a shortest augmenting path never decreases.
Pf. Ahead. AN

number of edges
Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.
Pf. Ahead.

Theorem. The shortest-augmenting-path algorithm takes O(m? n) time.
Pf.
* O(m) time to find a shortest augmenting path via BFS.
* There are = m n augmentations.
- at most m augmenting paths of length k «— Lemma 1 + Lemma 2
- at most n—1 different lengths =

N

augmenting paths are simple paths

49



Shortest augmenting path: analysis

Def. Given a digraph G =(V, E) with source s, its level graph is defined by:
* £(v) = number of edges in shortest s~v path.
s L;=(V,Eg) is the subgraph of G that contains only those edges (v,w) EE
with ew) = e(v) + 1.

graph G O O

©) O @) ®

level graph Lc

s @
@)
O
@



Network flow: quiz 5 e

Which edges are in the level graph of the following digraph?

A. D-—F.

B E—F.

C. Both A and B.
D

Neither A nor B.

source @ @ @ @ sink



Shortest augmenting path: analysis

Def. Given a digraph G =(V, E) with source s, its level graph is defined by:
* £(v) = number of edges in shortest s~v path.
s L;=(V,Eg) is the subgraph of G that contains only those edges (v,w) EE
with ew) = e(v) + 1.

Key property. P is a shortest s~v path in G iff P is an s~v path in L.

level graph Lc O O



Shortest augmenting path: analysis

Lemma 1. The length of a shortest augmenting path never decreases.
* Let fand f' be flow before and after a shortest-path augmentation.
* Let L; and Lg be level graphs of G and G,
* Only back edges added to G-
(any s~t path that uses a back edge is longer than previous length) =

level graph Lc O O

() > > () >

£=0 £=1 £=2 £=3

level graph L¢’ O O



Shortest augmenting path: analysis

Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.

+ At least one (bottleneck) edge is deleted from L; per augmentation.

» No new edge added to L; until shortest path length strictly increases. =

level graph Lc Q O

() > > () >

£=0 £=1 £=2 £=3

level graph L¢’ O O

©) @) @) ® "



Shortest augmenting path: review of analysis

Lemma 1. Throughout the algorithm, the length of a shortest augmenting
path never decreases.

Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.

Theorem. The shortest-augmenting-path algorithm takes O(m? n) time.



Shortest augmenting path: improving the running time

Note. ©(m n) augmentations necessary for some flow networks.
» Try to decrease time per augmentation instead.
* Simple idea = O@mn?) [Dinitz 1970] <— ahead
* Dynamic trees = O(mnlogn) [Sleator-Tarjan 1983]

A Data Structure for Dynamic Trees
DANIEL D. SLEATOR AND ROBERT ENDRE TARJAN

Bell Laboratories, Murray Hill, New Jersey 07974

Received May 8, 1982; revised October 18, 1982

A data structure is proposed to maintain a collection of vertex-disjoint trees under a
sequence of two kinds of operations: a ink operation that combines two trees into one by
adding an edge, and a cut operation that divides one tree into two by deleting an edge. Each
operation requires O(log ) time. Using this data structure, new fast algorithms are obtained
for the following problems:

(1) Computing nearest common ancestors.

(2) Solving various network flow problems including finding maximum flows, blocking
flows, and acyclic flows.

(3) Computing certain kinds of constrained minimum spanning trees.

(4)  Implementing the network simplex algorithm for minimum-cost flows.
The most significant application is (2); an O(mn log n)time algorithm is obtained 1o find a
‘maximum flow in a network of n vertices and m edges. beating by a factor of log 1 the fastest
algorithm previously known for sparse graphs.



The Ford-Fulkerson Method

Dinitz’ Algorithm
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» Dinitz’ algorithm

SECTION 18.1



Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

within a phase, length of shortest

Phase of normal augmentations. <—— . enting path does not change

- Construct level graph L.

construct level graph O O

© O @) ©

level graph Lc



Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.

+ Start at s, advance along an edge in Lg until reach ¢ or get stuck.

advance O O

[ > @ >0 >0

level graph Lc




Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.

« If reach ¢, augment flow; update Lg; and restart from s.

augment
9 O O remove from level graph
edges with bottleneck capacity

() 29, >0 >®

level graph Lc




Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.

+ Start at s, advance along an edge in Lg until reach ¢ or get stuck.

advance O O

o >® >0 ©

level graph Lc




Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.

« If get stuck, delete node from L; and retreat to previous node.

retreat O O

() > @ >0 ©

level graph Lc




Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.

+ Start at s, advance along an edge in Lg until reach ¢ or get stuck.

advance O

(s o

level graph Lc



Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.

« If reach ¢, augment flow; update Lg; and restart from s.

augment O

(s ©

level graph Lc



Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.

+ Start at s, advance along an edge in Lg until reach ¢ or get stuck.

advance . O

O ©

level graph Lc



Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.

« If get stuck, delete node from L; and retreat to previous node.

retreat . O

O ©

level graph Lc



Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.

« If get stuck, delete node from L; and retreat to previous node.

retreat O

] O ©

level graph Lc



Dinitz’ algorithm

Two types of augmentations.
* Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
- Construct level graph L.
* Start at s, advance along an edge in L until reach ¢ or get stuck.
« If reach ¢, augment flow; update Lg; and restart from s.
« If get stuck, delete node from L; and retreat to previous node.

end of phase O

s O ©

level graph Lc



Dinitz’ algorithm (as refined by Even and Itai)

INITIALIZE(G, f)

L < level-graph of Gy.
P < 0.

GOTO ADVANCE(S).

RETREAT(v)

IF (v=y)
STOP.

ELSE
Delete v (and all incident edges) from Lg.
Remove last edge (u, v) from P.

GOTO ADVANCE(u).

ADVANCE(V)

IrF (v=1)

AUGMENT(P).

Remove saturated edges from Lg.

P <.

GOTO ADVANCE(s).

IF (there exists edge (v, w) € Lg)
Add edge (v, w) to P.

GOTO ADVANCE(W).

ELSE

GOTO RETREAT(V).



Network flow: quiz 6

How to compute the level graph Lc efficiently?

Depth-first search.
Breadth-first search.

Both A and B.

S N = »

Neither A nor B.

® @)

source @ @ @

@ sink
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Dinitz’ algorithm: analysis

Lemma. A phase can be implemented to run in O(mn) time.
Pf.
+ Initialization happens once per phase. <—— 0(m) using BFS
* At most m augmentations per phase.  <«—— 0(un) per phase
(because an augmentation deletes at least one edge from L)

* At most n retreats per phase. <—— O(m + n) per phase
(because a retreat deletes one node from L)
* At most mn advances per phase. <«—— O(mn) per phase

(because at most n advances before retreat or augmentation) =

Theorem. [Dinitz 1970] Dinitz’ algorithm runs in O(mn?) time.
Pf.
* By Lemma, O(mn) time per phase.
* At most n—1 phases (as in shortest-augmenting-path analysis).
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The Ford-Fulkerson Method

Summary



Augmenting-path algorithms: summary

“ # augmentations m

1955

1972

1972

1985

1970

1970

1983

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

augmenting path

fattest path

capacity scaling

improved capacity scaling

shortest augmenting path

level graph

dynamic trees

m log (mC)

mlog C

mlog C

mn

O(mn C)

O(m? log n log (mC))
O(m? log C)
O(mn log C)

O(m? n)
O(mn?)

O(mnlogn)

fat paths

shortest paths
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Maximum-flow algorithms: theory highlights

1951 simplex O(m n*C) Dantzig
1955 augmenting paths O(mn C) Ford-Fulkerson
1970 shortest augmenting paths O(mn?) Edmonds—Karp, Dinitz
1974 blocking flows o’ Karzanov
1983 dynamic trees O(m nlog n) Sleator-Tarjan
1985 improved capacity scaling O(m nlog C) Gabow
1988 push-relabel O(m n log (n*/ m)) Goldberg-Tarjan
1998 binary blocking flows O(m*? log (n* / m) log C) Goldberg-Rao
2013 compact networks O(m n) Orlin

2014 interior-point methods O(mm"? log C) Lee-Sidford
2016 electrical flows Om'" ¢ Madry
20xx “WD?

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C 73



The Push-Relabel Method



kapitola 26.4.
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Ford-Fulkerson method vs Goldberg method

aka augmenting path method vs push relabel method

e global vs local character

e update flow along an augmenting path vs
update flow on edges

e flow conservation vs preflow

41



pre-flow is a function f with
capacity condition foree E: 0<f(e) <c(e)

relaxed flow conservation for v e V' \ {s, t}:

Y fley= Yo fle)

e into v e out of v

overflowing vertex

vertex v € V'\ {s, t} with Z f(e) > Z f(e)

e into v e out of v
excess flow into vertex v

the quantity es(v) = > fle)— > f(e)

e into v e out of v

a pre-flow becomes a flow if no intermediate node has an excess
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height function is a function h: V — Ny

height function h is compatible with preflow f iff

source h(s) =1|V|=n

sink h(t)=0

height difference h(v) < h(w) + 1 for every edge (v, w) of the residual
network Gg

if h(v) > h(w)+1 then (v, w) is not an edge in the residual network Gf

43



Lema

e assume that Gr contains a path p = (v, v, ..., vk) with vp = s and
v =1

e w.l.o.g. pissimple and thus k < n

e because h is a height function h(v;) < h(vj11) + 1 for
i=0,1,... k-1

e combining inequalities over p yields h(s) < h(t) + k

o because h(t) = 0, we have h(s) < k < n, which contradits the
requirement h(s) = n

a4



Lema

e assume that Gr contains a path p = (v, v, ..., vk) with vp = s and
v =1

e w.l.o.g. pissimple and thus k < n

e because h is a height function h(v;) < h(vj11) + 1 for
i=0,1,... k-1

e combining inequalities over p yields h(s) < h(t) + k

o because h(t) = 0, we have h(s) < k < n, which contradits the
requirement h(s) = n

Lema

a4



o h(v)=0foralleveV,v#s
e h(s)=n

f(s,v) = c(s,v) for each (s,v) € E

f(u,v) = 0 for all other edges

initial preflow and height function are compatible
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~

Algorithm: Generic-Push-Relabel

Input: flow network G = (V, E,s, t, c)

Output: maximal flow f

Initialize-PreFlow

while true do

if no node is overflowing then return f

select an overflowing vertex v

if v has a neigbor w in G¢ such that h(v) > h(w) then
t Push(f, h, v, w)

else
| Relabel(, h, v)
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Algorithm: Initialize-PreFlow

1 forve Vdoh(v)«0; ef(v)« 0

2 h(s) < n

3 forec E dof(e)« 0

4 for (s,v) € E do

5 t f(s,v) < c(s,v); er(v) <« c(s,v); efr(s) < er(s) — c(s,v)
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Push applies when v si overflowing, cf(v,w) > 0, and h(w) < h(v)

Function PUsH(f, h,v, w)

Af(v,w) < min(er(v), ce(v, w))
if (v,w) € E then

t f(v,w) < f(v,w) + Ar(v,w)
else

t f(w,v) < f(w,v) — Ar(v,w)
er(v) < ef(v) — As(v, w)
er(w) < er(w) + As(v, w)
return f, h

we can change (i.e. increase or decrease) flow from v to w by A¢(v, w)
without causing ef(v) to become negative or the capacity c(v,w) to be
exceeded
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Relabel applies when v si overflowing and for all w € V' such that
(v,w) € Ef we have h(v) < h(w)

Function RELABEL(f, h, v)

1 h(v) < 1+ min{h(w)|(v,w) € Ef} return h

when v is relabeled, Ef must contain at least one edge that leaves v, so
that the minimization in the code is over a nonempty set
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A demo of push-relabel algo: initialization

S 3 o1 Y ot
O )O )O—)O A maximum-flow instance

h(VA s
w8

3/3

t Initial pre-flow f

! )
ol H > O and residual graph G_f
e(u)=3
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A demo of push-relabel algo: Step 1

h(VIA g
10
3T 33
24
14
u o/1 \ 0/2 t Initial p're-ﬂowf
ol O_>O—>O and residual graph G_f
e(u)=3
h(VIA s Relabel( u)
10
3T 33
T u
14
O\ v o2 ¢ Initial pre-flow f
ol e(u)=3 o1 O > O and residual graph G_f
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A demo of push-relabel algo: Step 2

h(VIA g

“10

31 3/3

2T u

ol e(u)=3 O—)O
h(VIA s @ Push( u, v)

“10

31 3/3

2T u

14 O

oL u)=2 11 O—)O

e(v)=1
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A demo of push-relabel algo: Step 3

h(VIA g
10

3/3

3/3
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A demo of push-relabel algo: Step 4

h(VIA s

10

3T 33

3/3
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A demo of push-relabel algo: Step 5

hiy o

“10

3T 3/3

4o

e(u)=2

u
54 ¢ 30 O @Relabel(u)
4 --O e(u)=2
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A demo of push-relabel algo: Step 6

h(v)A

h(V)A
5 O @ Push(
4 4 Maximum flow.
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loop invariant
1. fis a preflow

2. the height function h is compatible with f

e Initialize-PreFlow makes f a preflow and h compatible with f

e Push complies with capacities of edges and if a new edge appears in
the residual network, then this edge fulfills the height difference

o Relabel operation affects only height attributes and preserves

compatibility

at termination, each inner vertex must have an excess 0, f is flow and is

a maximum flow

50



e the initial height of all vertices (except the source s) is 0
o everyRelabel operation increases the height by 1

e we need a bound on the maximal height
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let B = {v| there is no path from v to s in Gr}
let us sum up the excesses of all vertices in B,

S =3(3 - Y fle)=0

veB vEB e into v e out of v

edge (x,y) with x,y € B contributes to the sum } _per(v) with
zero value

for edge (x,y) with x € B and y € B, the flow f((x,y)) is zero
(otherwise there would be a path from y to s in Gf)

edge (x,y) with x € B, y € B contributes to the sum » _per(v)
with the value —f((x, y))

2vepe(V) = = 2eoumorpfle) 20

flows are nonegative and thus ), . o 5 f(€) = 0 and all vertices in
B have zero excess 52



At any time during the execution of Generic-Push-Relabel we have
h(v) <2n—1forallve V.

e initially, h(s) = n and h(t) = 0 and these values never change
e when v is relabeled, it is overflowing and there is a simple path p

from v to s if Gf

e there are at most n — 1 edges on p, every edge fulfills the height
difference condition (i.e. every edge decreases the height at most by
1)

e h(v)—h(s) <n—1,ie h(v)<2n-1

During the execution of Generic-Push-Relabel, the number of
relabel operations is at most 2n — 1 per vertex and at most
(2n —1)(n — 2) < 2n? overall.
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complexity — bound on Push operations

o there are two types of Push operations

e the operation Push(f, h, v, w) is saturating push iff edge (v, w) in
the residual network becomes saturate, i.e. ¢f(v, w) = 0 afterward

e otherwise the operation is nonsaturating push
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for any pair of vertices v, w € V, we will count the saturating
pushes from v to w

if there is such a push, (v, w) is an edge of the residual network and
h(v) = h(w) +1
in order for another push from v to w to occur later, h(w) must

increase at leat by 2

heights start at 0 and never exceed 2n — 1; the number of times any
vertex can have its height increased by 2 is less than n

for a network graph with m edges there can be up to 2m edges in
the residual network, which gives the upper bound 2nm on the
number of saturating pushes
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The

number of nonsaturating pushes is at most 4n%(n + m).

let us define a potential function as ® =3, . ()~ h(v)

initially, =0

nonsaturating push decreases & by at least 1

relabeling a vertex v increases ® by less 2n, since the set over
which the sum is taken is the same and the relabeling cannot
increases v's height by more than its maximum possible height
2n—1

saturating push from v to w increases ® by less than 2n, since no
heights change and only vertex w, whose height is at most 2n — 1,
can possibly become overflowing

the total amount of increase in @ is less than

2n-2n% +2n-2nm = 4n*(n+ m)

since @ > 0, the total amount of decrease, and therefore the total
number of nonsaturating pushes, is less than 4n?(n + m)
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e the push-relabel method allows to apply the basic operations in any
order at all

e by choosing the order carefully and managing the network data

structure efficiently, we can solve the maximum flow proglem faster
than the O(V2E) bound

e there is an implementation whose running time is O(V3) which is
asymptotically at least as good as O(V2E), and even better for
dense networks

57
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Network Flows — Applications

Bipartite Matching



7. NETWORK FLow Il

» bipartite matching

N Agorthm Desig

SECTION 7.5



Matching

Def. Given an undirected graph G = (V, E), subset of edges MCE
is a matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.




Bipartite matching

Def. A graph Gis bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph G=(L U R, E), find a max-
cardinality matching.

matching: 1-1',2-2', 3-4', 4-5'



Bipartite matching: max-flow formulation

Formulation.
* Create digraph G'=(LURU {s,t}, E").
* Direct all edges from L to R, and assign infinite (or unit) capacity.
+ Add unit-capacity edges from s to each node in L.
* Add unit-capacity edges from each node in R to t.

“ @ = @

@ @
© ©; © ®
@

* .



Max-flow formulation: proof of correctness

Theorem. 1-1 correspondence between matchings of cardinality kin G

and integral flows of value k in G'.
~
Pf. =

* Let M be a matching in G of cardinality «.
* Consider flow f that sends 1 unit on each of the k corresponding paths.

* fis a flow of value k. =

for each edge e: fle) €{ 0,1 }




Max-flow formulation: proof of correctness

Theorem. 1-1 correspondence between matchings of cardinality kin G

and integral flows of value k in G'.
~
Pf. <

* Let fbe an integral flow in G’ of value k.

» Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M
- |M| =k: apply flow-value lemma to cut (LU {s},RU{t}) =

ol
P z
® o ®

ol \ et \@

G @\ ©;

for each edge e: fle) €{ 0,1 }

©)

©

/



Max-flow formulation: proof of correctness

Theorem. 1-1 correspondence between matchings of cardinality kin G
and integral flows of value k in G'.

Corollary. Can solve bipartite matching problem via max-flow formulation.

P.

* Integrality theorem = there exists a max flow f*in G’ that is integral.

* 1-1 correspondence = f* corresponds to max-cardinality matching. =
/@— a o @
® o~ ®
o/ e o e

¢ @\ @\®c




Network flow II: quiz 1

What is running time of Ford-Fulkerson algorithms to find a max-
cardinality matching in a bipartite graph with |L| = [R|=n?

A. O(m +n)
B. O(@mn)
C. O®mn?

D. O@m*n)



Network Flows — Applications

Disjoint Paths



7. NETWORK FLow Il

» disjoint paths

Hmuim Jesinn

JON KLEINBERG - EVA TARDOS

SECTION 7.6



Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G =(V, E) and two nodes
s and ¢, find the max number of edge-disjoint s~ paths.

Ex. Communication networks.

O, ©) ® @

digraph G



Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G =(V, E) and two nodes
s and ¢, find the max number of edge-disjoint s~ paths.

Ex. Communication networks.

@ ®

digraph G ) 4
2 edge-disjoint paths @/ 7




Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s~ paths in G
and integral flows of value k in G'.
Pf. =
* Let Py,..., P, be k edge-disjoint s~z paths in G.
1 edge e participates in some path P;

- Set f(e) = {

0 otherwise

+ Since paths are edge-disjoint, fis a flow of value k. =

O O



Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s~ paths in G
and integral flows of value k in G'.
Pf. <
* Let fbe an integral flow in G’ of value %.
* Consider edge (s, u) with f(s,u)=1.
- by flow conservation, there exists an edge (u, v) with f(u,v) =1
- continue until reach ¢, always choosing a new edge
* Produces k (not necessarily simple) edge-disjoint paths. =

\ can eliminate cycles
O O to get simple paths

1 in O(mn) time if desired
1 1 1 1 (flow decomposition)

@ ‘ O O 1—9



Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s~ paths in G
and integral flows of value k in G'.

Corollary. Can solve edge-disjoint paths problem via max-flow formulation.
Pf.
* Integrality theorem = there exists a max flow f*in G’ that is integral.
* 1-1 correspondence = f* corresponds to max number of edge-disjoint
s~t paths in G. =



Network Flows — Applications

Multiple Sources and Sinks



Network flow II: quiz 4 2

Which extensions to max flow can be easily modeled?

A. Multiple sources and multiple sinks.
B. Undirected graphs.
C. Lower bounds on edge flows.

D. All of the above.

42



Multiple sources and sinks

Def. Given a digraph G =(V, E) with edge capacities c(e) =0 and multiple
source nodes and multiple sink nodes, find max flow that can be sent
from the source nodes to the sink nodes.

flow network G @ 9 O 6 @

43



Multiple sources and sinks: max-flow formulation

* Add a new source node s and sink node t.
* For each original source node s; add edge (s, s;)) with capacity .
* For each original sink node 7, add edge (7, f) with capacity o.

Claim. 1-1 correspondence betweens flows in G and G'.

flow network G’ @ 9 Q 6 @

[ 27 @
C—>—C—'—=0—5—@

a4



Network Flows — Applications

Circulations with Supplies and Demands



Circulation with supplies and demands

Def. Given a digraph G =(V, E) with edge capacities c(e) =0 and
node demands d(v), a circulation is a function f(e) that satisfies:
* Foreache€E: 0 < f(e) = cle) (capacity)
* ForeachvevV: Z fle) — Z fle) = d(v) (flow conservation)

ein to v e out of v

(supply node)

flow network G -8 -6
O O flow capacity
6/7 1/7 l /
4/10 6/6 2/4 749
-7 3/3 O O 4/4 O n
10 0

(demand node) (transshipment node)
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Circulation with supplies and demands: max-flow formulation

* Add new source s and sink .
* For each v with d(v) <0, add edge (s, v) with capacity —d(v).
* For each v with d(v) >0, add edge (v, ?) with capacity d(v).

Claim. G has circulation iff G' has max flow of value D = Y d) = Y -d@)

v: d(v)>0 \ v: d(v)<0
saturates all edges
M leaving s
s |
; . 6 — upply and entering 7
flow network G’ -8 / \5
7

10
\o/ \ demand
46



Circulation with supplies and demands

Integrality theorem. If all capacities and demands are integers, and there
exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max-flow formulation + integrality theorem for max flow.

Theorem. Given (V,E,c,d), there does not exist a circulation iff there exists
a node partition (A, B) such that £, ,d(v) > cap(A, B).

\

Pf sketch. Look at min cutin G'. demand by nodes in B exceeds
supply of nodes in B plus
max capacity of edges going from A to B

47



Circulation with supplies, demands, and lower bounds

Def. Given a digraph G =(V, E) with edge capacities c(e) =0, lower bounds

L(e) 20, and node demands d(v), a circulation f(e) is a function that satisfies:

* Foreache€E: [f(e) =< f(e) |= c(e) (capacity)

* Foreachvev: ) fle) - > fle) = dw) (flow conservation)

ein to v e out of v

Circulation problem with lower bounds. Given (V,E, ¢, c,d), does
there exist a feasible circulation?

48



Circulation with supplies, demands, and lower bounds

Max-flow formulation. Model lower bounds as circulation with demands.
* Send £(e) units of flow along edge e.
+ Update demands of both endpoints.

lower bound upper bound

capacity
N '
O—ra—® Q71—
d(v) d(w) d(v)+2 d(w) -2
flow network G flow network G’

Theorem. There exists a circulation in G iff there exists a circulation in G'.

Moreover, if all demands, capacities, and lower bounds in G are integers,
then there exists a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) — £(e) is a circulation in G'.
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String Matching



STRING MATCHING

e exact string matching

e edit distance

e local and global alignment
e approximate matching

e indexing

58



EXACT STRING MATCHING

e strings over a finite alphabet ¥

e given two strings, a and a , find the first
substring (all substrings) of the text that is the same as the pattern

more formally

e for any shift s, let T5 denote the substring T[s..s + m — 1]

e find the smallest shift (all shifts) s such that Ts = P (or report that
there is none)
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ALGORITHMS

algorithm preprocessing searching
0 O((n—m+1)m)
©(m) O((n—m+1)m)
O(m[x]) O(n)
©(m) O(n)
O(m+[x]) | O((n—m+1)m)

average complexity of algorithms Karp Rabin and Boyer Moore is much

better than the given worst case complexity
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BRUTE FORCE ALGORITHM

Algorithm: AlmostBruteForce( T[1..n], P[1..m])

fors<—1ton—m+1do

equal < True

i1

while equal and i < m do

if T[s+i— 1] # PJ[i] then
‘ equal < False

else

| i+l

if equal then print s

61



time complexity of the Brute Force Algorithm

e m— n+ 1 possible shifts

e greatest number of character comparisons possible: n(m — n -+ 1)
P: aaaa, T: a"

e |east number of character comparisons possible: m — n+1
P: ab, T: b"

e breaking out of the inner loop at the first mismatch makes this

algorithm quite practical ...... assuming that P and T are both
random (the total expected number of comparisons is O(n))
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String Matching

Strings as Numbers



STRINGS AS NUMBERS

o let ¥ =40,1,...,9} (can be any other)

e let p be the numerical value of P, and for any shift s, let ts be the
numerical value of Ts

o p=>"T10mP[i], ts= T 10" T[s+i—1]

e find shift(s) s such that p = t,

e we can compute p in O(n) arithmetic operations, without explicitly

compute powers of ten, using Horner's scheme
p = P[m]+10(P[m—1]4+10(P[m—2]+---+10(P[2]+10-P[1])...))

e we can compute tsy1 in constant time (to make this we need to

precompute the constant 10™~1)

ter1 = 10(ts — 10™ - T[s]) + T[s + m]
63



S s W N =

-~

Algorithm: NumberSearch(T[1..n], P[1..m])

S« 10m1
p+<0
t1 <0
for i+ 1to mdo
p < 10 p+ PJi]
t; < 10-t; + T[i]
fors+—1ton—m+1do
if p = t; then print s
| te+1 ¢ 10 (ts =S T[s]) + T[s + m]

complexity: the number of arithmetic operations, acting on numbers with

up to m digits, is O(n)
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KARP-RABIN FINGERPRINTING

e choose g so that the value 10q fits into a standard integer variable

e values (p mod q) and (ts mod q) are called the fingerprints

e we can compute (p mod g) and (t; mod g) in O(m) time
p mod g =
P[m] +10(P[m—1]+---+10- P[1] mod g)...) mod g

e similarly ts41 mod g

o if (p mod q) # (ts mod q), then certainly P # T,

e if (p mod q) = (ts mod q), we can't tell whether P = T or not;
we simply do a brute force comparison

e the overall running time is O(n + Fm), where F is the number of
false matches

e the expected number of false matches is O(n/m)
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1
2
3
4
5
6
7

8
9
10

11

Algorithm: KarpRabin(T[1..n], P[1..m])

q < a random number between 2 and [m? log m]
S« 10m1
p« 0
t1+0
for i <1 to mdo
p < (10-p mod q) + P[i] mod q
t1 < (10-t; mod q) + T[i] mod q

fors<~1ton—m+1do
if p=t. then

t if P = T, then print s

B tsr1 < (10 (ts — (S- T[s] mod q)) + T[s+m] mod g
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String Matching

Finite State Machines and
Knuth-Morris-Pratt Algorithm



g A WN -

FINITE STATE MACHINES

e for a given pattern P[1..m] construct a finite automaton
A=({0,...,m},X,6,{0},{m})

e the transition function § for a state g and symbol x € ¥ is the length
of the longest prefix of P[1..m] that is also a suffix of P[1..q]x

Function DELTA(P, X)

for g < 0 to mdo
for x € X do
k < min(m+1,q+2)
repeat k < k — 1 until P[1--- k] is a suffix of P[1---g]x
5(g,x) « k

return ¢

complexity of the

there is an optimalized version with complexity ©(m|X|)
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Algorithm: Finite Automaton Matcher(T, A)

1g+0
2 for i+ 1to ndo

3 L q < 6(q, T[i])

4 if g=mthen printi—m

complexity of string matching is in ©(n)

can we avoid the expensive preprocessing?
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REDUNDANT COMPARISONS

o character-by-character comparison

e once we have found a match for a text character, we never need to
do another comparison with that text character again

e the next reasonable shift is the smallest value of s such that
T[s...i — 1], which is a suffix of the previously-read text, is also a

proper prefix of the pattern

o KMP algorithm implements of both of these ideas through a special
type of finite-state machines
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KNUTH-MORRIS-PRATT ALGORITHM (KMP)

e every state in the string-matching machine is labeled with a
character from the pattern, except two special states labeled S and F

e each state has two outging edges, a success edge and a failure edge

e the success edges define a path through the characters of the
pattern in order, starting at S and ending at F

o failure edges always point to earlier characters in the pattern

we use the finite state machine to search for the pattern as follows

e at all times, we have a current text character T[i] and a current
state of the machine, which is usually labeled by some pattern
character P[j)

e if T[i] = P[j], or the current label is S, follow the success edge to
the next state and increment /

o if T[i] # P[j], follow the failure edge back to an earlier state, but do
not change i 70



in a real implementation we need only the failure function encoded in an

array fail[l..m|

Algorithm: KnuthMorrisPratt( T[1..n], P[1..m])

ComputeFailure(P[1..m])
Jj+1
for i < 1to ndo
while j >0 and T[i] # P[j] do
|+ faillj]
if j = m then
print i —m+1
L J < fail[j]

e+l
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assume that a correct failure function is already known

at each character comparison, either we increase i and j by one, or
we decrease j and leave / alone

we can increment /i at most n — 1 times before we run out of the
text, so there are at most n — 1 succesfull comparisons

there can be at most n — 1 failed comparisons, sice the number of
times we decrease j cannot exceed the number of times we
increment j

in other words we can amortize character mismatches against earlier
character matches

the total number of character comparisons performed by KMP in
the worst case is O(n)
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P[1..fail[j] — 1] is
the longest proper prefix of P[1..j — 1] that is also a suffix of T[1..i — 1]
e if we are comparing T[i] against P[j], then we must have already

matched the first j — 1 characters of the pattern
e we already know that P[1..j — 1] is a suffix of T[1..;i — 1], therefore:

Algorithm: ComputeFailure(P[1..m])

1+0

2

(S, B~ B 1)

(=)

for i <1 to mdo
fail[i] « j
while j >0 and P[i] # P[j] do
|« faillj]
j—Jj+1
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e just as we did for KMP, we can analyze ComputeFailure by

amortizing character mismatches againgst eralier character matches

e since there are at most m character matches, ComputeFailure runs
in O(m) time
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String Matching

Boyer Moore Algorithm



Can we improve on the naive algorithm?

P: word
T: There would have been a time for such a word

udoesn’t occur in P, so skip next two alignments

P: word
T: There would have been a time for such a word
-------- WOP - eeeeee
skip!
skip!



Boyer-Moore

Learn from character comparisons to skip pointless alignments

1. When we hit a mismatch, move P along until
the mismatch becomes a match “Bad character rule”

2. When we move P along, make sure
characters that matched in the last

. . . “Good suffix rule”
alignment also match in the next alignment

3. Try alignments in one direction, but do
character comparisons in opposite direction For longer skips

P: word

T: There would have been a time for such a word
--------- o T T T T

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.



Boyer-Moore: Bad character rule

Upon mismatch, skip alignments until (a) mismatch becomes
a match, or (b) P moves past mismatched character.
() If there was no mismatch, don't skip

T: GCTT@TGCTACCTTTTGCGCGCGCGCGGAA

Step 1:
P.' COTTTTGC Case (a)
Step 2: T: GC’ITCTGCT@CCTTTTGCGCGCGCGCGGAA
{WCCTTTTGC Case (b)
A R
Step 3: T: GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P CCTTTTGC Case (c)
Step 4: T: GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
C P CCTTTTGC

(etc)



Boyer-Moore: Bad character rule

T: GCTTCTGCTACCTTTTGCGCGCGCGCGGAA

Step 1:
R.CCTTTTGC
Step 2: r GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
Cop CCTTTTGC
Step 3: T?GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P> p i I CCTTTTGC

tt TTTTTT

Up to step 3, we skipped 8 alignments

5 characters in T were never looked at



Boyer-Moore: Good suffix rule

Let t = substring matched by inner loop; skip until (a) there
are no mismatches between P and t or (b) P moves past t

[ 1

Step 1: T: CGTGCCTAOTTACTTACTTACTTACGCGAA
" p- CT(TACTTAC

\
Step 2: T CGTGCCTACTTACOTTACTTACTTACGCGAA
' CTTACQTTAC

Step 3: T: CGTGCCTACTTACTTACTTACTTACGCGAA
P CTTACTTAC



Boyer-Moore: Good suffix rule

Let t = substring matched by inner loop; skip until (a) there
are no mismatches between P and t or (b) P moves past t

[ 1

Step 1: T: CGTGCCTACQTTACTTACTTACTTACGCGAA

P: CTTACTTAC o . L
t occurs in its entirety to the left within P

v
Step 2: T: CGTGCCTACTTACTTACTTACTTACGCGAA

CTTACTTAC
prefix of P matches a suffix of t

Step 3: T: CGTGCCTACTTACTTACTTACTTACGCGAA
P CTTACTTAC

Case (a) has two subcases according to whether t occurs in its
entirety to the left within P (as in step 1), or a prefix of P matches a
suffix of t (as in step 2)



Boyer-Moore: Putting it together

How to combine bad character and good suffix rules?

T: GTTATAGCTGATQGCGGCGTAGCGGCGAA
P: ' [GTAGCGGCG

bad char says skip 2, says skip 7

Take the maximum! (7)



Boyer-Moore: Putting it together

Use bad character or good suffix rule, whichever skips more

Step 1: T: GTTATAGCGATCGCGGCGTAGCGGCGAA

P G‘!LAGCGGCG bc: 6, 9s: 0 bad character
Step 2: T.'GTTATAGCTGATGCGGCGTAGCGGCGAA

' GTAGGGCG bc:0,9s:2  good suffix
Step 3: T.'GTTATAGCT('.:'ATGCGGCGTAGCGGCGAA

' : LSTAGCGGCG bc:2,gs:7 good suffix
Step 4: T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

GTAGCGGCG

o



11 characters of T we ignored

EENENEEE EEN
T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

Step 1:
P: GTAGCGGCG

Step 2: T GTTATAGCTGATCGCGGCGTAGCGGCGAA
- GTAGCGGCG

Step 3: T GTTATAGCTGATCGCGGCGTAGCGGCGAA
- GTAGCGGCG

Step 4: T GTTATAGCTGATCGCGGCGTAGCGGCGAA
CP GTAGCGGCG

NN DN
Skipped 15 alignments



Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios!
For bad character rule and P =TCGC:

P
T|C|G|C

= | N| >
[}




Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios!
For bad character rule and P =TCGC:

P
T|C C
Alo|1]2]3
Clol-lol-| T"AATCAATAGC
e T ol T - To P:(T)C(G)C
- 1o |(M]2

This can be constructed efficiently. See Gusfield 2.2.2.



Boyer-Moore: Good suffix rule

We learned the weak good suffix rule; there is also a strong good suffix rule

------ 1

T CTTGCCTACTTACTTACT
P: CTTACT|TAC
Weak:CTACTTAC
guarantecd S1ongCTTACTTAC

mismatch!

Strong good suffix rule skips more than weak, at no additional penalty

Strong rule is needed for proof of Boyer-Moore’s O(n + m) worst-case time.
Gusfield discusses proof(s) in first several sections of ch. 3



Boyer-Moore: Worst case

Boyer-Moore, with refinements in Gusfield, is O(n + m) time

Given n < m, can simplify to O(m)

Is this better than naive?

For naive, worst-case # char comparisonsis n(m-n+ 1)

Boyer-Moore: O(m), naive: O(nm)

Reminder: |P|=n |T|=m



Boyer-Moore: Best case

What's the best case?

P: bbbb
T: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Every alignment yields immediate mismatch and bad
character rule skips n alignments

How many character comparisons? floor(m / n)



Naive vs Boyer-Moore

As m & n grow, # characters comparisons grows with...

IPl=n [T|=m

Naive matching Boyer-Moore

Worst case m-n m

Best case m m/n




Performance comparison

Simple Python implementations of naive and Boyer-Moore:

Naive matching

Boyer-Moore

# character
comparisons

wall clock time

# character

R wall clock time
comparisons

P:“tomorrow”

T: Shakespeare’s
complete works

5,906,125

2.90s

785,855 1.54s

P: 50 nt string
from Alu repeat*®

T: Human
reference (hg19)
chromosome 1

307,013,905

137s

32,495,111 55s

* GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

17 matches
|T|=559M

336 matches
|T|=249M



Boyer-Moore implementation

http://j.mp/CG_BoyerMoore

def boyer_moore(p, p_bm, t):
""" Do Boyer-Moore matching
i=9
occurrences = []

wun

while i < len(t) - len(p) + 1: # left to right

shift = 1
mismatched = False

for j in range(len(p)-1, -1, -1):

if p[J] != t[i+j]:

skip_bc = p_bm.bad_character_rule(j, t[i+j])

# right to left

skip_gs = p_bm.good_suffix_rule(j)
shift = max(shift, skip_bc, skip_gs)

mismatched = True
break

if not mismatched:
occurrences.append(i)
skip_gs = p_bm.match_skip()
shift = max(shift, skip_gs)
i += shift
return occurrences




Preprocessing: Boyer-Moore

p

Make lookup tables T
for bad character &
good suffix rules

Boyer-Moore

Results



Preprocessing: Naive algorithm

P T

N

Naive exact matching

Results



Preprocessing: Boyer-Moore

Preprocessing: trade one-time cost for reduced work
overall via reuse

Boyer-Moore preprocesses P into lookup tables that are
reused

reused for each alignment of Pto T;
If you later give me T, | reuse the tables to match P to T

If you later give me T3, | reuse the tables to match P to T3

Cost of preprocessing is amortized over alignments & texts
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