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Motivation
Model Analysis in Systems Biology

SBML, diferenciální rovnice, 

boolovská sít, Petriho sít, ...

biological knowledge databases

biological network

hypothesis

model analysis

analytical methods, model checking

static analysis, numerical simulation,

new hypothesis inference

gene reporters, DNA microarray,

mass spectrometry, ... emergent properties

model questions

hypothesis testing, property detection,

model validation

network reconstruction model specification
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Systems View of Processes Driving the Cell

nutrients enzymes

metabolic products

signals

proteins

regulatory elements

METABOLISM PROTEOSYNTHESIS
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Systems View of a Cell: Biological Networks

identify substances (macromolecules, ligands, proteins, genes, . . . )

identify interactions ((de)complexation, (de)phosphorylation, . . . )
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Systemic View of the Cell: Biological Networks
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nodes: 

edges: 

enzymes, proteins, metabolites, ...

chemical species

chemical interactions
reactions, catalytic regulations, ...
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Systems Biology of a Cell
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Biological Networks and Pathways

what is the “right” meaning?

in order to analyse we need to formalise
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Biological Networks and Pathways
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Graphical Specification in SBGN
Systems Biology Graphical Notation

PD: biochemical interaction level (the most concrete)

ER: relations among components and interactions

AF: abstraction to mutual interaction among activities
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Graphical Specification in SBGN
Systems Biology Graphical Notation

SBGN.org iniciative (from 2008)

standard notation for biological processes

http://sbgn.org

Nature Biotechnology (doi:10.1038/nbt.1558, 08/2009)

three sub-languages:

SBGN PD (Process Description)
(doi:10.1038/npre.2009.3721.1)
SBGN ER (Entity Relationship)
(doi:10.1038/npre.2009.3719.1)
SBGN AF (Activity Flow) (doi:10.1038/npre.2009.3724.1)

tool support:

SBGN PD supported by CellDesigner
SBGN-ED (http://www.sbgn-ed.org)
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Kinase Cascade in CellDesigner (SBGN)
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Why to model?

e.g., FGFR3-related skeletal dysplasia
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Why to model?
Need to explain...

P. Krejč́ı, Masaryk University
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Why to model?
Knowledge is increasing...
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Model of a Biological System

complex

system
biological model

S M
in vitro/in vivo

formal

in silico

model parameters

model is an approximation of the biological system

built on first-principles and known hypotheses
⇒ e.g., elemental reactions, experimental observations, . . .

model is parametrized

parameters provide a space for refinement
⇒ typically quantitative information (e.g., reaction rate)
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Systems View of the Cell

syntax of the systems model is a network:

components (nodes) – e.g. chemical substances
interactions (edges) – e.g. chemical reactions

each component is assigned some quantity

discrete: number of molecules
continuous: molecule concentration in a compartment
(solution)
can be visualized by color intensity of a node

dynamics drives the change of node colour intensity in time

driven by global rules (e.g., mass-action reactions)
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Biological Model Formal Definition

Denote St = Z domain of stoichiometric coefficients.

Biological model is a tuple (S ,R, reanet, regnet,map), where:

S ⊂ N ... (finite) species index set

R ⊂ N ... (finite) reactions index set

reanet ⊆ S × R ... reaction network

regnet ⊆ S × R × {inh, act} ... regulatory network

map : reanet→ St ... stoichiometric map

Members of S are denoted: s1, s2, ....
Members of R are denoted: r1, r2, ....
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Biological Model – Example

A1

r1

A2

A3 A4 A5

r2

r3

r4

r5

2 3

FUNDP Namur, 9.5.2014 20/139



Biological Model – Example

S = {A1,A2,A3,A4,A5}
R = {r1, r2, r3, r4, r5}
reanet,map:

(r1) 2A1 + A2 → A3 + A4 + A5

(r2) A4 + A5 → 3A2

(r3) → A1

(r4) A1 →
(r5) A3 →
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Biological Model – Example

S = {A1,A2,A3,A4,A5}
R = {r1, r2, r3, r4, r5}
reanet,map:

(r1) 2A1 + A2 → A3 + A4 + A5

(r2) A4 + A5 → 3A2

(r3) → A1

(r4) A1 →
(r5) A3 →

regnet : A2 inhibits r3, A3 activates r4, A5 inhibits r1

FUNDP Namur, 9.5.2014 23/139



Model Semantics
Discrete Case

A + B → AB

state configuration captures number of molecules:

〈#[AB],#[A],#[B]〉 ∈ N3
0

global rule:
one molecule AB is added to the solution
one molecule A is removed from the solution
one molecule B is removed from the solution

#[AB](t + 1) = #[AB](t) + 1
#[A](t + 1) = #[A](t)− 1
#[B](t + 1) = #[B](t)− 1
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Model Semantics
Discrete Case

Consider three reactions:

A→ B
A + B → AB
AB → A + B

state configuration has the form 〈#A,#B,#AB〉 ∈ N3
0

consider, e.g., configuration 〈2, 2, 1〉
⇒ what is the next configuration?

reactions run in parallel . . .
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Model Semantics
Continuous Case

A + B → AB

continuous state captures concentration of molecules in a
certain volume (the solution):

〈[AB], [A], [B]〉 ∈ R3
+

global rule:
a mass of AB outflows from the solution
a mass of A inflows to the solution
a mass of B inflows to the solution

d [AB]
dt = v

d [A]
dt = d [B]

dt = −v
where v = k[A][B], k is the reaction rate constant.

The law of mass action.
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Model Semantics
Discrete Gene Regulatory Networks

A ∈ {0, 1, 2}, B ∈ {0, 1}
tAA = 2, tAB = 1
KA,∅ = 2
KA,{A} = 0
KB,∅ = 0
KB,{A} = 1

introduced by René Thomas [1973]

refined by Chaouiya et al. [2003]
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Model Semantics

species S are interpreted as model variables
boolean models: val(Si ) ∈ {present, absent}
discrete-value models: val(Si ) ∈ N0

continuous-value models: val(Si ) ∈ R+
0

current values of all model variables make the state

reaction is interpreted as a rule that affects (changes) the
state

Note

Variables are always considered bounded (maximal values can be
given by physical limits, e.g., the cell volume).
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Rule Interpretation

Modelling of time

exact time of reaction occurence
⇒ continuous-time models

time of reaction occurence abstracted
⇒ discrete-time models (ticked or untimed)

Modelling of noise

deterministic rules – noise absent (large populations)
⇒ always one possible execution under the same conditions

stochastic rules – noise present (small populations)
⇒ many different executions possible under the same
conditions
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Model Semantics Spectrum – Brief

quantitative parameters ignored

quantitative parameters required

continuous model

qualitative model

stochastic model

variables
continuous

abstracted

modeled
time

discrete

approximation

abstra
ctio

n abstraction
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Model Semantics Spectrum – Detailed
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From Biological Hypotheses to Temporal Properties

wet-lab measurements ⇒ time-series data
low resolution – e.g., microarray data, series of western blots
high resolution – fluorescence measurements (e.g., gene
reporters)
most typically population-level measurements (average
behaviour)

literature provides other constraints on system dynamics

e.g., multiple steady states, species concentration correlation,
. . .

all can be formally captured by means of temporal logics
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Wet-lab Measurements

systems measurements of transcriptome (mRNA
concentration)

very imprecise!
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Wet-lab Measurements

western blots

measurements of protein binding (presence of certain proteins)
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Model Building

1 Model is built on first-principles
⇒ purely qualitative (network topology)
⇒ quantitative aspects represented by parameters

2 To build an executable model we need to find all possible
constraints that can be formulated.
⇒ static and dynamic constraints (properties)

3 To find admissible parameter values we need further
elaboration
⇒ fitting to wet-lab measurements is a problem when some
data are too imprecise (practical identifiability)

FUNDP Namur, 9.5.2014 35/139



Qualitative vs. quantitative temporal properties

qualitative properties (LTL, CTL)

modalities (possibilities/necessities in future behaviour)
reachability of particular (sets of) states
temporal ordering of events, monotonicity

– time-series

temporal correlations of model variables

– time-series

stability (attractors, basins of attraction)

quantitative properties
deterministic (MTL, MITL, STL)

enhance modalities with (dense) time information
exact timing of events, time-bounds

stochastic (PLTL, PCTL, CSL)

probability of property satisfaction
stochasticity combined with time
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Temporal Property Examples
Qualitative properties

enzyme E is never permanently exhausted
GF(E > 0)

all molecules of the substrate S are finally transfered to the
product P provided that the final state is stable
S == 5⇒ FG(P == 5 ∧ S == 0)

enzyme E is used and finally returned back
(E ≥ 2) U [(0 < E < 2) U (E ≥ 2)]
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Temporal Property Examples
Quantitative properties

in the first 10 time units, enzyme E cannot permanently
exhausted
G[0,10]F(E > 0)

all molecules of the substrate S are transfered to the product
P minimally in 2 and maximally in 5 time units provided that
the final state is stable
S == 5⇒ F[2,5]G(P == 5 ∧ S == 0)

enzyme E is used and finally returned back within the given
time intervals
(E ≥ 2) U[1,2] [(0 < E < 2) U[1,2] (E ≥ 2)]
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Temporal Property Examples

oscillation
LTL: (G[(A ≤ 3)⇒ F(A > 3)]) ∧ (G[(A > 3)⇒ F(A ≤ 3)])

bistability
CTL: EFAG(A ≤ 5) ∧ EFAG(A > 5)

probabilistic modality
PCTL: P≥0.9[F(A = 3)]

probabilistic modality with time
CSL: P≥0.9[F[1,2](A = 3)]
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System Construction and Formal Methods

properties

system

construction
verification

required

properties

specification

specifiedmodel
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Knowledge Discovery and Formal Methods

hypothesis

model

system

identification

properties

validation

prediction

reconstruction

inferred
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Kripke Structure

Definition

Let AP be the set of atomic propositions (logical expressions over
model variables, typical inequalities). Kripke structure is the
quadruple K = 〈S ,S0,T , L〉 where:

S is the finite set of states

S0 ⊆ S is the set of inititial states

T ⊆ S × S such that ∀s ∈ S , ∃s ′ ∈ S : 〈s, s ′〉 ∈ T

L is the labeling L : S → 2AP

FUNDP Namur, 9.5.2014 43/139



Kripke structure – properties

for a state s ∈ S , L(s) represents the set of all atomic
propositions satisfied in s

unfolding of the Kripke structure from any initial state is
always an infinite-depth tree

maximal paths in the unfolding represent individual (infinite)
executions of the Kripke structure
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Linear-time Temporal Logic – syntax

Let AP be the set of atomic propositions. Formula ϕ is linear
temporal logic (LTL) formula iff the following holds:

ϕ = p for any p ∈ AP

If ϕ1 and ϕ2 LTL formulae then:

¬ϕ1, ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are LTL formulae
Xϕ1, Fϕ1 a Gϕ1 are LTL formulae
ϕ1Uϕ2 a ϕ1Rϕ2 are LTL formulae
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Linear Temporal Logic – semantics

Let π = s0, s1, ..., si , ... be an infinite sequence of states (a path) in
a Kripke structure K . For j > 0 we denote πj the suffix
sj , sj+1, ..., si , .... Satisfiability relation |= is defined by induction:

π |= p iff p ∈ L(s0)

π |= ¬ϕ iff π 6|= ϕ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= ϕ1 ∨ ϕ2 iff π |= ϕ1 or π |= ϕ2

π |= Xϕ iff π1 |= ϕ

π |= Fϕ iff ∃i ≥ 0. πi |= ϕ

π |= Gϕ iff ∀i ≥ 0. πi |= ϕ

π |= ϕ1Uϕ2 iff ∃j ≥ 0. πj |= ϕ2 and ∀i < j . πi |= ϕ1

π |= ϕ1Rϕ2 iff ∀j ≥ 0,∀0 ≤ i < j . πi 6|= ϕ1 ⇒ πj |= ϕ2.
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Linear Temporal Logic – semantics
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Linear Temporal Logic – semantics

For any formulae ϕ1, ϕ2 the following holds:
¬Fϕ ≡ G¬ϕ
¬(ϕ1Uϕ2) ≡ ¬ϕ1R¬ϕ2

The full expressiveness is achieved by using just the operators
¬,∧,X,U.

LTL formulae are most typically interpreted universally over Kripke
structure paths:

Kripke structure as a model for a formula

Let K be a Kripke structure. A formula ϕ is satisfied by K , K |= ϕ
iff for each execution π = s0, ... such that s0 ∈ S0 it holds π |= ϕ.

FUNDP Namur, 9.5.2014 48/139



Linear Temporal Logic – semantics

For any formulae ϕ1, ϕ2 the following holds:
¬Fϕ ≡ G¬ϕ
¬(ϕ1Uϕ2) ≡ ¬ϕ1R¬ϕ2

The full expressiveness is achieved by using just the operators
¬,∧,X,U.

LTL formulae are most typically interpreted universally over Kripke
structure paths:

Kripke structure as a model for a formula

Let K be a Kripke structure. A formula ϕ is satisfied by K , K |= ϕ
iff for each execution π = s0, ... such that s0 ∈ S0 it holds π |= ϕ.

FUNDP Namur, 9.5.2014 48/139



Linear Temporal Logic – semantics

For any formulae ϕ1, ϕ2 the following holds:
¬Fϕ ≡ G¬ϕ
¬(ϕ1Uϕ2) ≡ ¬ϕ1R¬ϕ2

The full expressiveness is achieved by using just the operators
¬,∧,X,U.

LTL formulae are most typically interpreted universally over Kripke
structure paths:

Kripke structure as a model for a formula

Let K be a Kripke structure. A formula ϕ is satisfied by K , K |= ϕ
iff for each execution π = s0, ... such that s0 ∈ S0 it holds π |= ϕ.

FUNDP Namur, 9.5.2014 48/139



Model checking

Model Checking Problem

Model checking problem is to deside for a given Kripke structure K
and a temporal property Φ the problem K |= Φ.
If the result is negative, a path π such that π 6|= Φ is returned (a
so-called counterexample).
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Model-Checking Overview

Requirements

Specification

Property

Formalization

System

Formalization

System Model

Model Checking

Simulation

Counterexample
Invalid

Valid

Error
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Büchi Automaton

Definition

Büchi automaton is the tuple A = (S ,Σ,S0, δ,F ) where

Σ is the finite set of symbols,

S is the finite set of states,

S0 ⊆ S is the set of initial states,

δ : S × Σ→ 2S is the transition relation,

F ⊆ S is the set of final (accepting) states.
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Büchi Automaton

Language accepted by a Büchi automaton

(infinite) run of an automaton A over an infinite word
w = a1a2... is the sequence of states ρ = s0, s1, ... such that
∀i : si ∈ δ(si−1, ai )

inf (ρ) – the set of states that occur infinitely often in ρ,

a run ρ is accepting iff inf (ρ) ∩ F 6= ∅
L(A) denotes the so-called ω-regular language accepted by A,
the set of all (infinite) words for which there exist a
corresponding accepting run of A,

ω-regular languages are closed under complementation.
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Büchi automata examples

xa > θ1
a

xa > θ1
a

true
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LTL Model Checking

LTL Model Checking

Specification formalized as LTL formula

Automata-based approach to LTL model checking

Employs Büchi automata to express

all paths of the Kripke structure under consideration
all paths violating the specification

Model satisfies the specification if the intersection of the sets
is empty, i.e., if the synchronized Büchi automaton accepts
empty language.

LTL model checking problem is reduced to the detection of
accepting cycles in the graph of a Büchi automaton.
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Model Checking as a language inclusion problem

Interpretation of a path π = s0, s1, ... in a Kripke structure K is a
sequence of sets of APs:

L(π) = L(s0), L(s1), ...

Problem

For a given Kripke structure K = (S , S0,T , L) and a given LTL
formula ϕ decide K |= ϕ.

Reformulation

Let Σ = 2AP . Consider two languages of infinite words:

1 LK = {L(π) | π is a path in K}
2 Lϕ = {L(π) | π |= ϕ}

Then K |= ϕ iff LK ⊆ Lϕ.
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Kripke structure as a Büchi automaton

Claim

For each Kripke structure K = (S , S0,T , L) we can construct a
Büchi automaton AK such that LK = L(AK ):

AK = (S , 2AP , S0, δ,S)
where q ∈ δ(p, a)⇔ (p, q) ∈ T ∧ L(p) = a.

Observation

Note that F = S (the set of final states coincides with the state
space).
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LTL formula as a Büchi automaton

Theorem [Vardi, Wolper 1986]

For each LTL formula ϕ there exists (and can be effectively
constructed) a Büchi automaton Aϕ such that Lϕ = L(Aϕ).

Construction goes through a generalized BA (extended in the
acceptance condition – a system of accepting states sets,
requirement to infinitely often visit all accepting sets). Complexity
is 2O(n) where n is the size of the formula. There exist many
algorithms – check, e.g., http://spot.lip6.fr/wiki/.

Note

LTL is less expressive then BAs.
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Synchronous Product

Claim

Let A = (SA,Σ,S0A , δA, SA), B = (SB ,Σ,S0B , δB ,FB) be Büchi
automata, and FA = SA. Then a Büchi automaton A× B that
accepts the language L(A× B) = L(A) ∩ L(B) can be constructed
in the following way:

A× B = (SA × SB ,Σ, S0A × S0B , δA×B , SA × FB),

(p′, q′) ∈ δA×B((p, q), a) for all p′ ∈ δA(p, a) and
q′ ∈ δB(q, a).
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Model Checking reduced to language emptyness problem

Claim

For each LTL formula ϕ it holds that co-L(Aϕ) = L(A¬ϕ).

K |= ϕ⇔ LK ⊆ Lϕ
K |= ϕ⇔ L(AK ) ⊆ L(Aϕ)

K |= ϕ⇔ L(AK ) ∩ co-L(Aϕ) = ∅
K |= ϕ⇔ L(AK ) ∩ L(A¬ϕ) = ∅
K |= ϕ⇔ (L(AK )× L(A¬ϕ)) = ∅
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Model Checking as an accepting cycle detection problem

Claim

A Büchi automaton A = (S ,Σ, S0, δ,F ) accepts a nonempty
language iff there exist states s ∈ F , s0 ∈ S0, and the words
w1,w2 ∈ Σ∗ such that s ∈ δ̂(s0,w1) and s ∈ δ̂(s,w2).

In other words, the graph of the automaton contains a
reachable accepting cycle.

Model Checking Procedure

1 construct (AK × A¬ϕ)

2 detect if there is any accepting cycle

3 If accepting cycle found then K 6|= ϕ.

4 If accepting cycle not found then K |= ϕ.
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Accepting cycle detection

Input

Product automaton represented by three functions:

init() – returns the initial states
succs(s) – returns the direct successors of s ∈ S
accept(s) – decides whether s ∈ S is accepting

Output

The answer YES/NO.

A counterexample if the answer is NO.

π = π1 · (π2)ω

where

π1 = s0, s1, ..., sk
π2 = sk+1, sk+2, ..., sk+n where sk ≡ sk+n

⇒ a so-called lasso shape.
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Accepting cycle detection

Nested DFS algorithm

Performs two depth-first searches on the graph:

1st identifies reachable accepting states,
2nd test each accepting state for self-reachability.

Search procedures must interleave in a particular way.

2nd (nested) procedure is started from an accepting state,
when the 1st procedure backtracks from it (DFS postorder).
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Rectangular Abstraction: The Big Picture
From a Continuous System to a Discrete Finite Quotient

X3

Xm

X2
X1

 

A

B

0 2 3 5

B:
0 1065

A:

system of ODEs

state − vector of respective discrete variables values

P. Collins, L. Habets, J.H. van Schuppen, I. Černá, J. Fabriková, and D. Šafránek. Abstraction of Biochemical
Reaction Systems on Polytopes. In Proceedings of 18th IFAC World Congress, 2011.
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Rectangular Abstraction: The Big Picture

ø

[ECMOAN (BioDiVinE, GNA), RoVerGeNe] 

continuous trajectories

overapproximation

rectangular abstraction

num. simulation
[COPASI, BioCHAM, BioNessie]

underapproximation

ODE model

NumSims(S) @ Trajects(S) @ QuotientPaths(S)
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Rectangular Abstractions for Kinetic Models

Xa Xb

piece−wise affine ODEs

overapproximation by RATS

[Belta, Habets, Schuppen] [de Jong, Batt]

set discrete value domains per each variable

Rectangular Abstraction of Reaction Kinetics Rectangular Abstraction of Regulatory Kinetics

multi−affine ODEs
Hill kinetics

(Rectangular Abstraction Transition System)

(Rectangular Abstraction Transition System)

overapproximation by RATS

per each reactant species
with limitation of 1 molecule

mass action kinetics

FUNDP Namur, 9.5.2014 66/139



Rectangular Abstractions for Kinetic Models
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Reaction Kinetics

format of chemical reactions:

γ1X1 + · · ·+ γmXm → δ1Y1 + · · ·+ δnYn, γi ∈ {0, 1}, δi ∈ N

note we expect {X1, ...,Xm} ∩ {Y1, ...,Yn} = ∅
subclass of general mass action kinetics:

∀i ∈ {1, ..., n}. dYi

dt
= g(X1, ...,Xm) = δikX

γ1
1 X γ2

2 · · ·X
γm
m

∀i ∈ {1, ...,m}. dXi

dt
= g(X1, ...,Xm) = −γikX γ1

1 X γ2
2 · · ·X

γm
m

corresponds to the class of multi-affine autonomous systems

limitation: homodimerization A + A→ AA

reactions of the form X → δ1Y1 + · · ·+ δnYn, δi ∈ N result in
affine systems
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Regulatory Kinetics

protein dynamics driven by protein-regulated transcription
Hill kinetics approximated in terms of ramp functions

X −→+ Y
dY

dt
= kr+(X , xt1, xt2)

k ∈ R+ is kinetic parameter

xt1 xt2

1

0

[X]

r+(X,xt1,xt2)

ramp functions can describe cooperative regulations by means
of summation and multiplication
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General Kinetic Models

both kinetics combined

right-hand side of any ODE is a mapping g(x ,p) where p is a
vector of unknown parameters

(piece-wise) multi-affine in x
affine in p

these properties enable us to (are necessary to):

make a discrete finite overapproximation of the system
dynamics
discretize the parameter space – possible values of p
⇒ synthesis of unknown parameters
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Rectangular Abstraction for Kinetic Models
Overapproximative Abstraction on Rectangles

B

A A

B

0 2 3 5

B:
0 1065

A:
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Rectangular Abstraction for Kinetic Models

approach of [Belta, Habets, van Schuppen]

continuous phase-space is bounded and abstracted by a
non-deterministic automaton

A

B
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Rectangular Abstraction for Kinetic Models
Partition

Definition

Let X ⊂ Rn be a closed full-dimensional polytope. A partitioning
Xpart(X ) = {Xi | i = 1, . . . ,m} of X is called admissible if

1 for all i = 1, . . . ,m: Xi is a closed full-dimensional polytope in
Rn,

2 ∪mi=1Xi = X ,

3 for all i , j = 1, . . . ,m, i 6= j , the intersection Xi ∩ Xj is either
empty, or a common face of Xi and Xj .

If both polytope X and all subpolytopes Xi , (i = 1, . . . ,m) are
n-dimensional rectangles, then an admissible partitioning Xpart(X )
is called rectangular.
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Rectangular Abstraction for Kinetic Models
Piecewise Affine and Multi-Affine Mapping

Definition

A mapping g : X → Rn is called piecewise-affine on Xpart(X ) if the
following two conditions hold:

1 g is continuous on X

2 for all i = 1, . . . ,m there exist Ai ∈ Rn×n and ai ∈ Rn such
that for all x ∈ Xi : g(x) = Aix + ai , i.e. g |Xi

is an affine
mapping.

A mapping g : X → Rn is called multi-affine on Xpart(X ) if the
following two conditions hold:

1 g is continuous on X

2 for all i = 1, . . . ,m, g |Xi
is multi-affine, i.e. g |Xi

is affine
w.r.t. every of its variables, while keeping all other variables
constant.
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Rectangular Abstraction for Kinetic Models

Definition

A piecewise-affine system on a polytope is a tuple

χ = (X ,Xpart(X ), x0, t0, g),

where state set X is a full-dimensional polytope in Rn, Xpart(X ) is
an admissible partitioning of X , x0 ∈ X is the initial continuous
state, t0 ∈ R is the initial time, and g : X → Rn is a
piecewise-affine function on Xpart(X ). A trajectory x : [t0, t1]→ X
of system χ is a solution of the differential equation

ẋ(t) = g(x(t)), x(t0) = x0, (1)

where t1 is either the time instant that the trajectory leaves state
polytope X , or t1 =∞, if trajectory x(t) remains in X forever.
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Example

Consider the affine system Σ on rectangle [0, 2]× [0, 2] given by

ẋ(t) =

(
−4 0

0 −5

)
x(t) +

(
6.8
6.5

)
, x(t0) = x0.

Obviously, (1.7, 1.3)T is the unique steady state of this system.
We partition the state set X into four squares:

X(0,0) = [0, 1]× [0, 1], X(1,0) = [1, 2]× [0, 1],
X(0,1) = [0, 1]× [1, 2], X(1,1) = [1, 2]× [1, 2].
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Rectangular Abstraction for Kinetic Models

Note

One may distinguish systems with the same dynamics on all
polytopes in the partitioning, and systems with different dynamics
on each subpolytope. In the second case, the dynamics on the
boundary of two polytopes is still assumed to be continuous.

Definition

If X is an n-dimensional rectangle, Xpart(X ) is a rectangular
partioning of X , and g : X → Rn is multi-affine on Xpart(X ), then
χ = (X ,Xpart(X ), x0, t0, g) is called a multi-affine system on
rectangles.
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Rectangular Abstraction for Kinetic Models
Exit Facets

Exit Facet

Let χ = (X ,Xpart(X ), x0, t0, g) be a piecewise-affine system on a
polytope X . A facet F of subpolytope Xi is called an exit facet if
there exists a trajectory of system Σ, starting in Xi , that attempts
to leave Xi in finite time by crossing facet F .

Observation

Let nF denote the normal vector of F , pointing out of subpolytope
Xi , and let the affine dynamics on Xi be described by ẋ = Aix + ai .
Then F is an exit facet if and only if there exists x̂ ∈ F such that

nTF (Ai x̂ + ai ) > 0. (2)

Since the dynamics ẋ = Aix + ai is affine, it suffices to check
condition (2) on V(F ), i.e. on the set of all vertices of facet F .
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Rectangular Abstraction for Kinetic Models
Exiting a polytope

Problem

On which facet the trajectory exits a polytope Xi?

if the trajectory leaves Xi through a point in the relative
interior of a facet F , then it continues to an adjacent polytope
Xj such that Xi ∩ Xj = F ,

if it leaves through a point on a lower-dimensional face, a
problem arises since the face can be shared by more than two
polytopes
⇒ this possibility is excluded and considered as singular (it is
replaced by a sequence of several adjacent transitions
executed in the same time instant)

Note

The rectangular abstraction abstracts from time.
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Example
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Rectangular Abstraction for Kinetic Models
Exiting a polytope

Problem

Does the trajectory leave a polytope Xi in finite time?

Theorem [Habets, Collins, Schuppen 2006]

Consider an affine system ẋ(t) = Aix(t) + ai on a closed
full-dimensional subpolytope Xi ⊂ Rn. There exists an initial state
x0 ∈ Xi such that for all times t ∈ T = [t0,∞) the state trajectory
belongs to the subpolytope, i.e. x(t; t0, x0) ∈ Xi if and only if
there exists a fixed state in subpolytope Xi .
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Rectangular Abstraction for Kinetic Models
Exiting a polytope

Problem

Does the trajectory leave a polytope Xi in finite time?

Lemma

Consider an affine system ẋ(t) = Aix(t) + ai on a closed
full-dimensional subpolytope Xi ⊂ Rn. There exists an x̂ ∈ Xi such
that Ai x̂ + ai = 0 if and only if

0 ∈ ConvexHull({Aiv + ai | v ∈ V(Xi )}), (3)

i.e. if and only if the zero vector is a convex combination of the
direction vectors at the vertices.

alternatively numerical approaches can be used
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Rectangular Abstraction for Kinetic Models
Exiting a polytope

1 Subpolytope Xi contains a fixed point, and at all vertices of
Xi , the direction vector of the differential equation is pointing
inward. In this case all trajectories that enter subpolytope Xi

will remain in Xi forever.

2 Subpolytope Xi does not contain a fixed point. Then all
trajectories that enter Xi leave Xi in finite time.

3 Subpolytope Xi contains a fixed point, and there exists a
vertex of Xi where the direction vector of the differential
equation is pointing out of Xi .
I.e., there exist trajectories that leave Xi and also trajectories
that do not
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Rectangular Abstraction for Kinetic Models
The Abstraction

Let χ = (X ,Xpart(X ), x0, t0, g) a piecewise-affine system,
N = |Xpart(X )|. We construct a Kripke structure
Kχ = (S ,S0,T , L) representing the rectangular abstraction of χ:

S = {s1, ..., sN} and we define a bijective map
Π : Xpart(X )→ S such that Π(Xi ) = si ,

S0 = {si} such that x0 ∈ Π−1(si ) and x(t; t0, x0) ∈ Π−1(si )
for all t ∈ (t0, t0 + ε) for some ε > 0

(si , si ) ∈ T if there exists x̂ ∈ Π−1(si ) such that g(x̂) = 0

for every facet F = Xi ∩ Xj for that there exists a vertex
v ∈ V(F ) satisfying nTF g(v) > 0, (Π(Xi ),Π(Xj)) ∈ T
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Rectangular Abstraction for Kinetic Models
Extension to multi-affine systems

Rectangular abstraction can be employed also for (piecewise)
multi-affine systems (proved only for rectangular polytopes).
C. Belta, L.C.G.J.M. Habets, and V. Kumar. “Control of multi-affine systems on rectangles with applications to hybrid
biomolecular networks.” In Proc. 41th IEEE Conf. on Decision and Control, pages 534–539, New York, 2002. IEEE
Press.

Problem

A sufficient and necessary condition for exiting a rectangle in finite
time is not known.

Theorem

Let ẋ(t) = g(x(t)) be a multi-affine system on an n-dimensional
rectangle Ri ⊂ Rn. If there exists a vector w ∈ Rn such that for all
vertices v ∈ V(Ri ) we have wTg(v) > 0, then all state trajectories
of this system leave rectangle Ri in finite time.
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Rectangular Abstraction for Kinetic Models

Let χ = (X ,Xpart(X ), x0, t0, g) a piecewise-affine (or piecewise
multi-affine) system and Kχ its rectangular abstraction.

Global necessity

If for every path π = s0, ... in Kχ, s0 ∈ S0, there exists an initial
point x0 ∈ Π(si ) such that the trajectory x(t; t0, x0) of χ
corresponds to π, i.e., x ⊆

⋃
sj∈π(Π−1(sj)).

Global sufficiency

If for every trajectory x = x(t; t0, x0) of χ there exists a path
π = s0, ... for some s0 ∈ S0 such that x0 ∈ Π(s0) and x
corresponds to π.
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Temporal Properties for the Abstraction Kripke Structure

reachability
global: regardless the initial state, B eventually falls below 2
local: if B initally below 2 then B does not exceed 2

temporal properties
there is no initial state from which A falls below 6 before A
exceeds 6

time progress
0

5

10

6
A(t):

properties defined by ω-regular languages

many useful properties can be formulated in LTL

some properties may require branching time (e.g., reachability
of multiple steady state)
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Rectangular Abstraction and Model Checking

Let Kχ be a rectangular automaton for a system χ that is either
(piecewise) affine or (piecewise) multi-affine. Let ϕ be an
ω-regular property.

global sufficiency holds

Kχ |= ϕ =⇒ χ preserves ϕ

global necessity does not hold

Kχ 6|= ϕ does not necessarily imply “χ does not preserve ϕ”
there might exist paths in Kχ for which there is no trajectory
in S , the reasons are of two kinds:

1 the abstraction combines behaviour of different trajectories
⇒ in piecewise-affine and multi-affine systems

2 known condition for exiting a rectangle in finite time is not
sufficient
⇒ in multi-affine systems

P. Collins, L. Habets, J.H. van Schuppen, I. Cerna, J. Fabrikova, and D. Šafránek. “Abstraction of Biochemical
Reaction Systems on Polytopes”, In Proceedings of the 18th IFAC World Congress. IFAC, 2011. pages 14869-14875
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Other Approach

regulatory kinetics abstracted by step functions

results in a piecewise-affine abstraction with different
dynamics on individual rectalngles

gives a qualitative abstraction that is an overapproximation of
original system

faces must be also included in the abstraction, trajectories are
not continuous on faces
⇒ large state spaces, more expensive successor function

good representation of regulatory logic (the extent of
overapproximation is reasonable)

H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, T. Sari, J. Geiselmann (2004), Qualitative simulation of genetic

regulatory networks using piecewise-linear models, Bulletin of Mathematical Biology, 66(2):301-340.
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From Non-Linear to Piecewise (Multi)-Affine

a large class of molecular mechanisms modeled at activity-flow
level (e.g., signalling pathways, gene regulatory circuits, ...)
optimal approximation of sigmoid functions by piece-wise
affine functions (ramps) [Grosu et al. CAV 2011]

model abstraction kinetics

piece-wise multi-affine
transient over-approximated
steady state over-approximated

sigmoidal kinetics
mass action

piece-wise affine
transient over-approximated
steady state exact

first-order sigmoidal
kinetics
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Motivation: Dynamical Systems with Parameters

parameters

biological
reality

mathematical
model

observed
properties

specified
properties

required
properties

admissible
parameters

observation

reconstruction

formalisation

influencing reality

parameter tuning

parameter
synthesis
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Problem Formulation
Parameter Synthesis

parameter constraints

behavior constraints

p |=
Φ
I ∧
M

(p) |=
ϕ

ModelM(p) :

res
tri
ct
p

restrict f

ẋ = f (x , p)

ϕ

ΦI

Parameter Synthesis Problem

Assume P is the admissible parameter space. Given a behaviour
constraint ϕ, parameter constraint ΦI , and a parameterised
model M, find the maximal set P ⊆ P of parameterisations
such that p |= ΦI and M(p) |= ϕ for all p ∈ P.
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Workflow

behaviour
constraints

parameter
constraints

ODE model

PWMA model

parameterised
Kripke structure

temporal formulae

valid parameter
valuations

Coloured
Model

Checking

formalisation approximation

abstraction
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Work Chronology

Related Work

Batt et al. 2007: RoverGene, BDD/Polytopes-based approach

Batt et al. 2010: GNA, symbolic approach, piecewise affine

Grosu et al. 2011: RoverGene revisited, approximation improved

Bogomolov et al. 2015, SpaceEx, multi-affine hybrid automata

Our Contribution

HIBI 2010, TCCB 2012: coloured LTL model checking, piecewise
multi-affine, parallel algorithm

CMSB 2015: coloured CTL model checking, piecewise multi-affine,
parallel algorithm

parameters represented as intervals
limitation: independent parameters only

ATVA 2016, CMSB 2016: parameters represented in first order
logic, SMT solver employed, interdependent parameters

HSB 2015, FM 2016: discrete bifurcation analysis by coloured CTL
model checking
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Step 3: Parameter Synthesis
Phase Space Discretisation Leads to Parameter Space Discretisation

dA

dt
= −k1 · A + k2 · B

dB

dt
= k1 · A− k2 · B

k2 = 0.8

k1 = 0.6

B

A0 2.5 5

2.5

5

(0,0.4) (0.4,0.8) (0.8,1.6) (1.6,max)
1

2

3

4

5

−2.5 · k1 > 0

−2.5·k1+2.5·k2 > 0
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Phase Space Discretisation Leads to Parameter Space Discretisation
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k1 = ?
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2

3

45

Φstate00→state10 := −2.5 · k1 > 0 ∨ −2.5 · k1 + 2.5 · k2 > 0

The transition exists if and only if the formula is satisfiable.
Local parameter constraints are predicates over reals.
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Parameter Synthesis by Coloured Model Checking

L
T

L
 o

r 
(A

)C
T

L
 s

p
e

c
if

ic
a

ti
o

n

the specification is guaranteed
(some might be missing)

the specification might be violated

parameter intervals where

[A]

[B]

5

0 2.5 5

2.5

[A]
[A]

parameterized Kripke structure of the model

CMC

YES NO

parameter intervals where

identify states and colors for which the property does/doesn’t hold  
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Parameterised Kripke Structures
State Transition Systems with Parameters

Transitions with Parameters (coloured transitions)

••

••••

••

••

•••• ••

••

••
•

•••

••

••

••••

each parameter valuation represents one Kripke structure

shared state space, different transition space
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Model Checking of Parameterized Kripke Structures

Idea

for a model M and finite parameter space P consider
KM = (P,S ,S0,T , L) a parametrized Kripke structure

represent each parameterization by a distinct colour p ∈ P

assume all transitions for each parameterization adequately coloured

find accepting cycles and get colours enabling accepting runs

Procedure

1 construct the parametrized product BA of KM and the property BA

2 compute initial mapping of colours to states (state coloring)
⇒ propagate colours through the entire graph (BFS reachability)
⇒ states on accepting cycles know all colours by which they are
reached

3 for each reachable accepting cycle aggregate (scan) the valid colours
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State Coloring

Let P denotes the set of all parameterizations. Further let
K = (P,S ,P × Σ,S0, δ,F ) a parameterized product BA and let
α, γ ∈ S , P ⊆ P.

Succ(γ,P)(α) = {p ∈ P | γ p→+ α}

∀S ′ ⊆ S . Succ(S ′,P) =
⋃
γ∈S ′

Succ(γ,P)

Initial coloring:
Succ(S0,P)

Transition-enabling colours:

P(α, β) = {p ∈ P | α p→ β}

Note

α
p→ β denotes β ∈ δ(α, 〈p, L(α)〉) where p ∈ P, L(α) is omitted

to simplify the notation.
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State Coloring Computation

Compute Succ(S ′,P) over the PKS K:

Require: K = (P,S ,P × Σ,S0, δ,F ), P ⊆ P, S ′ ⊆ S
Ensure: R[α] = Succ(S ′,P)(α)

1: for all α ∈ S do
2: R[α]← ∅
3: end for
4: Q ← {(β,P ∩ P(α, β)) | α→ β, α ∈ S ′}
5: while Q 6= ∅ do
6: remove (α,P) from Q
7: if P 6⊆ R[α] then
8: R[α]← R[α] ∪ P
9: Q ← Q ⊕ {(β,P ∩ P(α, β)) | α→ β, β ∈ S}

10: end if
11: end while

Q(α) = {p ∈ P | ∃P ⊆ P. p ∈ P ∧ (α,P) ∈ Q}
Q ⊕ Q ′ = {(α,P) | P = Q(α) ∪ Q ′(α) ∧ P 6= ∅}
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Parameter Synthesis Algorithm

Require: K = (P,S ,P × Σ,S0, δ,F )

Ensure: p ∈ P iff α
p→* γ

p→+ γ for some α ∈ S0, γ ∈ F
1: P ← ∅
2: R ← Succ(S0,P)
3: for all γ ∈ F , R[γ] \ P 6= ∅ do

4: P ← P ∪ Succ(γ,R[γ] \ P)(γ)
5: end for
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Complexity Issues

Parameter Synthesis Complexity

worst case: O(|S |2 · |E | · |P|)
|S |...states, E ...edges, P...colours

in expected cases |S | and |P| is reduced (levels of BFS)

Challenges

number of states exponential w.r.t. number of variables

size of the parameter space exponential w.r.t. number of
unknown parameters

many computations performed on a single graph
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Parallel Implementation

multi-core data-parallel implementation of colour mapping
propagation

states evenly distributed among threads by a hash-function

each thread responsible for a unique partition of colour mapping

threads communicate via a colour mapping update qeue (Q)

implemented as a set of lock-free qeues
one qeue per thread
threads synchronize on BFS levels
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BioDiVinE Toolset

input:

textual: internal .bio format
– ODEs + LTL property

gui: list of chemical reactions; SBML standard

tasks:

rectangular abstraction
parallel LTL model checking

output:

model checking counterexample
2D reachability visualization

http://sybila.fi.muni.cz//tools/biodivine/v1/

J. Barnat, L. Brim, and D. Šafránek. “High-performance analysis of biological systems dynamics with the DiVinE
model checker.” Briefings in Bioinformatics 11(3):301-12 (2010)
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BioDiVinE Toolset Architecture
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E. Coli Ammonium Transport Model
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E. Coli Ammonium Transport Model

AmtB + NH4ex
k1← k2→ AmtB : NH4 k1 = 5 · 108, k2 = 5 · 103

AmtB : NH4
k3→ AmtB : NH3 + Hex k3 = 50

AmtB : NH3
k4→ AmtB + NH3in k4 = 50

NH4in
k5→ k5 = 80

NH3in + Hin
k6← k7→ NH4in k6 = 1 · 1015, k7 = 5.62 · 105

NH3ex
k8← k9→ NH3in k8 = k9 = 1.4 · 104
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E. Coli Ammonium Transport: Model Settings

Settings

mass action kinetics ⇒ multi-affine ODE model

kinetic parameters set w.r.t. literature

internal and external pH conditions considered constant

initial conditions set to intervals:
AmtB, AmtB : NH3, AmtB : NH4 NH3in NH4in NH3ex , NH4ex

〈0, 1 · 10−5〉 〈1 · 10−6, 1.1 · 10−6〉 〈2 · 10−6, 2.1 · 10−6〉 〈0, 1 · 10−5〉

abstraction – number of discrete concentration levels
considered:

AmtB AmtB : NH3 AmtB : NH4 NH3in NH4in
7 9 3 8 26
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E. Coli Ammonium Transport: Model Settings

Settings

mass action kinetics ⇒ multi-affine ODE model

abstraction – number of discrete concentration levels considered:

AmtB AmtB : NH3 AmtB : NH4 NH3in NH4in
7 9 3 8 26

initial conditions set to impose low external ammonium conditions

Experiments

find the maximal set of parameter values for the given uknown
parameter ensuring the maximal reachable level of internal NH3 is
1.1 · 106 mol

the employed LTL property: G(NH3in < 1.1 · 106)
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E. Coli Ammonium Transport: Experiments

params. intervals of validity time

k4 (1 · 10−12, 2.7 · 106) 30 s
k6 (5.2 · 106, 1 · 1012) 22 s
k7 (1 · 10−12, 3.3 · 106) 33 s
k9 (1 · 10−12, 2.7 · 106) 20 s

k1,6,10 see the paper 19 min

J. Barnat, L. Brim, A. Krejci, D. Safranek, A. Streck, M. Vejnar, and T. Vejpustek. “On Parameter Synthesis
by Parallel Model Checking”. IEEE/ACM Transactions on Computational Biology and Bioinformatics. May-June
2012;9(3):693-705
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Genetic Regulation of G1/S Transition

central module controlling G1/S transition of mammalian cells
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Genetic Regulation of G1/S Transition

M. Swat, A. Kel, and H. Herzel, ”Bifurcation analysis of the regulatory modules of the mammalian G1/S transition,”
Bioinformatics, vol. 20, no. 10, pp. 1506–1511, 2004.
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Genetic Regulation of G1/S Transition

bistability w.r.t. setting of γpRB parameter in the range
[0.01, 1]

liveness properties FG[E2F1] > 8 and FG[E2F1] < 3 are
employed

many false-positive runs arise due to time-convergent
behaviour introduced by abstraction

by determining transient rectangles we were able to find
acceptable results
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Case study: Biodegradation of Trichloropropane in E. coli

TCP DCP ECH CPD GDL GLY
DhaA HheC EchA HheC EchA

d [TCP]
dt

=− k1·DhaA·[TCP]
Km,1+[TCP]

d [DCP]
dt

= k1·DhaA··[TCP]
Km,1+[TCP]

− k2·HheC ·[DCP]
Km,2+[DCP]

d [ECH]
dt

= k2·HheC ·[DCP]
Km,2+[DCP]

− k3·EchA·[ECH]
Km,3+[ECH]

d [CPD]
dt

= k3·EchA·[ECH]
Km,3+[ECH]

− k4·HheC ·[CPD]
Km,4+[CPD]

d [GDL]
dt

= k4·HheC ·[CPD]
Km,4+[CPD]

− k5·HheC ·[GDL]
Km,5+[GDL]

d [GLY ]
dt

= k5·HheC ·[GDL]
Km,5+[GDL]

biodegradation of toxic substrate and intermediates

synthetic pathway utilising enzymes from two other bacteria
Rhodococcus rhodochrous NCIMB 13064; Agrobacterium radiobacter AD1

find optimal enzymes concentration balancing metabolic
burden and toxicity
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Case study: Biodegradation of Trichloropropane in E. coli

Desired behaviour:

“TCP is finally completely degraded and the concentration of intermediates does not
exceed given bounds”

Formally:

ϕ1 = (([TCP] > x)U(FG [TCP] < y)),

ϕ2 = (([GLY ] < y)U(FG [GLY ] > x)),

ϕ3 = (G [DCP] < v) ∧ (G [GDL] < w),

ϕ = (ϕ1 ∧ ϕ2 ∧ ϕ3),

where x , y , v and w are estimated values making an instance of this property:

x = 1.9 (according to authors1 using the value 2 mM),

y = 0.01 (obviously, cannot be zero),

v ∈ {0.5, 0.3, 0.1} (variations based on experimental data observation)

w ∈ {0.5, 0.25, 0.1} (variations based on experimental data observation)

1Kurumbang et al., ACS Synthetic Biology, 2013
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Case study: Biodegradation of Trichloropropane in E. coli

DhaA

HheC

EchA

DhaA

H
h

eC

DhaA

E
ch

A

HheC

E
ch

A

A sample of the resulting parameter space for a particular initial state:
TCP ∈ [1.9, 1.9586], DCP ∈ [0.448898, 0.5], GDL ∈ [0.0, 0.0669138], GLY ∈ [0.0, 0.01]

Dotted area corresponds to ϕ (v = 0.5, w = 0.25).
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Case study: Biodegradation of Trichloropropane in E. coli
Preliminary Biological Validation
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Model Checking of Discrete Models

Although biological models need to be quantitative to provide
good predictions, measurements techniques are not yet ready to
provide good identifiability of the modelled systems.

Therefore purely qualitative models are becoming a promising tool
to get interesting predictions inferred from complex biological
interactions.

Focus goes on regulatory networks that capture the systems
logic (abstracting from elementary reactions).
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Motivation: Learn More about Regulatory Networks

Modeling tools: C. Chaouiya, et al. 2003, GINsim., H. de Jong et al. 2002, GNA.
Data processing: I. Shmulevich, et al. 2002. Binary analysis and optimization-based
normalization of gene expression data.; E. Dimitrova, et al. 2010. Discretization of
time series data.
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From Structure to Dynamics

C:

A:
B:

R. Thomas and R. d’Ari, CRC Press 1990. Biological feedback.
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Parameterization of Regulatory Networks

Target values assigned to regulatory contexts for all nodes
make a PARAMETER SET (parameterization).

R. Thomas and R. d’Ari, CRC Press 1990. Biological feedback.
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Dynamics as a State Transition Graph

R. Thomas and R. d’Ari, CRC Press 1990. Biological feedback.
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Dynamics as a State Transition Graph

R. Thomas and R. d’Ari, CRC Press 1990. Biological feedback.
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Dynamics as a State Transition Graph

R. Thomas and R. d’Ari, CRC Press 1990. Biological feedback.
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Dynamics as a State Transition Graph

R. Thomas and R. d’Ari, CRC Press 1990. Biological feedback.
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Parameter Identification Problem

Number of possible parameterizations of a single node is
exponential w.r.t. the node’s in-degree.

(more precisely w.r.t. the number of regulatory contexts)
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Model Checking-based Methodology

a prototype tool chain:
Parsybone – https://github.com/sybila/Parsybone.git

ParameterFilter – https://github.com/sybila/ParameterFilter.git

now unified and available online at http://tremppi.fi.muni.cz

distributed computation of acceptable parameterizations

employing witnesses (counterexamples) to rank obtained
parameterizations

visualization of the results (export to Cytoscape)
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Time-series Measurement as a Dynamic Constraint

Encoded in LTL:

σ(1) =
∧5

i=1 vi = 1
σ(2) =

∧
i∈{1,2,4} vi = 1 ∧

∧
i∈{2,5} vi = 0

σ(3) =
∧

i∈{1,2,5} vi = 1 ∧
∧

i∈{3,4} vi = 2

ϕ = σ(1) ∧ F(σ(2) ∧ F(σ(3)))
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Time-series Measurement as a Dynamic Constraint

time−series walks

Encoded in LTL:

σ(1) =
∧5

i=1 vi = 1
σ(2) =

∧
i∈{1,2,4} vi = 1 ∧

∧
i∈{2,5} vi = 0

σ(3) =
∧

i∈{1,2,5} vi = 1 ∧
∧

i∈{3,4} vi = 2

ϕ = σ(1) ∧ F(σ(2) ∧ F(σ(3)))
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Time-series Measurement as a Dynamic Constraint

monotonicity between 1st and 2nd measurement

Encoded in LTL:

σ(1) =
∧5

i=1 vi = 1
σ(2) =

∧
i∈{1,2,4} vi = 1 ∧

∧
i∈{2,5} vi = 0

σ(3) =
∧

i∈{1,2,5} vi = 1 ∧
∧

i∈{3,4} vi = 2

ϕ = σ(1) ∧ (σ(1)U(σ(2) ∧ F(σ(3))))
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Time-series Measurement as a Dynamic Constraint

? ?

monotonicity between 1st and 2nd measurement

Encoded in LTL:

σ(1) =
∧4

i=2 vi = 1
σ(2) =

∧
i∈{1,2,4} vi = 1 ∧

∧
i∈{2,5} vi = 0

σ(3) =
∧

i∈{1,2,5} vi = 1 ∧
∧

i∈{3,4} vi = 2

ϕ = σ(1) ∧ (σ(1)U(σ(2) ∧ F(σ(3))))
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Model Checking on Coloured Graphs

Implementation

explicit representation of indexed parameter sets (ordered bit
vectors)

parameter space split to exclusive blocks equal to size of integer type

each block contains “close” parameter sets

data-parallel distribution: blocks evenly distributed over the cluster

. . . Pi−1 Pi Pi+1 . . .
...

. . . 1 0 0 . . .

. . . 0 1 0 . . .

. . . 0 0 1 . . .
...
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Parameterization Ranking: Length Cost

theoretically infinitely many time-series walks

fix a dynamic constraint and focus on compatible shortest
walks

penalize unnecessarily higher energy cost
avoid complex model realizations of the constraint

assign each parameterization its length cost – the length of a
shortest time-series walk

consider parameterizations with minimum length cost
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Parameterization Ranking: Robustness

non-deterministic dynamics caused by asynchronicity

how can we interpret walks with less options to walk off the
“optimal path” and miss the expected final state of the
time-series?

the property of the model, but...

another classification of parameterizations

local robustness:
property of a state – number of valid successors

out degree

global robustness:
property of a walk – product of local robustness over
all states of the walk

model robustness:
property of a parameterization – average of global
robustness over all time-series walks
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Parameterization Ranking: Robustness

non-deterministic dynamics caused by asynchronicity

how can we interpret walks with less options to walk off the
“optimal path” and miss the expected final state of the
time-series?
the property of the model, but...

another classification of parameterizations

local robustness – approximated:

Prob(x) =
1

out degree(x)

global robustness:
property of a walk – product of local robustness over
all states of the walk

model robustness:
property of a parameterization – average of global
robustness over all time-series walks
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Parameterization Ranking: Overall Procedure

INPUT: regulatory network, initial parameter space, static and
dynamic constraints
OUTPUT: subset of the initial parameter space containing
optimal parameterizations

1 Remove parametrizations violating static constraints

2 Compute parameterizations acceptable by dynamic constraints

3 Select parametrizations with minimal length cost

4 Select parametrizations with maximal robustness
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Visualising Results
Behaviour Maps and Expression Profiles

projection to the 2nd component (gene)
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Case Studies

Bacteriophage λ1 Rat neural system2

[Thieffry et al. 1995] [Wahde et al. 2001]

Init. Parameter Space 6.9 · 109 2.6 · 105

Static Constraints 8.2 · 104 162

Dynamic Constraints 537 108

Length Cost (min) 28 (length 9) 108 (length 5)

Robustness (max) 3 (9.7%) 4 (75%)

1
CMSB 2012 Proceedings

2
FI MU Technical Report
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Rat Neural System: Inferring New Hypothesis
[Wan 1998, Wahde 2001]

Shortest paths

Maximally robust paths

Predicted Hypothesis

Genes in cluster 4 express before the cluster 1 expression starts to
degrade.
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Further Links

CTL coloured model checking – Pithya Tool
https://doi.org/10.1007/978-3-319-63387-9_29

http://pithya.ics.muni.cz

discrete bifurcation analysis checking
https://doi.org/10.1016/j.entcs.2015.06.008

stochastic modelling and parameter synthesis
https://doi.org/10.1007/978-3-642-39799-8_7

robustness analysis
https://doi.org/10.1371/journal.pone.0094553

monitoring
https://doi.org/10.1016/j.ic.2014.01.012
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The End

Thank You for your attention.
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