

Visual Analytics in Bio-Medical Applications

Renata Raidou rraidou@cg.tuwien.ac.at

Institute of Visual Computing & Human-Centered Technology, TU Wien, Austria

 "Visual Analytics is the science of analytical reasoning supported by a highly interactive visual interface." [Wong and Thomas 2004]

 "Visual Analytics combines automated analysis techniques with interactive visualisations for an effective understanding, reasoning and decision making on the basis of very large and complex datasets" [Keim 2010]

Visual Analytics Process

- First step: preprocess and transform data
 - Data cleaning, normalization, grouping, data fusion
- Automated methods
 - + Scale well
 - Get stuck in local optima
 - Run in a black box fashion
- Visualization
 - + Interactive data analysis
 - Scalability
- Visual Analytics integrates both
 - Tied together by the user
 - Alternating between visual and automatic methods

Goals of Visual Analytics (VA)

Creation of tools and techniques to enable users to:

 Synthesize information and derive insight from massive, dynamic, ambiguous, and often conflicting data

Detect the expected and discover the unexpected

- Provide timely, defensible, and understandable assessments
- Communicate these assessment effectively for action

Visual Analytics

-46

Why Graphics?

Figures are richer; provide more information with less clutter and in less space.

Figures provide the 'Gestalt' effect: they give an overview; make structure more visible.

Figures are more accessible, easier to understand, faster to grasp, more comprehensible, more memorable, more fun, and less formal.

Why Graphics?

"The art of making the unseen visible" [Clifford Pickover]

8

Statistics vs. Visualization: Anscombe's Quartet

Anscombe's quartet

I		II		III		IV	
х	У	х	у	х	У	х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Statistics profile is the same for all!

Property	Value
Mean of x in each case	9 (exact)
Variance of x in each case	11 (exact)
Mean of y in each case	7.50 (to 2 decimal places)
Variance of y in each case	4.122 or 4.127 (to 3 decimal places)
Correlation between x and y in each case	0.816 (to 3 decimal places)
Linear regression line in each case	y=3.00+0.500x (to 2 and 3 decimal places, respectively)

Anscombe's Quartet

Four datasets that have identical simple statistical properties, yet appear very different when graphed.

Wikimedia Commons

J.
and a

Property	Value
Mean of x in each case	9 (exact)
Variance of <i>x</i> in each case	11 (exact)
Mean of y in each case	7.50 (to 2 decimal places)
Variance of y in each case	4.122 or 4.127 (to 3 decimal places)
Correlation between <i>x</i> and <i>y</i> in each case	0.816 (to 3 decimal places)
Linear regression line in each case	y=3.00+0.500x (to 2 and 3 decimal places, respectively)

Visualization Can Be Biased

[Ward, Grinstein, Keim 2011]

The same data plotted with different scales is perceived dramatically differently.

Mantras

Overview first, zoom/filter, details on demand

[Shneiderman, 1996]

Analyze first, show the important, zoom/filter, analyze further, details on demand ^[Keim, 2006]

Interactive Visualization

Renata Raidou

Cognition and Perception

- Cognition: the mental processes which assist us to remember, think, know, judge, solve problems, etc.
- Perception: the process by which we interpret the things around us through sensory stimuli.

Renata Raidou

Data Mining Definition

Automatic algorithmic extraction of valuable information from raw data

Descriptive vs. Predictive tasks

Knowledge Discovery and Data Mining (KDD)

Semi or fully automated analysis of massive data sets

Contributions are more about general methodologies

- Black-box methods in the hands of end users
 - Users need to understand the algorithms for using them
 - What attributes to use? What similarity measure? etc.
 - Often trial and error

The Ability Matrix

	Data Storage					
mpute	Numerical		Insight is generated by the human – not the computer!			
ce of a Co	Searching/Finding		Planning Diagnosis			
formanc		LOBIC	Prediction Cognition			
Per			Common Knowledge Creativity			
	Performance of a Human					

adapted from Daniel Keim, Uni. Konstanz

Traditional Data Mining vs. Visual Analysis Processes

WIEN

Machine Learning

A branch of artificial intelligence, concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data.

As intelligence requires knowledge, it is necessary for the computers to acquire knowledge.

Training and testing

Training and testing

Training is the process of making the system able to learn.

- No "free-lunch" rule:
 - Training set and testing set come from the same distribution
 - Need to make some assumptions or bias

Algorithms

Semi-supervised learning

Machine learning structure

Supervised learning

Machine learning structure

Unsupervised learning

Deep Learning

Construct layers of increasingly meaningful representations of the data

Visual Analytics

• Data \rightarrow Dealing with very large, diverse, variable quality datasets

• Users \rightarrow Meeting the needs of the users

• Design \rightarrow Assisting designers of visual analytic systems

• Technology \rightarrow Providing the necessary infrastructure

Visual Analytics Examples in Prostate Cancer RT

Visual Analytics for :

... Tumor Tissue Characterization and Organ at Risk
Segmentation
 Research and Treatment Planning in RT

2. ... Exploring Organ Variability for RT \rightarrow Research and Treatment Planning in RT

Background: Prostate Cancer

WHO 2018 18.1 M Cancer Cases 9.6 M Cancer Deaths

Prostate Cancer 1 out of 6 men

60% of patients receive radiotherapy treatment

Tailoring the Dose to Tumor Characteristics

WIEN

Medical Imaging!

RT Pipeline

[Schlachter, Raidou et al. 2019 STAR CGF]

RT Pipeline

[Schlachter, Raidou et al. 2019 STAR CGF]

RT Pipeline

[Schlachter, Raidou et al. 2019 STAR CGF]

Visual Analytics Examples

Visual Analytics for :

1. ... Tumor Tissue Characterization

2. and Organ at Risk Segmentation

Tumors vs. Healthy Organs (at Risk)

WIEN

Tumors vs. Healthy Organs (at Risk)

WIEN

Exploration and analysis of intra-tumor tissue characteristics

[Feng et al., ECR2015]

Visual Analytics Solution

1. Identification and Exploration of Intra-tumor Regions

1. Identification and Exploration of Intra-tumor Regions

t-Distributed Stochastic Neighborhood Embedding (tSNE) - L. van der Maaten, 2008

PCA vs. t-SNE

1. Identification and Exploration of Intra-tumor Regions

t-Distributed Stochastic Neighborhood Embedding (tSNE) - L. van der Maaten, 2008

1. Identification and Exploration of Intra-tumor Regions

WIEN

Renata Raidou

52

53

WIEN

3. Association to clinical reference data

4. Effect of Variability/Inaccuracy

Applications

- Prostate Tumor Exploration
 - With Histopathological Data → Simple imaging features not enough for GS
 - With Risk Prediction Data \rightarrow Current prediction models are sub-optimal
- Cervical Tumor Exploration
 - Validation of Different Models
- Lung Tumor Exploration
 - Evaluate the importance of multi-modal imaging in region detection
- Smart Feature Selection for Aiding the Design of Classifiers

Applications

- Prostate Tumor Exploration
 - With Histopathological Data → Simple imaging features not enough for GS
 - With Risk Prediction Data \rightarrow Current prediction models are sub-optimal
- Cervical Tumor Exploration
 - Validation of Different Models
- Lung Tumor Exploration
 - Evaluate the importance of multi-modal imaging in region detection
- Smart Feature Selection for Aiding the Design of Classifiers

Aiding the Design of Classifiers for WMH

White Matter Hyperintensities (WMH)

Segmentation for prognosis and disease monitoring

Motivation

- Conventionally: T1 and T2.
- Diffusion MRI can provide additional features [Maillard 2013, Kuijf 2014]. Which features of all?
- Careful selection of features is more important than chosen classification algorithm [Sweeney 2014].
- Currently, this is a black box!
- A new pipeline, to aid the design of WMH classifiers.
- It provides new insight into the entire classification procedure, especially, in the identification of an adequate feature list, and the analysis of the outcome.

Materials

- 20 subjects of the MRBrainS13 challenge.
- Ground truth: manual delineations of WMH.

- ST MR exam: T1-weighted, multi-slice FLAIR, multi-slice IR, singleshot EPI DTI sequence with 45 directions.
- Features: T1, FLAIR, IR, FA, MD, AD, RD, CL, CP, CS and the MNI152normalized spatial coordinates [Kuijf 2014].

Current Method

Our Method

- Interactive exploration of the WMH structures and their intrinsic imaging-derived characteristics.
- Optimal set of features for the classifier is the combination of (T2-FLAIR, MD, RD, FA, Cs) + T1 & MNI152normalized spatial coordinates → IR, AD, CL, CP out!

WIE

As proof-of-concept and for comparison to previous work: k-nearest-neighbor classifiers [Kuijf, 2014] (k = 50, 75, or 100, uniform or distance-based)

Step-by-step Approach and Results

Again with the VA tool

- What was missed?
- How the classifier works?

- How can the classifier be improved?

Step-by-step Approach and Results

- Core is always detected, periphery is missed different TCs?
- Posterior WMHs more often missed.
- For different sized WMHs different features more important.

Conclusions

Aiding the design of tissue classifiers in a "smart" way

Understanding how features affect the result of the classifications

Different parts of WMHs potentially require different features

Better understanding of a complex problem

Tumors vs. Healthy Organs (at Risk)

*****.

Renata Raidou

Manually

Semi-automatically

Automatically

Active Shape Modeling

[Schadewaldt et al., 2013]

Why was it missed? How can it be improved? Awareness/prediction of inaccuracies?

Data

Cohort Average Mesh

Triangle–to–triangle correspondence between subjects $\rightarrow (\mu, \sigma)$

WIEN

Cohort Average Mesh

Settings Selections	Errors Profiles CohortView
	Choose Files model.profile.vik
	Currently loaded files
	model prolle s/k
	Cluster profiles
	+ 11606 triangles
RECORDED WITH	
SCREENCAST () MATIC	

Cohort Error Hierarchy Exploration

Individual Subject Exploration and Analysis

Initial qualitative inspection w.r.t. imaging data

Individual Subject Exploration and Analysis

WIEN

Individual Subject Exploration and Analysis

Conclusions

Visual tool for the exploration and assessment of the results and errors of automated segmentation processes.

Better understanding of how the employed algorithm works.

Going from an entire cohort to single cases.

Comparative Visual Analysis of Pelvic Organ Segmentations

Oliver Reiter¹, Marcel Breeuwer^{2;3}, M. Eduard Gröller^{1;4}, Renata G. Raidou¹

¹Institute of Visual Computing & Human-Centered Technology, TU Wien, Austria ²Eindhoven University of Technology, the Netherlands ³Philips Healthcare Best, the Netherlands ⁴VRVis Research Center, Austria

Motivation

<u>Hypothesis</u>: inaccuracy related to high variability of organs

Schadewaldt et al., 2013

Anatomical Variability Across Patients

Contribution

A web-based framework for:

- easy exploration and detailed analysis of pelvic organ shape variability
- hypothesis generation w.r.t. the impact of shape variability on the performance of segmentation algorithms

for each individual organ and for all organs at the same time.

Tasks and Challenges

- 1. Quantification and Visualization of Organ Shape Variability
 - Per individual organ
 - Across all pelvic organs
 - Quantification requires adequate metrics
- 2. Comparative Visualization of Pelvic Organs
 - Across multiple patients
 - Multiple pelvic organs per patient
 - Organ interfaces

Task 1: Quantification and Visualization of Shape Variability

Shape Variability

Shape descriptors

- Represent shapes as vectors
- Translation/rotation/scale invariance

In this work: no scale invariance, but translation/rotation

Shape Descriptors

- Global feature based
- Graph based
- Zernike moments

[Zhang et al. Survey of 3D Shape Descriptors, 2004]

Spherical Harmonics-based Descriptors

TU

- Decompose spherical function into its harmonics
- Accumulate based on the frequency
- Compute L2 Norm
- Rotation invariant for each frequency component

Result: Shape vector of frequencies

Kazhdan, Funkhouser and Rusinkiewicz, 2003

Dimensionality Reduction

Eight-dimensional shape description vector for each organ

- Dimensionality reduction necessary in order to visualize:
 - PCA for individual organ (within class visualization)
 - t-SNE for multiple organs (between class visualization)

Dimensionality Reduction - MNIST Dataset

2D Visualization of Multiple Organs (t-SNE)

2D Visualization of an Individual Organ (PCA)

PCA plot

Parallel Coordinates Plot

2D Visualization of an Individual Organ (PCA)

PCA plot

Parallel Coordinates Plot
Task 2: Comparative Visualization of Multiple Organs

Dealing with Multiple Organs

Detail-on-Demand View

- TU
- Relative extent of median shape compared to all others: color
 Per-triangle variance: dot glyps

Detail-on-Demand View of Rectum Cohort

Evaluation

- Informal evaluation with an experienced segmentation expert
- "Easy to learn and easy to understand"
- Positively judged as an interesting basis for future work

- Original image data not accessible
- No scale to see the actual size

Limitations

Shape descriptor not suitable for organ interfaces

t-SNE requires experience to find good parameters

Little interaction possibilities in the exploded view

- Compare segmentations of multiple organs across multiple patients
 - Measure and visualize shape variability
 - Comparative visualization of pelvic organs

Quickly identify mis-segmented shapes

Provides quick and easy insight into shape variability

Hypothesis generation for segmentation algorithms performance

Summary

"Visual Analytics combines automated analysis techniques with interactive visualisations for an effective understanding, reasoning and decision making on the basis of very large and complex datasets" [Keim 2010]

Few examples applied on the domain of RT treatment planning

Take-home message

The purpose of computing is insight, not numbers [Hamming, 1962]

The purpose of visualization is insight, not pictures [Shneiderman, 2005]

