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What is Visual Analytics (VA)?

“Visual Analytics is the science of analytical reasoning supported by 
a highly interactive visual interface.” [Wong and Thomas 2004]

“Visual Analytics combines with 
for an effective 

on the basis of
” [Keim 2010]
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Visual Analytics Process

First step: preprocess and transform data

Data cleaning, normalization, grouping, data fusion

+ Scale well

- Get stuck in local optima

- Run in a black box fashion

+ Interactive data analysis

- Scalability

Visual Analytics integrates both

Tied together by the user

Alternating between visual and automatic methods
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Goals of Visual Analytics (VA)

Creation of tools and techniques to enable users to:

Synthesize information and derive insight from massive, dynamic, 
ambiguous, and often conflicting data

Detect the expected and discover the unexpected

Provide timely, defensible, and understandable assessments

Communicate these assessment effectively for action
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Why Graphics?

Figures are richer; provide more information 
with less clutter and in less space.

Figures provide the ‘Gestalt‘ effect: they give 
an overview; make structure more visible.

Figures are more accessible, easier to 
understand, faster to grasp, more 
comprehensible, more memorable, more 
fun, and less formal. 
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Why Graphics?

“The art of making the unseen visible”  [Clifford Pickover]
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Statistics vs. Visualization: Anscombe’s Quartet
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Statistics vs. Visualization: Anscombe’s Quartet

Statistics profile is the same for all!
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Anscombe’s Quartet
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Four datasets that have 
identical simple statistical 
properties, yet appear very 
different when graphed.

Wikimedia Commons



Visualization Can Be Biased
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The same data 
plotted with 
different scales 
is perceived 
dramatically 
differently.

(a) Equally (uniformly) large scale 
in both x and y

(b) Large scale in x

(c) Large scale in y (d) Scale determined by range of 
x- and y-values.

[Ward, Grinstein, Keim 2011]



Mantras

Overview first, zoom/filter, details on demand

Analyze first, show the important, zoom/filter, analyze further,      

details on demand

Renata Raidou 13

[Shneiderman, 1996]

[Keim, 2006] 
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Interactive Visualization
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Cognition and Perception

Cognition: the mental processes which assist us to remember, 
think, know, judge, solve problems, etc.

Perception: the process by which we interpret the things around us 
through sensory stimuli.
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Data Mining Definition

Automatic algorithmic extraction of valuable information 

from raw data

Descriptive vs. Predictive tasks
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Knowledge Discovery and Data Mining (KDD)

Semi or fully automated analysis of massive data sets

Contributions are more about general methodologies

Black-box methods in the hands of end users

Users need to understand the algorithms for using them

What attributes to use? What similarity measure? etc.

Often trial and error
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The Ability Matrix
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adapted from Daniel Keim, Uni. Konstanz 



Traditional Data Mining vs. Visual Analysis Processes
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Machine Learning
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What is machine learning?
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A branch of artificial intelligence, concerned with the design 
and development of algorithms that allow computers to 
evolve behaviors based on empirical data.

As intelligence requires knowledge, it is necessary for the 
computers to acquire knowledge.



Training and testing
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Training and testing
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Training is the process of making the system able to learn.

No “free-lunch” rule:

Training set and testing set come from the same distribution

Need to make some assumptions or bias
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Algorithms
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Supervised learning Unsupervised learning

Semi-supervised learning



Machine learning structure
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Supervised learning



Machine learning structure
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Unsupervised learning



Construct layers of increasingly meaningful representations of the data
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Deep Learning
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Challenges

Data → Dealing with very large, diverse, variable quality datasets

Users →Meeting the needs of the users

Design → Assisting designers of visual analytic systems

Technology → Providing the necessary infrastructure
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Visual Analytics Examples in Prostate Cancer RT

Visual Analytics for : 

1. … Tumor Tissue Characterization and Organ at Risk 
Segmentation→ Research and Treatment Planning in RT

2. … Exploring Organ Variability for RT → Research and Treatment 
Planning in RT
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WHO 2018
18.1 M Cancer Cases 
9.6 M Cancer Deaths

[WHO Report, 2018]

Prostate Cancer
1 out of 6 men

Background: Prostate Cancer
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60% of patients receive radiotherapy treatment
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Rectum

Bladder Prostate
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High dose

Low dose

Medium dose

Tailoring the Dose to Tumor Characteristics
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RT Pipeline
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Dose Plan Review 

& Treatment Evaluation 

Definition of Target 

Volumes & Organs at Risk

Imaging 

Acquisition

Treatment Plan Design 

& Dose Calculation

Image Guided 

Adaptive RT

Setup Verification 

& Treatment

Diagnosis 

& Referral

[Schlachter, Raidou et al. 2019 STAR CGF]



RT Pipeline
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[Schlachter, Raidou et al. 2019 STAR CGF]
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RT Pipeline
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[Schlachter, Raidou et al. 2019 STAR CGF]
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Visual Analytics Examples

Visual Analytics for : 

1. … Tumor Tissue Characterization 

2. and Organ at Risk Segmentation
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Tumors vs. Healthy Organs (at Risk)
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Tumors vs. Healthy Organs (at Risk)
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Exploration and analysis of intra-tumor tissue characteristics
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[Feng et al., ECR2015]
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Visual Analytics Solution
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1. Identification and Exploration of Intra-tumor Regions
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𝒗 = {𝑡𝑡𝑐1, 𝑡𝑡𝑐2, … , 𝑡𝑡𝑐𝑁}

t-Distributed Stochastic Neighborhood Embedding (tSNE) - L. van der Maaten, 2008

Imaging-derived features per voxel 

1. Identification and Exploration of Intra-tumor Regions
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t-SNE PCA

MNIST dataset example

PCA vs. t-SNE

49Renata Raidou



x
x

x

x

x

x x

x

x
x

x

xx

x

x x

x

x
x

x

x x
xx

x

x
x

x

x

x
x

x

x

x

x

1

2

3

1. Identification and Exploration of Intra-tumor Regions
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t-Distributed Stochastic Neighborhood Embedding (tSNE) - L. van der Maaten, 2008

Renata Raidou



1. Identification and Exploration of Intra-tumor Regions
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2. Analysis and Comparison of Intra-tumor Regions
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2. Analysis and Comparison of Intra-tumor Regions
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2. Analysis and Comparison of Intra-tumor Regions

54Renata Raidou



2. Analysis and Comparison of Intra-tumor Regions
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2. Analysis and Comparison of Intra-tumor Regions
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2. Analysis and Comparison of Intra-tumor Regions
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3. Association to clinical reference data
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4. Effect of Variability/Inaccuracy
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Applications

Prostate Tumor Exploration

With Histopathological Data

With Risk Prediction Data

Cervical Tumor Exploration 

Validation of Different Models

Lung Tumor Exploration

Evaluate the importance of multi-modal imaging in region detection

Smart Feature Selection for Aiding the Design of Classifiers

→ Simple imaging features not enough for GS

→ Current prediction models are sub-optimal
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Aiding the Design of Classifiers for WMH

White Matter Hyperintensities (WMH)
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Segmentation for prognosis and disease monitoring
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Motivation

Conventionally: T1 and T2. 

Diffusion MRI can provide additional features [Maillard
2013, Kuijf 2014]. Which features of all?

Careful selection of features is more important than 
chosen classification algorithm [Sweeney 2014].

Currently, this is a black box!

A new pipeline, to aid the design of WMH classifiers. 

It provides new insight into the entire classification 
procedure, especially, in the identification of an adequate 
feature list, and the analysis of the outcome. 
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Materials

20 subjects of the MRBrainS13 challenge. 

Ground truth: manual delineations of WMH.

3T MR exam: T1-weighted, multi-slice FLAIR, multi-slice IR, single-
shot EPI DTI sequence with 45 directions.

Features: T1, FLAIR, IR, FA, MD, AD, RD, CL, CP, CS and the MNI152-
normalized spatial coordinates [Kuijf 2014].
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Current Method
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Subject Data Classification Evaluation
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Our Method
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Subject Data Visual Analytics Features Selection Classification Evaluation
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Step-by-step Approach and Results
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Subject Data Visual Analytics Features Selection Classification Evaluation
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Step-by-step Approach and Results

Interactive exploration of the WMH structures and their intrinsic imaging-derived characteristics. 

Optimal set of features for the classifier is the combination of (T2-FLAIR, MD, RD, FA, Cs) + T1 & MNI152-
normalized spatial coordinates → IR, AD, CL, CP out!

70Renata Raidou



Step-by-step Approach and Results
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Subject Data Visual Analytics Features Selection Classification Evaluation

As proof-of-concept and for comparison to previous work:
k-nearest-neighbor classifiers [Kuijf, 2014] 

(k = 50, 75, or 100, uniform or distance-based)
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Step-by-step Approach and Results
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Subject Data Visual Analytics Features Selection Classification Evaluation

Comparable results with previous automated approaches
Less features than in previous work

(saving scanning and computational time)
Smarter selection of features, not brute-force
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Step-by-step Approach and Results
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Subject Data Visual Analytics Features Selection Classification Evaluation

Again with the VA tool
- What was missed?

- How the classifier works?
- How can the classifier be improved?
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Step-by-step Approach and Results

Core is always detected, periphery is missed – different TCs?

Posterior WMHs more often missed.

For different sized WMHs different features more important.
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Subject Data Visual Analytics Features Selection Classification Evaluation
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Conclusions

Aiding the design of tissue classifiers in a “smart” way

Understanding how features affect the result of the classifications

Different parts of WMHs potentially require different features

Better understanding of a complex problem
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Tumors vs. Healthy Organs (at Risk)
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Manually

Semi-automatically 

Automatically
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Active Shape Modeling
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Prostate
Bladder

Rectum
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Why was it missed?
How can it be improved?

Awareness/prediction of inaccuracies?

[Schadewaldt et al., 2013]
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Data
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Several local quality measures (feature response, triangle area,…)
Segmentation errors calculated from ground truth

Feature Response Profile
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Cohort Average

Subjects

Organs

P B R V P B R V P B R V
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Full Cohort Exploration and Analysis
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Cohort Average Mesh

𝜀1 𝜀2 𝜀3

Triangle−to−triangle correspondence between subjects → (𝜇, 𝜎)
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Full Cohort Exploration and Analysis
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Full Cohort Exploration and Analysis
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Full Cohort Exploration and Analysis
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Cohort Average Mesh

Average profile and standard deviation

𝐀 = (𝛼1, 𝛼2, . . , 𝛼𝑛) 𝐁 = (𝑏1, 𝑏2, . . , 𝑏𝑛) 𝐂 = (𝑐1, 𝑐2, . . , 𝑐𝑛)
peaks?
centered?
neighbors?Renata Raidou



Full Cohort Exploration and Analysis
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Full Cohort Exploration and Analysis
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Cohort Error Hierarchy Exploration
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Individual Subject Exploration and Analysis 

Initial qualitative inspection w.r.t. imaging data 
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Individual Subject Exploration and Analysis 
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Individual Subject Exploration and Analysis 

93Renata Raidou



Individual Subject Exploration and Analysis 
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Conclusions

Visual tool for the exploration and assessment of the results and 
errors of automated segmentation processes.

Better understanding of how the employed algorithm works.

Going from an entire cohort to single cases.

95Renata Raidou



Comparative Visual Analysis of
Pelvic Organ Segmentations

Oliver Reiter1, Marcel Breeuwer2;3, M. Eduard Gröller1;4, Renata G. Raidou1

1Institute of Visual Computing & Human-Centered Technology, TU Wien, Austria
2Eindhoven University of Technology, the Netherlands

3Philips Healthcare Best, the Netherlands
4VRVis Research Center, Austria



Motivation

Hypothesis: inaccuracy related to high variability of organs
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Schadewaldt et al., 2013

rectum
bladder

prostate

sem. vesicles

Anatomical Variability Across Patients

Oliver Reiter



Contribution

A web-based framework for:

1. easy exploration and detailed analysis of pelvic organ shape 
variability

2. hypothesis generation w.r.t. the impact of shape variability on the 
performance of segmentation algorithms

for each individual organ and for all organs at the same time.
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Tasks and Challenges

1. Quantification and Visualization of Organ Shape Variability
■ Per individual organ
■ Across all pelvic organs
■ Quantification requires adequate metrics

2. Comparative Visualization of Pelvic Organs
■ Across multiple patients
■ Multiple pelvic organs per patient
■ Organ interfaces
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Task 1: Quantification and Visualization of Shape Variability
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Shape Variability

■ Shape descriptors
■ Represent shapes as vectors
■ Translation/rotation/scale invariance

■ In this work: no scale invariance, but translation/rotation
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Shape Descriptors

■ Global feature based

■ Graph based

■ Zernike moments

[Zhang et al. Survey of 3D Shape Descriptors, 2004]
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Spherical Harmonics-based Descriptors

■ Decompose spherical function into its
harmonics

■ Accumulate based on the frequency
■ Compute L2 Norm
■ Rotation invariant for each frequency

component

■ Result: Shape vector of frequencies

Kazhdan, Funkhouser and Rusinkiewicz, 2003
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Dimensionality Reduction

■ Eight-dimensional shape description vector for each organ

■ Dimensionality reduction necessary in order to visualize:
■ PCA for individual organ (within class visualization)
■ t-SNE for multiple organs (between class visualization)
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Dimensionality Reduction - MNIST Dataset
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t-SNE PCA
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2D Visualization of Multiple Organs (t-SNE)
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prostate

sem. vesicles

rectum
bladder
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2D Visualization of an Individual Organ (PCA)

107

PCA plot Parallel Coordinates Plot

(Bladder)
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2D Visualization of an Individual Organ (PCA)
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PCA plot

(Rectum)

Parallel Coordinates Plot
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Task 2: Comparative Visualization of Multiple Organs
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Dealing with Multiple Organs

■ Show median shape per organ
■ Display relative position
■ Preserve context of 2D visualization
■ Show connections (interfaces)
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prostate

sem. vesicles

rectum
bladder

Oliver Reiter



Detail-on-Demand View

■ Relative extent of median shape compared to all others: color
■ Per-triangle variance: dot glyps

111Oliver Reiter



Detail-on-Demand View of Rectum Cohort
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Evaluation
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■ Informal evaluation with an experienced segmentation expert
■ “Easy to learn and easy to understand”
■ Positively judged as an interesting basis for future work

■ Original image data not accessible
■ No scale to see the actual size

Oliver Reiter



Limitations

■ Shape descriptor not suitable for organ interfaces

■ t-SNE requires experience to find good parameters

■ Little interaction possibilities in the exploded view
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Conclusions

■ Compare segmentations of multiple organs across multiple 
patients

■ Measure and visualize shape variability
■ Comparative visualization of pelvic organs

■ Quickly identify mis-segmented shapes

■ Provides quick and easy insight into shape variability

■ Hypothesis generation for segmentation algorithms performance
115Oliver Reiter



Summary

“Visual Analytics combines with 
for an effective 

on the basis of
” [Keim 2010]

Few examples applied on the domain of RT treatment planning
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Take-home message

The purpose of computing is insight, 
not numbers [Hamming, 1962 ] 

The purpose of visualization is insight, 
not pictures [Shneiderman, 2005]
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