Introduction to Visual Data Science High-Dimensional Data Visualization & Predictive Analytics

Manuela Waldner

Institute of Visual Computing & Human-Centered Technology, TU Wien, Austria

The Visual Data Science Process

PRESENTATION

<u>Communicate</u> the findings with key stakeholders using plots and interactive visualizations.

PREDICTIVE MODELING

<u>Train</u> machine learning models, <u>evaluate</u> their performance, and <u>use</u> them to make predictions.

06

DATA EXPLORATION

Form hypotheses about your defined problem by **visually** analyzing the data.

FEATURE ENGINEERING

03

04

<u>Select</u> important features and <u>construct</u> more meaningful ones using the raw data that you have.

The Data Science Process

Interactive Analysis of Big Data

What is big data?

Кеу	Value
Key 1	Value 1
Key 2	Value 2
Key 3	Value 3

Key	Variable 1	Variable 2	
Key 1	Value 1	Value 1	
Key 2	Value 2	Value 2	
Key 3	Value 3	Value 3	

.... billions of records

.... thousands of variables

 \rightarrow tall data \rightarrow wide data

[Heer & Kandel, Interactive Analysis of Big Data, ACM XRDS 2012]

Side Note: Features

From machine learning / pattern recognition:

- Measurable property of observed phenomenon
- Vectors (can be high-dimensional!)
- In information visualization:
 - Attributes / variables / (data) dimensions

Image features

Natural language processing

Gene expression data

Finance / economy

Image features

- "bag of words"
- Vocabulary of visual words
- Example: MNIST
 - 10,000 hand-written digits
 - 28x28 pixels → 784-dimensional feature vector (intensity values) per image

7

https://www.tensorflow.org

Image features

- Natural language processing
 - Vector space model:
 - Dimensions: terms
 - Vectors: documents or queries

Natual Language Processing Pipeline

WIEN

Document-Term Matrix

Bag of words: orderless representation!

Document is represented by vector of term weights (e.g., number of term occurrences)

 Word is represented by vector of document weights (e.g., number of occurrences in documents)

Word Embeddings

https://www.tensorflow.org/tutorials/representation/word2vec

Image features

Natural language processing

- Gene expression data
 - Dimensions: genes
 - Samples: experimental conditions / species /...

http://cancerres.aacrjournals.org/content/64/23/8558

Curse of Dimensionality

- Efficiency of many algorithms depend on the number of dimensions
- With increasing number of dimensions, data becomes sparse
 - Distances increase
 - Nearest neighbors?

0

Anomalies?

Curse of Dimensionality

- Efficiency of many algorithms depend on the number of dimensions
- With increasing number of dimensions, data becomes sparse
- Number of required training samples grows exponentially with the number of dimensions
 - Rule of thumb: 5 samples
 per dimension minimum

Visually inspect the features!

Recap: Multivariate Data Visualization Techniques

Example: Iris dataset

3 species:

Wikipedia: Iris flower data set

- 50 samples per species
- 4 features: length and width of sepals and petals

Multi-Dimensional Data Visualization Techniques

Radar Chart

sepal length (cm)

Scatterplot Matrix

Chernoff Faces

	51 52 53 54 55 TO TO TO TO	101 102 103 104 105
678910 ©©©©©©	56 57 58 59 60 ම ම ම ම ම	
11 12 13 14 15 ම ම ම ම ම	61 62 63 64 65 ଡ ଡ ଡ ଡ	111 112 113 114 115 🐨 🐨 🐨 🐨 🐨
16 17 18 19 20 © © © © ©	66 67 68 69 70 T T T T	116 117 118 119 120
21 22 23 24 25 C C C C C	71 72 73 74 75 T T T T T T T T T T T T T T T T T T T	121 122 123 124 125
26 27 28 29 30	16 11 78 79 80 T T T T T T	126 127 128 129 130
31 32 33 34 35 © © © © ©	81 82 83 84 85 © © © © ©	131 132 133 134 135 136 136 136 136 137 138 134 135 138 139 139 139
36 37 <mark>38 39 40</mark>	86 87 88 89 90 TO TO TO TO	136 137 138 139 140
41 42 43 44 45 © © © © ©	91 92 93 94 95 ම ම ම ම	141 142 143 144 145
46 47 48 49 50 • • • • • • •	96 97 98 99 100 ©	146 147 148 149 150
setosa	versicolor	virginica

[Icke & Sklar, 2009]

Scalability problems!

Example: Scatterplot Matrix

19 dimensions

~100 dimensions

Approaches

Feature selection

- Selecting a subset of existing features without a transformation
- Using multi-dimensional data visualization techniques

Feature extraction

- Transforming existing features into lower dimensional space
- Using 1D / 2D (/3D)/nD visualization technique

Hybrid approach

- Selecting a subset of existing features
- Transforming feature subset into lower dimensional space

Feature Selection

- Selecting a subset of existing features without a transformation
- Dimensions (or dimension pairs) are ranked based on quality metric:
 - Number of outliers
 - Correlation between pair of dimensions
 - Image-based

••••

- Quality metrics can be combined
- Visualizing one / two / multiple dimensions of the samples

Rank-by-Feature Framework

- Exploratory analysis of multidimensional data
- Based on ranking criteria, axis-parallel projections are ranked
 - 1D ranking criteria: Normality or uniformity (entropy) of distribution, number of potential outliers, number of unique values

Order by	Score Overview	Ordered List		Make Views	Transpose>	
Normality 💌	UACC091 9.981 UACC1273	Rank Column Name	Score 🔻 Min Q1(Median Q3(Max	Mean Stdev 🔺	8
Omnibus Mamonto Tast	M93-007	1 UACC2837	9.981 -2.996 -0.198	0.030 0.262 1.394	-0.005 0.460	
Chinibus Moments Test	M31-054	2 UACC930	9.643 -2.996 -0.094	0.122 0.336 2.996	0.131 0.418	
	KA	3 UACC502	9.563 -2.996 -0.223	-0.020 0.191 1.934	-0.024 0.426	
	UACC3833	4 UACC1097	9.024 -2.996 -0.078	0.166 0.412 2.512	0.158 0.478	
Use Orig Values	M32-001	5 UACC1012	7.448 -2.996 -0.288	0.000 0.207 2.083	-0.058 0.523	
Show Co ol Plot	UACC2534	6 M93-007	6.845 -2.996 -0.198	0.068 0.300 2.875	0.052 0.508	
Cham Hi	TD-1376-3	7 SRS5	6.784 -2.996 -0.198	0.010 0.285 2.890	0.040 0.519	
Show Hi gram	UACC1022	8 UACC1273	6.764 -2.996 -0.151	0.104 0.358 2.538	0.083 0.521	
Show CC curve	TD-1720	9 M93-047	6.658 -2.996 -0.128	0.086 0.322 2.996	0.096 0.427	11
	TD-1730	10 UACC091	6.646 -2.996 -0.223	0.049 0.278 2.497	0.005 0.505	4
	HA-A TC-MA 3.264	11 UACC903	6.604 -2.996 -0.223	-0.010 0.191 2.322	-0.008 0.387	
	3.264	12 UACC3093	6.454 -2.996 -0.301	-0.041 0.270 2.965	-0.054 0.621	
	TD-1730 23	13 WM1791C	6.108 -2.996 -0.151	0.122 0.419 2.996	0.118 0.566	
Ranking	UACC3149	14 UACC2534	5.736 -2.996 -0.329	-0.117 0.215 2.996	0.079 0.572	
J	UACC1012	15 M92-001	5.719 -2.996 -0.329	-0.030 0.166 2.582	-0.073 0.562	
Criteria	R M S 13	16 UACC827	5.421 -2.996 -0.261	0.030 0.300 2.029	-0.001 0.556	ر ملد ا
• · · · · · · · ·	S R 53 S R 55	17 HA-A	5.396 -2.996 -0.446	-0.105 0.191 2.110	-0.153 0.579	
	MCF10A	18 UACC1529	5.380 -2.996 -0.223	0.010 0.296 2.996	0.032 0.544	
	M93-047	19 UACC1256	5.305 -2.996 -0.236	0.058 0.336 2.780	0.047 0.534	-3.00 3.00
	UACC930 UACC2837	20 A-375	5.266 -2.996 -0.274	0.030 0.378 2.743	0.005 0.541	litem Clider
	CRC1634	21 TC-MA	5.147 -2.996 -0.371	-0.186 0.182 2.582	-0.170 0.616	

Rank-by-Feature Framework

2D ranking criteria:

 Correlation coefficient, least squares error for linear regression / curvilinear regression, number of items in region of interest, uniformity of scatterplots

Interactive Dimensionality Reduction

- Predefine number of dimensions to be visualized
- Based on quality metrics
 - Correlation between dimensions
 - Preservation of outliers
 - Cluster quality
- Assigns importance to each dimension

Class Consistency

- Given: points in high-dimensional space with external class labels
- Class consistency: classes are mapped to regions that are visually separable (~ ratio of data points closest to their class centroid)
- Example:
 - 3 classes of wine (color)
 - 13 attributes describing chemical properties

Feature Extraction

- Transforming existing features into lower dimensional space
- Dimensionality reduction
 - Linear
 - Non-linear
- Using 1D / 2D (/3D)/nD visualization technique
- Interactive visualizations can be used to steer feature extraction

Dimensionality Reduction

Linear projection

- Linear transformation projecting data from high-dimensional space to low-dimensional space
- Example: find subset of terms accurately clustering documents
- Techniques:
 - Principal component analysis (PCA)
 - (metric) multi-dimensional scaling (MDS)

Singular Value Decomposition (SVD)

R

- $X = U \Sigma V^T$
- *U*: term-concept matrix
- V^T : concept-document matrix
- k largest singular values and corresponding singular vectors from U and V:
- Concepts are base vectors of semantic space
- Latent semantic indexing = dimensionality reduction by SVD

	1	2	0		0	0	0	0	0		a_{2n}
	T	3	0		2.98862	2 0	0	0	1.49431		a_{3n}
	T	4	0		0	0	13.32555	0	0		a_{4n}
	T	5	0		0	0	0	0	0		a_{5n}
	T	6	1.03	442	1.03442	2 0	0	0	3.10326		a_{6n}
	:	°	:		÷	:	:	:	:	٠.	:
	T_m a_m		1	a_{m2}	a_{m3}	a_{m4}	a_{m5}	a_{m6}		a_{mn}	
	1	U_k									
Γ	C_1	C_2	C_3		C_m						
1	$a_{11} (a_{11})$	a_{12}	a_{13}		a_{1m}						
1	a_{2} a_{21}	a_{22}	a_{23}	•••	a_{2m}						
1	$a_{3} a_{31}$	a_{32}	a_{33}		a_{3m}						
1	4 a ₄₁	a_{42}	a_{43}		a_{4m}	5	_				
1	5 a ₅₁	a_{52}	a_{53}		a_{5m}	2	k				
1	6 a ₆₁	a_{62}	a_{63}		a_{6m}		D D				

Chen et al., Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications, 2013

Principal Component Analysis

- SVD on centered data
- Projecting data onto lower dimensions (= principal components)
- First principal component: as much variability of the data as possible
- Principal components are orthogonal

Visualization of Projected Data

[Brehmer et al., 2014]

Scatterplot visualization:

- Color-coded according to classes (if available)
- Well suited to:
 - Detect / verify / name clusters
 - Detect outliers
 - Match clusters and classes
- Example: Iris data set (PCA)

http://projector.tensorflow.org/

MNIST PCA Example

PCA with Star Glyphs (Iris Dataset)

ΕN

sepal length (cm)

sepal width (cm)

petal length (cm)

petal width (cm)

WIEN

Interactive PCA-based Visual Analytics

Star Coordinates

- Curvilinear coordinate system
 Items represented as points:
 - Sum of all unit vectors on each coordinate $u_i = (u_{xi}, u_{yi})$
 - Multiplied by value of data element
 d_j for that coordinate
 - $P_j(x,y) =$ $\begin{bmatrix} o_x + \sum_{i=1}^n u_{xi}(d_{ji} min_i), \\ o_y + \sum_{i=1}^n u_{yi}(d_{ji} min_i) \end{bmatrix}$

Star Coordinates

Star Coordinates

Transformations of axes:

- Scaling length of axis
 → changing contribution of dimension
- Rotation of axis vector
 → change correlation
 with other columns
- Switching off coordinates
 → "feature selection"

Dust & Magnet

- Dimensions: magnets
- Items: dust particles
- Based on attraction forces

Dimensionality Reduction

Linear dimensionality reduction

- Assumes that there is a lower dimensional linear subspace
- Finds a linear projection of the data

Non-linear dimensionality reduction

- Low-dimensional surface embedded non-linearly in high-dimensional space ("manifold")
- Preserves the neighborhood information
 - Locally linear
 - Pairwise distances

"swiss roll" http://scikit-learn.org

Pairwise Similarities

Cosine similarity:

- Corpus is represented by a set of vectors in vector space (axes: terms)
- Document similarity is defined by cosine similarity between the document vectors

Cosine similarity illustrated. $sim(d_1, d_2) = cos \theta$. http://nlp.stanford.edu/IRbook/html/htmledition/dot-products-1.html

Document similarity matrix

https://github.com/utkuozbulak/unsupervisedlearning-documentclustering/blob/master/README.md

38

Multi-Dimensional Scaling

Computation of low-dimensional embedding Y that best preserves pair-wise distances between data points X

•
$$Cost = \sum_{i < j} (d_{ij} - \delta_i)$$

• $d_{ij} = ||x_i - x_j||^2$
• $\delta_{ij} = ||y_i - y_j||^2$

Euclidean distances: MDS equivalent to PCA

https://github.com/utkuozbulak/unsupervisedlearning-documentclustering/blob/master/README.md

- Example: OECD countries:
 - 36 countries
 - 8 dimensions

MDS

)		Denmark		PROJECTION Edit projection Display dendrogram 🗹 Display errors 🗹 Display labels
	• Swed • Iceland • Australia	en Finland • Netherlands • Belgium		SELECTIONS
	Switzerland			create selection from I sample
5	Canaua New Zealand	Germany Ireland Czech Republic	• Japan	Agglomerative
	Austria United States		- 10164	Clusters cluctoring
	• United Ki	ngdom • Slovenia • Poland		Clustering
13	@ Israel	Eston		Cluster 1 Cluster 2 Cluster 3 10 samples 9 samples 4 samples
	Cluxembourg	Portugal 1 sample Cluster 1 10 samples Cluster 3 4 samples MEAN DENSITY Educational attainment 35 88 46	ry.	Cluster 4 4 samples Samples Dimensions
		Employees working ve 9.3 8.9 25		DIMENSIONS
	Chile	Life satisfaction 52 5.9 6.5 Self-reported health 50 52 65 Student skills 490 510 430 Time devoted to leisur 15 15 14 Years in education 18 17 16	• Russian Federatic	Educational attainment 32 94 Employees working very long hours 0.17 43.29 Life expectancy 69 82.8
	®Brazil	 Portugal 		Life satisfaction 4.7 7.8
	• Mexico			Self-reported health 30 90
				Student skills 402 542
				Time devoted to leisure and personal care 13.42
proj	ection	urkey		Years in education 14.1 19.7

Inspection techniques: dimension heatmap on projection

Inspection techniques: projection errors

White traces: higher similarity in high-dimensional space

Gray traces: lower similarity in highdimensional space

Inspection techniques: comparison of group selections

t-SNE

t-Distributed Stochastic Neighbor Embedding

- Input: matrix of pair-wise similarities
- Similarities presented as joint probability matrix P:

$$p_{ij} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma^2)}{\sum_{k \neq l} \exp(-\|x_k - x_l\|^2 / 2\sigma^2)}.$$

• Low-dimensional conditional probability matrix Q using Student-t distribution: $(1 + || y_i - y_j ||^2)^{-1}$

$$q_{ij} = \frac{1}{\sum_{k \neq l} (1 + ||y_k - y_l||^2)^{-1}}.$$

[van der Maaten and Hinton, 2008]

t-SNE

- Goal: find a low-dimensional data representation that minimizes the mismatch between p_{ji} and q_{ji}
- Minimization of sum of Kullback-Leibler divergences over all data points using a gradient descent method:

$$C = KL(P \parallel Q) = \sum_{i} \sum_{j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}.$$

Can be implemented via Barnes-Hut approximations

[van der Maaten and Hinton, 2008]

MNIST t-SNE Example

Perplexity: 25 Learning rate: 10 Iterations: 342

÷.

Tensorflow Embedding Projector: word2vec 10K

Hybrid Approaches

- Dimensionality reduction often unwanted because domain knowledge is required to understand which dimension combinations make sense
- Combination of feature selection and feature extraction
- Feature selection:
 - User selection based on visual analysis
 - Quality metrics
- Feature extraction is performed on selected dimensions
- Using multi-dimensional data visualization techniques

Example: SeekAView

Example: 1995 US FBI Crime report (147 dimensions, 2000+ items)

[Krause et al., 2007]

The Data Science Process

Predictive Models

Why do we need visualization?

- Evaluate: Validation and comparison
- Train: Model improvement and training
- Make predictions
 - AI interpretability and explainability

Why do we need visualization?

Evaluate: Validation and comparison

- Train: Model improvement and training
- Make predictions
 - AI interpretability and explainability

Evaluation of Classifier Accuracy

Confusion Matrix

https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

Evaluation of Classifier Accuracy: Scatterplots

Training point • Testing point •

Input data

https://scikit-learn.org/stable/ auto_examples/classification/ plot_classifier_comparison.html

Manuela Waldner

Nearest Neighbors

Naive Bayes

Linear SVM

Convolutional Neural Networks

WIEN

Convolutional Neural Networks

WIEN

Inspecting Training Effects [Rauber et al. 2016]

CNN Code Projection

J,°

Saul.

Why do we need visualization?

- Evaluate: Validation and comparison
- Train: Model improvement and training
- Make predictions
 - AI interpretability and explainability

Train SVM

- Document classification for a given query
 - Relevant
 - Irrelevant
- Samples = documents
 - Labeled
 - Unlabeled
- Visualizes SVM decision boundary

Train Naïve Bayes

Train Naïve Bayes

Train Naïve Bayes

Predictive Visual Analytics

Why do we need visualization?

- Evaluate: Validation and comparison
- Train: Model improvement and training
- Make predictions
 - Al interpretability and explainability

The extent to which a cause and effect can be observed within a system

The extent to which the **internal** mechanics of a machine learning system can be explained in human terms

Interpretability

- Partial dependence plot
 - Assessing influence of a feature on the prediction
 - Shows marginal effect a feature has on predicted outcome
 - Based on averages in training data:

Partial Dependence Plot

https://christophm.github.io/interpretable-ml-book/pdp.html

Interactively testing scenarios:

Interactive Partial Dependence

Patient:	5754	Fruth:	1 0	rigina	al: <mark>0.7</mark>	71000) Cur	rent:	0.7	'100
Show Neigh	nbors Sort	by: Weig	ht Rel	evance	Inc. Ris	sk Dec.	Risk			
Predictiv	e Risk Col	or Kev								
,	e mak oo	or reg.								
0.0 0.	1 0.2	0.3	0.4	0.5	0.6	0.7	0.8	3 0	.9	1.0
Globulir	lab (0.022	:8)					\frown			
<			,		3.0	D1	3.20			>
2.3	2.4 2.5	5 2.6	2.7	2.8 2	2.9 3.0	0 3.1	3.2	3.3	3.4	3.5
	unty vital (D	mi) (0.15	1)							
		6	ģ	1	0 1	2	14	16	18	
Calcium	i lab (0.022	2)	0	'	0	12	14	10	10	
<	,	, 						9.77	9.9	35) >
8.6	8.8	9.0		9.2	9.4	1	9.6	9.8	~	10.0
bmi vita	(bmi) (0.04	150)						~		
<							32.3	33.9		>
23 24	25 2	6 27	28	29	30	31 3	2 33	34	35	
Glucose	ab (0.045	7)	_							
<	96.5		110			100			150	>
eGFR la	90 5 (0.0360)	100	110	1	20	130	14	0	150)
<	5 (0.0000)								59.0	60 3
48 49	50 5	51 52	53	54	55	56	57	58	59	60
Alkaline	Phosphat	ase lab (0.0163	3)						
<			74.1	(82)						>
50	60	70		80	90		100	1	10	
Anion G	ap lab (0.0	236)				-				
<				10.3		_ (1	2)			>
7	8	9	10)	11	1	2	13		14

Explainability

Feature visualization:

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

Feature visualization allows us to see how GoogLeNet[1], trained on the ImageNet[2] dataset, builds up its understanding of images over many layers. Visualizations of all channels are available in the appendix.

Explainability

Feature visualization:

Dataset Examples show us what neurons respond to in practice

Optimization isolates the causes of behavior from mere correlations. A neuron may not be detecting what you initially thought.

Baseball—or stripes? mixed4a, Unit 6

Animal faces—or snouts? mixed4a, Unit 240

Clouds—or fluffiness? mixed4a, Unit 453

Buildings—or sky? mixed4a, Unit 492

Explainability

Feature visualizations and attribution maps:

Manuela Waldner

https://distill.pub/2018/building-blocks/

Data exploration / scalable visualization

- Perceptual scalability: model-based / aggregate visualization
- Interactive scalability: online aggregation, aggregate queries, data tiles
- Feature engineering / high-dimensional data visualization
 - Feature selection
 - Feature extraction (dimensionality reduction)
 - Hybrid approach
- Predictive visual analytics
 - Supervised machine learning (regression, classification)
 - Evaluation, training, interpretability & explainability

- Liu et al., Visualizing High-Dimensional Data: Advances in the Past Decade, EuroVis 2015 State of the Art Report
- Brehmer, M., Sedlmair, M., Ingram, S., & Munzner, T. (2014, November). Visualizing dimensionally-reduced data: Interviews with analysts and a characterization of task sequences. In Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization (pp. 1-8). ACM.
- Bertini, E., Tatu, A., & Keim, D. (2011). Quality metrics in high-dimensional data visualization: An overview and systematization. *IEEE Transactions on Visualization and Computer Graphics*, 17(12), 2203-2212.
- Seo, J., & Shneiderman, B. (2005). A rank-by-feature framework for interactive exploration of multidimensional data. Information visualization, 4(2), 96-113.
- Sips, M., Neubert, B., Lewis, J. P., & Hanrahan, P. (2009, June). Selecting good views of high-dimensional data using class consistency. In *Computer Graphics Forum* (Vol. 28, No. 3, pp. 831-838). Blackwell Publishing Ltd.
- Johansson, S., & Johansson, J. (2009). Interactive dimensionality reduction through user-defined combinations of quality metrics. *IEEE transactions on visualization and computer graphics*, 15(6), 993-1000.

- Tatu, A., Albuquerque, G., Eisemann, M., Schneidewind, J., Theisel, H., Magnork, M., & Keim, D. (2009, October). Combining automated analysis and visualization techniques for effective exploration of highdimensional data. In Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium on (pp. 59-66). IEEE
- Molchanov, V., & Linsen, L. (2014). Interactive Design of Multidimensional Data Projection Layout.
- Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W., & Chang, R. (2009, June). iPCA: An Interactive System for PCA-based Visual Analytics. In *Computer Graphics Forum* (Vol. 28, No. 3, pp. 767-774). Blackwell Publishing Ltd.
- Wise, J. A., Thomas, J. J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., & Crow, V. (1995, October).
 Visualizing the non-visual: Spatial analysis and interaction with information from text documents. In Information Visualization, 1995. Proceedings. (pp. 51-58). IEEE.
- Fried, D., & Kobourov, S. G. (2014, March). Maps of computer science. In Visualization Symposium (PacificVis), 2014 IEEE Pacific (pp. 113-120). IEEE.
- Stahnke, J., Dörk, M., Müller, B., & Thom, A. (2016). Probing projections: Interaction techniques for interpreting arrangements and errors of dimensionality reductions. *IEEE transactions on visualization and* computer graphics, 22(1), 629-638.

- Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579-2605.
- Rieck, B., & Leitte, H. (2015, June). Persistent homology for the evaluation of dimensionality reduction schemes. In *Computer Graphics Forum* (Vol. 34, No. 3, pp. 431-440).
- Endert, A., Fiaux, P., & North, C. (2012, May). Semantic interaction for visual text analytics. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 473-482). ACM.
- Turkay, C., Filzmoser, P., & Hauser, H. (2011). Brushing dimensions-a dual visual analysis model for highdimensional data. *IEEE transactions on visualization and computer graphics*, 17(12), 2591-2599.
- Yang, J., Ward, M. O., & Rundensteiner, E. A. (2002). Visual hierarchical dimension reduction for exploration of high dimensional datasets.
- Krause, J., Dasgupta, A., Fekete, J. D., & Bertini, E. (2016, October). SeekAView: An intelligent dimensionality reduction strategy for navigating high-dimensional data spaces. In Large Data Analysis and Visualization (LDAV), 2016 IEEE 6th Symposium on (pp. 11-19). IEEE.
- Wilkinson, L., Anand, A., & Grossman, R. (2005). Graph-theoretic scagnostics.

- Jiang, L., Liu, S., & Chen, C. (2018). Recent research advances on interactive machine learning. Journal of Visualization, 1-17.
- Sacha, D., Zhang, L., Sedlmair, M., Lee, J. A., Peltonen, J., Weiskopf, D., ... & Keim, D. A. (2017). Visual interaction with dimensionality reduction: A structured literature analysis. *IEEE transactions on visualization and computer graphics*, 23(1), 241-250.
- Endert, A., Ribarsky, W., Turkay, C., Wong, B. W., Nabney, I., Blanco, I. D., & Rossi, F. (2017, December). The state of the art in integrating machine learning into visual analytics. In *Computer Graphics Forum* (Vol. 36, No. 8, pp. 458-486).
- Fails, J. A., & Olsen Jr, D. R. (2003, January). Interactive machine learning. In Proceedings of the 8th international conference on Intelligent user interfaces (pp. 39-45). ACM.
- Kandogan, E. (2001, August). Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 107-116). ACM.
- Zhao, Y., Luo, F., Chen, M., Wang, Y., Xia, J., Zhou, F., ... & Chen, W. (2019). Evaluating multi-dimensional visualizations for understanding fuzzy clusters. *IEEE transactions on visualization and computer graphics*, 25(1), 12-21.

- Liu, S., Wang, X., Liu, M., & Zhu, J. (2017). Towards better analysis of machine learning models: A visual analytics perspective. Visual Informatics, 1(1), 48-56.
- Kriegel, H. P., Kröger, P., & Zimek, A. (2009). Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data (TKDD), 3(1), 1.
- Hu, J., & Pei, J. (2018). Subspace multi-clustering: a review. Knowledge and Information Systems, 56(2), 257-284.
- Nam, J. E., & Mueller, K. (2013). TripAdvisor^{ND}: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail. *IEEE transactions on visualization and computer graphics*, 19(2), 291-305.
- Friedman, J. H., & Stuetzle, W. (2002). John W. Tukey's work on interactive graphics. The Annals of Statistics, 30(6), 1629-1639.

