Introduction to Visual Data Science **High-Dimensional Data Visualization & Predictive Analytics**

Manuela Waldner

Institute of Visual Computing & Human-Centered Technology, TU Wien, Austria

The Visual Data Science Process

PRESENTATION

Communicate the findings with key stakeholders using plots and interactive visualizations.

PREDICTIVE MODELING

them to make predictions. **Train** machine learning models, **evaluate** their performance, and **use**

04

oblem by visuall

no the data

06

DATA EXPLORATION

Form hypotheses about your defined problem by **visually** analyzing the data.

FEATURE ENGINEERING

03

Select important features and **construct** more meaningful ones using the raw data that you have.

The Data Science Process

Interactive Analysis of Big Data

■ What is big data?

.... billions of records

- thousands of variables
- \rightarrow tall data **wide** data

[Heer & Kandel, Interactive Analysis of Big Data, ACM XRDS 2012]

Side Note: Features

Fig. 5 From machine learning / pattern recognition:

- Measurable property of observed phenomenon $\mathcal{L}(\mathcal{L})$
- Vectors (can be high-dimensional!)
- \blacksquare In information visualization:
	- **Attributes / variables / (data) dimensions**

Image features

■ Natural language processing

Gene expression data

Finance / economy

Image features

- D_n, bag of words"
- **Nocabulary of visual words**
- **Example: MNIST**
	- 10,000 hand-written digits
	- 28x28 pixels \rightarrow 784-dimensional feature vector (intensity values) per image

https://www.tensorflow.org

Image features

- **Natural language processing**
	- **Vector space model:**
		- Dimensions: terms \Box
		- **Vectors: documents or queries**

Natual Language Processing Pipeline

WIEN

Document-Term Matrix

Bag of words: orderless representation!

- Document is represented by vector of term weights (e.g., number of term occurrences)
- Word is represented by vector of document weights (e.g., number of occurrences in documents)

Word Embeddings

https://www.tensorflow.org/tutorials/representation/word2vec

Image features

Natural language processing

- Gene expression data
	- Dimensions: genes
	- Samples: experimental conditions / species /...

http://cancerres.aacrjournals.org/content/64/23/8558

Curse of Dimensionality

- **Efficiency of many algorithms depend on the number of dimensions**
- With increasing number of dimensions, data becomes sparse
	- Distances increase
	- Nearest neighbors?

0

Anomalies?

Curse of Dimensionality

- **Efficiency of many algorithms depend on the number of dimensions**
- With increasing number of dimensions, data becomes sparse
- Number of required training samples grows exponentially with the number of dimensions
	- Rule of thumb: 5 samples per dimension minimum

■ Visually inspect the features!

Recap: Multivariate Data Visualization Techniques

Example: Iris dataset

3 species:

Wikipedia: Iris flower data set

- 50 samples per species
- 4 features: length and width of sepals and petals

Multi-Dimensional Data Visualization Techniques

Radar Chart

sepal length (cm)

[Icke & Sklar, 2009]

Scalability problems!

Manuela Waldner 16

Example: Scatterplot Matrix

19 dimensions $^{\sim}100$ dimensions

Approaches

Feature selection

- Selecting a subset of existing features without a transformation
- Using multi-dimensional data visualization techniques

Feature extraction

- **The Transforming existing features into lower dimensional space**
- **Using 1D / 2D (/3D)/nD visualization technique**

Hybrid approach

- Selecting a subset of existing features
- **The Transforming feature subset into lower dimensional space**

Feature Selection

- Selecting a subset of existing features without a transformation
- Dimensions (or dimension pairs) are ranked based on **quality metric**:
	- **Number of outliers**
	- Correlation between pair of dimensions
	- **Image-based**

...

- Quality metrics can be combined
- Visualizing one / two / multiple dimensions of the samples

Rank-by-Feature Framework

- Exploratory analysis of multidimensional data
- Based on ranking criteria, axis-parallel projections are ranked
	- 1D ranking criteria: Normality or uniformity (entropy) of distribution, number of potential outliers, number of unique values

Rank-by-Feature Framework

■ 2D ranking criteria:

■ Correlation coefficient, least squares error for linear regression / curvilinear regression, number of items in region of interest, uniformity of scatterplots

Interactive Dimensionality Reduction

Predefine number of dimensions to be visualized

- Based on quality metrics
	- **n** Correlation between dimensions
	- **Preservation of outliers**
	- **Cluster quality**
- Assigns importance to each dimension

[Johansson and Johansson, 2009]

Class Consistency

- Given: points in high-dimensional space with external class labels
- Class consistency: classes are mapped to regions that are visually separable (\sim ratio of data points closest to their class centroid)
- **Example:**
	- 3 classes of wine (color)
	- **13 attributes describing** chemical properties

Feature Extraction

- Transforming existing features into lower dimensional space **Dimensionality reduction**
	- Linear
	- **Non-linear**
- Using 1D / 2D (/3D)/nD visualization technique
- \blacksquare Interactive visualizations can be used to steer feature extraction

Dimensionality Reduction

R Linear projection

- Linear transformation projecting data from high-dimensional space to low-dimensional space
- Example: find subset of terms accurately clustering documents
- Techniques:
	- **Principal component analysis (PCA)**
	- (metric) multi-dimensional scaling (MDS) \mathbb{R}^n

Singular Value Decomposition (SVD)

- $X=U\Sigma V^T$
- \blacksquare U: term-concept matrix
- \blacksquare V^T : concept-document matrix
- \blacksquare k largest singular values and corresponding singular vectors from U and V :
- Concepts are base vectors of semantic space
- **Latent semantic indexing** = dimensionality reduction by SVD

Chen et al., Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications, 2013

Principal Component Analysis

- SVD on centered data
- Projecting data onto lower dimensions (= principal components)
- **First principal component: as much variability of the data as** possible
- Principal components are orthogonal

Visualization of Projected Data

[Brehmer et al., 2014]

Scatterplot visualization:

- Color-coded according to classes (if available)
- Well suited to:
	- Detect / verify / name clusters
	- Detect outliers \Box
	- Match clusters and classes \blacksquare
- Example: Iris data set (PCA)

MNIST PCA Example

PCA with Star Glyphs (Iris Dataset)

WIEN

WIEN

Interactive PCA-based Visual Analytics

Star Coordinates

- **Curvilinear coordinate system If Items represented as points:**
	- Sum of all unit vectors on each coordinate $u_i = (u_{xi}, u_{yi})$
	- **Nultiplied by value of data element** d_i for that coordinate

$$
P_j(x, y) =
$$

\n
$$
\left[o_x + \sum_{i=1}^n u_{xi}(d_{ji} - min_i), \right]
$$

\n
$$
o_y + \sum_{i=1}^n u_{yi}(d_{ji} - min_i)
$$

Star Coordinates

Star Coordinates

\blacksquare Transformations of axes:

- Scaling length of axis \rightarrow changing contribution of dimension
- **Rotation of axis vector** \rightarrow change correlation with other columns
- Switching off coordinates \rightarrow "feature selection"

Dust & Magnet

- **Dimensions: magnets**
- **In Items: dust particles**
- Based on attraction forces

Dimensionality Reduction

E Linear dimensionality reduction

- Assumes that there is a lower dimensional linear subspace
- **Finds a linear projection of the data**

\blacksquare Non-linear dimensionality reduction

- Low-dimensional surface embedded non-linearly in high-dimensional space ("manifold")
- **Preserves the neighborhood information**
	- **Locally linear**
	- **Pairwise distances**

"swiss roll" http://scikit-learn.org

Pairwise Similarities

Cosine similarity:

- Corpus is represented by a set of vectors in vector space (axes: terms)
- Document similarity is defined by cosine similarity between the document vectors

Cosine similarity illustrated. $\text{sim}(d_1, d_2) = \cos \theta$. http://nlp.stanford.edu/IRbook/html/htmledition/dot-products-1.html

Document similarity matrix

Multi-Dimensional Scaling

 \blacksquare Computation of low-dimensional embedding Y that best preserves pair-wise distances between data points X

\n- \n
$$
\cos t = \sum_{i < j} (d_{ij} - \delta_{ij})
$$
\n
\n- \n
$$
d_{ij} = ||x_i - x_j||^2
$$
\n
\n- \n
$$
\delta_{ij} = ||y_i - y_j||^2
$$
\n
\n

■ Euclidean distances: MDS equivalent to PCA

https://github.com/utkuozbulak/unsupervisedlearning-documentclustering/blob/master/README.md

- **Example: OECI** countries:
	- 36 countrie \mathcal{L}_{max}
	- **8** dimension

Inspection techniques: dimension heatmap on projection

Manuela Waldner ⁴¹ [Stahnke et al., 2016]

FS -

Cluster 5

9 samples

 0.06

 -1828

43.29

Inspection techniques: projection errors

White traces: higher similarity in high-dimensional space

Gray traces: lower similarity in highdimensional space

■ Inspection techniques: comparison of group selections

t-SNE

- Input: matrix of pair-wise similarities
- Similarities presented as joint probability matrix P :

$$
p_{ij} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma^2)}{\sum_{k \neq l} \exp(-\|x_k - x_l\|^2 / 2\sigma^2)}.
$$

Low-dimensional conditional probability matrix Q using Student-t distribution: $(1 + ||y_i - y_i||^2)^{-1}$ C

$$
lij = \frac{1}{\sum_{k \neq l} (1 + ||y_k - y_l||^2)^{-1}}.
$$

[van der Maaten and Hinton, 2008]

t-SNE

- Goal: find a low-dimensional data representation that minimizes the mismatch between p_{ii} and q_{ii}
- Minimization of sum of Kullback-Leibler divergences over all data points using a gradient descent method:

$$
C = KL(P || Q) = \sum_{i} \sum_{j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}.
$$

■ Can be implemented via Barnes-Hut approximations

[van der Maaten and Hinton, 2008]

MNIST t-SNE Example

Perplexity: 25 Learning rate: 10 Iterations: 342

Manuela Waldner 46

Tensorflow Embedding Projector: word2vec 10K

 10_C

 0.278

0.356

0.363

 0.412

 0.441

0.459 0.459

 0.471 0.473

0.483

0.484 0.485

0.490

0.508

 0.513

0.515

 0.517

0.517

0.528

0.531

0.531

0.533

0.537

0.544 0.546

0.553

0.556

0.557

0.559

0.561

0.561 0.568

0.569

 0.570 0.577

Hybrid Approaches

- Dimensionality reduction often unwanted because domain knowledge is required to understand which dimension combinations make sense
- Combination of feature selection and feature extraction
- **Feature selection:**
	- **User selection based on visual analysis**
	- **Quality metrics**
- Feature extraction is performed on selected dimensions
- Using multi-dimensional data visualization techniques

Example: SeekAView

■ Example: 1995 US FBI Crime report (147 dimensions, 2000+ items)

The Data Science Process

Predictive Models

■ Why do we need visualization?

- Evaluate: Validation and comparison \mathcal{L}^{max}
- Train: Model improvement and training $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
- **Nake predictions**
	- **Al interpretability and explainability**

■ Why do we need visualization?

Evaluate: Validation and comparison \mathbb{R}^n

- Train: Model improvement and training $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
- Make predictions $\mathcal{L}^{\text{max}}_{\text{max}}$
	- **Al interpretability and explainability**

Evaluation of Classifier Accuracy

n Confusion Matrix

https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

Evaluation of Classifier Accuracy: Scatterplots

WIEN

Training point \bullet Testing point o

Input data

https://scikit-learn.org/stable/ auto_examples/classification/ plot_classifier_comparison.html

Manuela Waldner 55

Nearest Neighbors

Naive Bayes

Linear SVM

Convolutional Neural Networks

WIEN

Convolutional Neural Networks

WIEN

Nicolas Grossmann

Inspecting Training Effects [Rauber et al. 2016]

Nicolas Grossmann 585

CNN Code Projection

 \mathbf{r}

English

■ Why do we need visualization?

- Evaluate: Validation and comparison \mathcal{L}^{max}
- **Train: Model improvement and training** \mathbb{R}^n
- **Nake predictions**
	- **Al interpretability and explainability**

Train SVM

- Document classification for a given query
	- Relevant $\mathcal{L}^{\mathcal{L}}$
	- **I**rrelevant
- \blacksquare Samples = documents
	- Labeled
	- **unlabeled**
- **Number** Visualizes SVM decision boundary

Manuela Waldner 61

Train Naïve Bayes

Train Naïve Bayes

Train Naïve Bayes

 $\boxed{\blacktriangleright}$

■ Why do we need visualization?

- Evaluate: Validation and comparison
- Train: Model improvement and training
- **Nake predictions**
	- **AI interpretability and explainability**

The extent to which a cause and effect can be observed within a system

The extent to which the **internal** mechanics of a machine learning system can be explained in human terms

Interpretability

Partial dependence plot

- Assessing influence of a feature on the prediction
- Shows marginal effect a feature has on predicted outcome
- Based on averages in training data:

Partial Dependence Plot

https://christophm.github.io/interpretable-ml-book/pdp.html

n Interactively testing scenarios:

Interactive Partial Dependence

Explainability

Feature visualization:

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

Feature visualization allows us to see how GoogLeNet[1], trained on the ImageNet[2] dataset, builds up its understanding of images over many layers. Visualizations of all channels are available in the appendix.

Explainability

Feature visualization:

Dataset Examples show us what neurons respond to in practice

Optimization isolates the causes of behavior from mere correlations. A neuron may not be detecting what you initially thought.

Baseball-or stripes? mixed4a, Unit 6

Animal faces-or snouts? mixed4a, Unit 240

Clouds-or fluffiness? mixed4a, Unit 453

Buildings-or sky? mixed4a, Unit 492

Explainability

Feature visualizations and attribution maps:

■ Data exploration / scalable visualization

- Perceptual scalability: model-based / aggregate visualization
- Interactive scalability: online aggregation, aggregate queries, data tiles
- Feature engineering / high-dimensional data visualization
	- \blacksquare Feature selection
	- Feature extraction (dimensionality reduction)
	- **Hybrid approach**
- **Predictive visual analytics**
	- Supervised machine learning (regression, classification)
	- Evaluation, training, interpretability & explainability

- Liu et al., **Visualizing High-Dimensional Data: Advances in the Past Decade**, EuroVis 2015 State of the Art Report
- Brehmer, M., Sedlmair, M., Ingram, S., & Munzner, T. (2014, November). **Visualizing dimensionally-reduced data: Interviews with analysts and a characterization of task sequences**. In *Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization* (pp. 1-8). ACM.
- Bertini, E., Tatu, A., & Keim, D. (2011). **Quality metrics in high-dimensional data visualization: An overview and systematization.** *IEEE Transactions on Visualization and Computer Graphics*, *17*(12), 2203-2212.
- Seo, J., & Shneiderman, B. (2005). **A rank-by-feature framework for interactive exploration of multidimensional data**. *Information visualization*, *4*(2), 96-113.
- Sips, M., Neubert, B., Lewis, J. P., & Hanrahan, P. (2009, June). **Selecting good views of high-dimensional data using class consistency**. In *Computer Graphics Forum* (Vol. 28, No. 3, pp. 831-838). Blackwell Publishing Ltd.
- Johansson, S., & Johansson, J. (2009). **Interactive dimensionality reduction through user-defined combinations of quality metrics.** *IEEE transactions on visualization and computer graphics*, *15*(6), 993-1000.

- Tatu, A., Albuquerque, G., Eisemann, M., Schneidewind, J., Theisel, H., Magnork, M., & Keim, D. (2009, October). **Combining automated analysis and visualization techniques for effective exploration of highdimensional data**. In *Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium on* (pp. 59- 66). IEEE
- Molchanov, V., & Linsen, L. (2014). **Interactive Design of Multidimensional Data Projection Layout**.
- Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W., & Chang, R. (2009, June). **iPCA: An Interactive System for PCA-based Visual Analytics**. In *Computer Graphics Forum* (Vol. 28, No. 3, pp. 767-774). Blackwell Publishing Ltd.
- Wise, J. A., Thomas, J. J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., & Crow, V. (1995, October). **Visualizing the non-visual: Spatial analysis and interaction with information from text documents**. In *Information Visualization, 1995. Proceedings.* (pp. 51-58). IEEE.
- Fried, D., & Kobourov, S. G. (2014, March). **Maps of computer science**. In *Visualization Symposium (PacificVis), 2014 IEEE Pacific* (pp. 113-120). IEEE.
- Stahnke, J., Dörk, M., Müller, B., & Thom, A. (2016). **Probing projections: Interaction techniques for interpreting arrangements and errors of dimensionality reductions**. *IEEE transactions on visualization and computer graphics*, *22*(1), 629-638.

- Maaten, L. V. D., & Hinton, G. (2008). **Visualizing data using t-SNE**. *Journal of machine learning research*, *9*(Nov), 2579-2605.
- Rieck, B., & Leitte, H. (2015, June). **Persistent homology for the evaluation of dimensionality reduction schemes.** In *Computer Graphics Forum* (Vol. 34, No. 3, pp. 431-440).
- Endert, A., Fiaux, P., & North, C. (2012, May). **Semantic interaction for visual text analytics.** In *Proceedings of the SIGCHI conference on Human factors in computing systems* (pp. 473-482). ACM.
- Turkay, C., Filzmoser, P., & Hauser, H. (2011). **Brushing dimensions-a dual visual analysis model for highdimensional da**ta. *IEEE transactions on visualization and computer graphics*, *17*(12), 2591-2599.
- Yang, J., Ward, M. O., & Rundensteiner, E. A. (2002). **Visual hierarchical dimension reduction for exploration of high dimensional datasets**.
- Krause, J., Dasgupta, A., Fekete, J. D., & Bertini, E. (2016, October). **SeekAView: An intelligent dimensionality reduction strategy for navigating high-dimensional data spaces.** In *Large Data Analysis and Visualization (LDAV), 2016 IEEE 6th Symposium on* (pp. 11-19). IEEE.
- Wilkinson, L., Anand, A., & Grossman, R. (2005). **Graph-theoretic scagnostics**.

- Jiang, L., Liu, S., & Chen, C. (2018). **Recent research advances on interactive machine learning.** *Journal of Visualization*, 1-17.
- Sacha, D., Zhang, L., Sedlmair, M., Lee, J. A., Peltonen, J., Weiskopf, D., ... & Keim, D. A. (2017). **Visual interaction with dimensionality reduction: A structured literature analysis**. *IEEE transactions on visualization and computer graphics*, *23*(1), 241-250.
- Endert, A., Ribarsky, W., Turkay, C., Wong, B. W., Nabney, I., Blanco, I. D., & Rossi, F. (2017, December). **The state of the art in integrating machine learning into visual analytics**. In *Computer Graphics Forum* (Vol. 36, No. 8, pp. 458-486).
- Fails, J. A., & Olsen Jr, D. R. (2003, January). **Interactive machine learning**. In *Proceedings of the 8th* $\mathcal{L}(\mathcal{L})$ *international conference on Intelligent user interfaces* (pp. 39-45). ACM.
- Kandogan, E. (2001, August). **Visualizing multi-dimensional clusters, trends, and outliers using star coordinates**. In *Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 107-116). ACM.
- Zhao, Y., Luo, F., Chen, M., Wang, Y., Xia, J., Zhou, F., ... & Chen, W. (2019). **Evaluating multi-dimensional visualizations for understanding fuzzy clusters.** *IEEE transactions on visualization and computer graphics*, *25*(1), 12-21.

- Liu, S., Wang, X., Liu, M., & Zhu, J. (2017). **Towards better analysis of machine learning models: A visual analytics perspective**. *Visual Informatics*, *1*(1), 48-56.
- Kriegel, H. P., Kröger, P., & Zimek, A. (2009). **Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering**. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, *3*(1), 1.
- Hu, J., & Pei, J. (2018). **Subspace multi-clustering: a review**. *Knowledge and Information Systems*, *56*(2), 257- 284.
- Nam, J. E., & Mueller, K. (2013). **TripAdvisor^{ND}: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail.** *IEEE transactions on visualization and computer graphics*, *19*(2), 291- 305.
- Friedman, J. H., & Stuetzle, W. (2002). **John W. Tukey's work on interactive graphics**. *The Annals of Statistics*, *30*(6), 1629-1639.

