YAML Ain't Markup Language

T. Pitner, L. Bartek, A. Rambousek. L Grolig
FI MU Brno 2020

YAML: What is it?

e “YAML is a human friendly data serialization standard for all
programming languages.”

https://lyaml.org/ YAML home
https://en.wikipedia.org/wiki/YAML Wikipedia YAML

e Specification (not a formal standard endorsed by ISO or W3C)

https://yaml.org/spec/1.2/spec.html

https://yaml.org/
https://en.wikipedia.org/wiki/YAML
https://yaml.org/spec/1.2/spec.html

YAML: Purpose, Goal

e “YAML Ain’t Markup Language” (abbreviated YAML) is a data
serialization language designed to be human-friendly and work
well with modern programming languages for common
everyday tasks.”

e Yet Another Markup Language

e .yaml or .yml file extensions

YAML.: Design principles

e |t uses Unicode_characters,
o some provide structural information
o rest containing the data itself, so it is a markup.
e YAML achieves a unique cleanness
e Markup is minimal, content is maximal => low overhead and natural look
e Forexample:_
® spaces (indentation) may be used for structure,_
e Kkey: value pairs
e dashes - for “bullet” lists

https://yaml.org/spec/1.2/spec.html#printable%20character//
https://yaml.org/spec/1.2/spec.html#space/indentation/
https://yaml.org/spec/1.2/spec.html#:%20mapping%20value//

YAML: Design priorities

“YAML is easily readable by humans.

YAML data is portable between programming languages.
YAML matches the_native data structures of agile languages.
YAML has a consistent model to support generic tools.
YAML supports one-pass processing.

YAML is expressive and extensible.

YAML is easy to implement and use.”

https://yaml.org/spec/1.2/spec.html#native%20data%20structure//
https://yaml.org/spec/1.2/spec.html#native%20data%20structure//

YAML: Data types

® Three basic primitives
e mappings (hashes/dictionaries),_
® sequences (arrays/lists) and_
e scalars (strings/numbers)

Everything else is a combination of above - and it is enough.

https://yaml.org/spec/1.2/spec.html#mapping//
https://yaml.org/spec/1.2/spec.html#sequence//
https://yaml.org/spec/1.2/spec.html#sequence//
https://yaml.org/spec/1.2/spec.html#scalar//
https://yaml.org/spec/1.2/spec.html#scalar//

YAML: Usage

YAML was specifically created to work well for common use cases
such as:

configuration files,

log files,

interprocess messaging,
cross-language data sharing,

object persistence, and

debugging of complex data structures.

YAML: Interfaces

e allows incremental (event-driven) interfaces
® one-pass interfaces
e thus enables processing of large_documents
(e.g. transaction logs) or
e continuous streams (e.g. feeds from a production machine)

https://yaml.org/spec/1.2/spec.html#document//

YAML: Typing YAML documents

Motivated by Internet Mail (RFC0822)
C-style_escape sequences. This enables ASCII encoding of non-printable or 8-bit
(ISO 8859-1) characters such as_“\x3B”. Non-printable 16-bit Unicode and 32-bit
(ISO/IEC 10646) characters are supported with_escape sequences such as_“\u003B”
and_\U0000003B".

e Asingle_line break is_folded into a single_space,
while_empty lines are interpreted as_line break characters.
This technique allows for paragraphs to be word-wrapped without affecting the_
canonical form of the_scalar content.

https://yaml.org/spec/1.2/spec.html#escaping/in%20double-quoted%20scalars/
https://yaml.org/spec/1.2/spec.html#escaping/in%20double-quoted%20scalars/
https://yaml.org/spec/1.2/spec.html#printable%20character//
https://yaml.org/spec/1.2/spec.html#ns-esc-8-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-8-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-8-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-8-bit
https://yaml.org/spec/1.2/spec.html#printable%20character//
https://yaml.org/spec/1.2/spec.html#escaping/in%20double-quoted%20scalars/
https://yaml.org/spec/1.2/spec.html#escaping/in%20double-quoted%20scalars/
https://yaml.org/spec/1.2/spec.html#ns-esc-16-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-16-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-16-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-16-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-32-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-32-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-32-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-32-bit
https://yaml.org/spec/1.2/spec.html#line%20break//
https://yaml.org/spec/1.2/spec.html#line%20break//
https://yaml.org/spec/1.2/spec.html#line%20folding//
https://yaml.org/spec/1.2/spec.html#line%20folding//
https://yaml.org/spec/1.2/spec.html#space//
https://yaml.org/spec/1.2/spec.html#space//
https://yaml.org/spec/1.2/spec.html#empty%20line//
https://yaml.org/spec/1.2/spec.html#empty%20line//
https://yaml.org/spec/1.2/spec.html#line%20break//
https://yaml.org/spec/1.2/spec.html#line%20break//
https://yaml.org/spec/1.2/spec.html#scalar/canonical%20form/
https://yaml.org/spec/1.2/spec.html#scalar/canonical%20form/
https://yaml.org/spec/1.2/spec.html#scalar//
https://yaml.org/spec/1.2/spec.html#scalar//

YAML vs JSON

YAML's foremost design goals are human readability

and support for_serializing arbitrary_native data structures.

Extremely readable files, but is more complex to generate and parse

YAML can therefore be viewed as a natural superset of JSON, offering improved
human readability and a more complete information model.

e FEvery JSON file is also a valid YAML file.

https://yaml.org/spec/1.2/spec.html#serialize//
https://yaml.org/spec/1.2/spec.html#serialize//
https://yaml.org/spec/1.2/spec.html#native%20data%20structure//
https://yaml.org/spec/1.2/spec.html#native%20data%20structure//

YAML: Collections - Sequence

Example 2.1. Sequence of Scalars
(ball players)

- Mark McGwire
- Sammy Sosa
- Ken Griffey

YAML: Map String -> Number

Example 2.2. Mapping Scalars to Scalars
(player statistics)

hr: 65 # Home runs
avg: 0.278 # Batting average
rbi: 147 # Runs Batted In

... and comments after #

YAML: Map String -> Sequence

Example 2.3. Mapping Scalars to Sequences
(ball clubs in each league)

american:

- Boston Red Sox

- Detroit Tigers

- New York Yankees
national:

- New York Mets

- Chicago Cubs

- Atlanta Braves

YAML: Sequence of 2 maps

Example 2.4. Sequence of Mappings
(players’ statistics)

name: Mark McGwire
hr: 65
avg: 0.278

name: Sammy Sosa
hr: 63
avg: 0.288

YAML: Sequence of sequences

Example 2.5. Sequence of Sequences

- [name , hr, avg]
- [Mark McGwire, 65, 0.278]
- [Sammy Sosa , 63, 0.288]

YAML: Map of Maps

Example 2.6. Mapping of Mappings

Mark McGwire: {hr: 65, avg: 0.278}
Sammy Sosa: {
hr: 63,
avg: 0.288
}

YAML.: Basic syntactic rules

e Entire Unicode character set, except for some_control characters, and may be
encoded in_UTF-8, UTF-16 and UTF-32.

Whitespace indentation is used for denoting structure;_
tab characters are not allowed.

e Comments begin with the_number sign (#),
can start anywhere on a line and continue until the end of the line.
List members are denoted by a leading_hyphen (-) with one member per line.
A list can also be specified by enclosing text in_square brackets ([]) with each
entry separated by commas.

https://en.wikipedia.org/wiki/Control_character
https://en.wikipedia.org/wiki/Control_character
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-32
https://en.wikipedia.org/wiki/UTF-32
https://en.wikipedia.org/wiki/Whitespace_(computer_science)
https://en.wikipedia.org/wiki/Indent_style
https://en.wikipedia.org/wiki/Indent_style
https://en.wikipedia.org/wiki/Tab_character
https://en.wikipedia.org/wiki/Tab_character
https://en.wikipedia.org/wiki/Number_sign
https://en.wikipedia.org/wiki/Number_sign
https://en.wikipedia.org/wiki/Hyphen-minus
https://en.wikipedia.org/wiki/Hyphen-minus
https://en.wikipedia.org/wiki/Square_brackets
https://en.wikipedia.org/wiki/Square_brackets
https://en.wikipedia.org/wiki/Comma_(punctuation)
https://en.wikipedia.org/wiki/Comma_(punctuation)

YAML: Associative arrays

e associative array entry is key: value

e ?key: value allows the key to contain leading dashes,
square brackets, etc., without quotes.

® associative array can also be enclosed in JSON-style:
{ key: value, key2: value2,... }, with

YAML: Scalar values

e 3trings are unquoted or in double or single quotes "'

e Within double-quotes: C-style escape sequences \ may be
used

e (ctal escape is \0.

e Block scalars (longer texts) are delimited with_indentation

e optional modifiers to preserve | or fold > newlines.

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Indent_style

YAML.: Big structures

Multiple documents within a stream

Start of document --- and optional ... end of document
Nodes can be named using ampersand &

and referenced with asterisk *

label (type or tag) using !l followed by a string, which can be
expanded into a URI.

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20

