
YAML Ain't Markup Language

T. Pitner, L. Bártek, A. Rambousek. L Grolig
FI MU Brno 2020

YAML: What is it?

● “YAML is a human friendly data serialization standard for all
programming languages.”

https://yaml.org/ YAML home

https://en.wikipedia.org/wiki/YAML Wikipedia YAML

● Specification (not a formal standard endorsed by ISO or W3C)

https://yaml.org/spec/1.2/spec.html

https://yaml.org/
https://en.wikipedia.org/wiki/YAML
https://yaml.org/spec/1.2/spec.html

YAML: Purpose, Goal

● “YAML Ain’t Markup Language” (abbreviated YAML) is a data
serialization language designed to be human-friendly and work
well with modern programming languages for common
everyday tasks.”

● Yet Another Markup Language
● .yaml or .yml file extensions

YAML: Design principles

● It uses Unicode characters,
○ some provide structural information
○ rest containing the data itself, so it is a markup.

● YAML achieves a unique cleanness
● Markup is minimal, content is maximal => low overhead and natural look
● For example:

● spaces (indentation) may be used for structure,
● key: value pairs
● dashes - for “bullet” lists

https://yaml.org/spec/1.2/spec.html#printable%20character//
https://yaml.org/spec/1.2/spec.html#space/indentation/
https://yaml.org/spec/1.2/spec.html#:%20mapping%20value//

YAML: Design priorities

● “YAML is easily readable by humans.
● YAML data is portable between programming languages.
● YAML matches the native data structures of agile languages.
● YAML has a consistent model to support generic tools.
● YAML supports one-pass processing.
● YAML is expressive and extensible.
● YAML is easy to implement and use.”

https://yaml.org/spec/1.2/spec.html#native%20data%20structure//
https://yaml.org/spec/1.2/spec.html#native%20data%20structure//

YAML: Data types

● Three basic primitives
● mappings (hashes/dictionaries),
● sequences (arrays/lists) and
● scalars (strings/numbers)

Everything else is a combination of above - and it is enough.

https://yaml.org/spec/1.2/spec.html#mapping//
https://yaml.org/spec/1.2/spec.html#sequence//
https://yaml.org/spec/1.2/spec.html#sequence//
https://yaml.org/spec/1.2/spec.html#scalar//
https://yaml.org/spec/1.2/spec.html#scalar//

YAML: Usage

YAML was specifically created to work well for common use cases
such as:

● configuration files,
● log files,
● interprocess messaging,
● cross-language data sharing,
● object persistence, and
● debugging of complex data structures.

YAML: Interfaces

● allows incremental (event-driven) interfaces
● one-pass interfaces
● thus enables processing of large documents

(e.g. transaction logs) or
● continuous streams (e.g. feeds from a production machine)

https://yaml.org/spec/1.2/spec.html#document//

YAML: Typing YAML documents

● Motivated by Internet Mail (RFC0822)
● C-style escape sequences. This enables ASCII encoding of non-printable or 8-bit

(ISO 8859-1) characters such as “\x3B”. Non-printable 16-bit Unicode and 32-bit
(ISO/IEC 10646) characters are supported with escape sequences such as “\u003B”
and “\U0000003B”.

● A single line break is folded into a single space,
● while empty lines are interpreted as line break characters.
● This technique allows for paragraphs to be word-wrapped without affecting the

canonical form of the scalar content.

https://yaml.org/spec/1.2/spec.html#escaping/in%20double-quoted%20scalars/
https://yaml.org/spec/1.2/spec.html#escaping/in%20double-quoted%20scalars/
https://yaml.org/spec/1.2/spec.html#printable%20character//
https://yaml.org/spec/1.2/spec.html#ns-esc-8-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-8-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-8-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-8-bit
https://yaml.org/spec/1.2/spec.html#printable%20character//
https://yaml.org/spec/1.2/spec.html#escaping/in%20double-quoted%20scalars/
https://yaml.org/spec/1.2/spec.html#escaping/in%20double-quoted%20scalars/
https://yaml.org/spec/1.2/spec.html#ns-esc-16-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-16-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-16-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-16-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-32-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-32-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-32-bit
https://yaml.org/spec/1.2/spec.html#ns-esc-32-bit
https://yaml.org/spec/1.2/spec.html#line%20break//
https://yaml.org/spec/1.2/spec.html#line%20break//
https://yaml.org/spec/1.2/spec.html#line%20folding//
https://yaml.org/spec/1.2/spec.html#line%20folding//
https://yaml.org/spec/1.2/spec.html#space//
https://yaml.org/spec/1.2/spec.html#space//
https://yaml.org/spec/1.2/spec.html#empty%20line//
https://yaml.org/spec/1.2/spec.html#empty%20line//
https://yaml.org/spec/1.2/spec.html#line%20break//
https://yaml.org/spec/1.2/spec.html#line%20break//
https://yaml.org/spec/1.2/spec.html#scalar/canonical%20form/
https://yaml.org/spec/1.2/spec.html#scalar/canonical%20form/
https://yaml.org/spec/1.2/spec.html#scalar//
https://yaml.org/spec/1.2/spec.html#scalar//

YAML vs JSON

● YAML’s foremost design goals are human readability
● and support for serializing arbitrary native data structures.
● Extremely readable files, but is more complex to generate and parse
● YAML can therefore be viewed as a natural superset of JSON, offering improved

human readability and a more complete information model.
● Every JSON file is also a valid YAML file.

https://yaml.org/spec/1.2/spec.html#serialize//
https://yaml.org/spec/1.2/spec.html#serialize//
https://yaml.org/spec/1.2/spec.html#native%20data%20structure//
https://yaml.org/spec/1.2/spec.html#native%20data%20structure//

YAML: Collections - Sequence

YAML: Map String -> Number

… and comments after #

YAML: Map String -> Sequence

YAML: Sequence of 2 maps

YAML: Sequence of sequences

YAML: Map of Maps

YAML: Basic syntactic rules

● Entire Unicode character set, except for some control characters, and may be
encoded in UTF-8, UTF-16 and UTF-32.

● Whitespace indentation is used for denoting structure;
● tab characters are not allowed.
● Comments begin with the number sign (#),

can start anywhere on a line and continue until the end of the line.
● List members are denoted by a leading hyphen (-) with one member per line.
● A list can also be specified by enclosing text in square brackets ([]) with each

entry separated by commas.

https://en.wikipedia.org/wiki/Control_character
https://en.wikipedia.org/wiki/Control_character
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-32
https://en.wikipedia.org/wiki/UTF-32
https://en.wikipedia.org/wiki/Whitespace_(computer_science)
https://en.wikipedia.org/wiki/Indent_style
https://en.wikipedia.org/wiki/Indent_style
https://en.wikipedia.org/wiki/Tab_character
https://en.wikipedia.org/wiki/Tab_character
https://en.wikipedia.org/wiki/Number_sign
https://en.wikipedia.org/wiki/Number_sign
https://en.wikipedia.org/wiki/Hyphen-minus
https://en.wikipedia.org/wiki/Hyphen-minus
https://en.wikipedia.org/wiki/Square_brackets
https://en.wikipedia.org/wiki/Square_brackets
https://en.wikipedia.org/wiki/Comma_(punctuation)
https://en.wikipedia.org/wiki/Comma_(punctuation)

YAML: Associative arrays

● associative array entry is key: value

● ?key: value allows the key to contain leading dashes,
square brackets, etc., without quotes.

● associative array can also be enclosed in JSON-style:
{ key: value, key2: value2,... }, with

YAML: Scalar values

● Strings are unquoted or in double or single quotes " '
● Within double-quotes: C-style escape sequences \ may be

used
● Octal escape is \0.
● Block scalars (longer texts) are delimited with indentation
● optional modifiers to preserve | or fold > newlines.

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Indent_style

YAML: Big structures

● Multiple documents within a stream
● Start of document --- and optional … end of document
● Nodes can be named using ampersand &
● and referenced with asterisk *
● label (type or tag) using !! followed by a string, which can be

expanded into a URI.

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20

