
PB138 - Modern Markup
Languages
T. Pitner, L. Bártek, A. Rambousek, L. Grolig

Presentation Outline

● The standard ECMAScript
○ ECMAScript language syntax

○ ECMAScript implementations

● ECMAScript vs JavaScript

● Application Building and Deployment
○ NPM

● TypeScript

● Conventions, Development support.

● https://slides.com/lukasgrolig/pb138-lab-introduction-to-javascript

https://slides.com/lukasgrolig/pb138-lab-introduction-to-javascript
https://slides.com/lukasgrolig/pb138-lab-introduction-to-javascript
https://slides.com/lukasgrolig/pb138-lab-introduction-to-javascript
https://slides.com/lukasgrolig/pb138-lab-introduction-to-javascript
https://slides.com/lukasgrolig/pb138-lab-introduction-to-javascript
https://slides.com/lukasgrolig/pb138-lab-introduction-to-javascript
https://slides.com/lukasgrolig/pb138-lab-introduction-to-javascript
https://slides.com/lukasgrolig/pb138-lab-introduction-to-javascript
https://slides.com/lukasgrolig/pb138-lab-introduction-to-javascript

Standard ECMA-262

European Computer Manufacturers
Asociation (ECMA) International

● In 1959 need of standardization of computer operation techniques

(programming) and input and output codes .

● Founded in 1960 by Compagnie des Machines Bull (FR), IBM World Trade

Europe Corporation (European subsidiary of the US Company) and

International Computers and Tabulators Limited (UK)

● Task - coordination of the national standards.

ECMAScript (ECMA-262)

● Scripting language specification.
○ Standard 1st edition released on June 1997.

● Standardized by ECMA International.

● Created to standardized JavaScript to allow multiple independent

implementations.
○ Most common implementation is JavaScript.

○ Other implementations:

■ JScript

■ ActionScript

■ …

ECMAScript (ECMA-262)

● Commonly used for:
○ client-side scripting

○ Server-side using Node.js

ECMAScript - Features

● Imperative and structured C-like programming language.

● Weakly typed - type of some variables is assigned according performed

operations.
○ This makes several problems in a variable type conversions criticized by developers.

● Transpiling
○ Source-to-source compilation

○ Newer versions of ECMAScript are transpiled into the version according user client.

● Interpreters uses JIT (many interpreters)
○ Just-in-Time compilation (interpret compiles into binary before interpretation starts)

○ Optimization for particular platform.

ECMAScript Runtimes

● Interpreters with JIT:
○ Chakra

■ MS IE, Microsoft Edge

○ Chakaran

■ Opera from 10.50 until version 15

○ SpiderMonkey

■ Mozilla Gecko applications (Firefox, Seamonkey, …), OptimTalk (VoiceXML platform),

...

○ JavaScriptCore

■ WebKit projects (Safari, ..)

ECMAScript Runtimes (cont.)

● Interpreters with JIT:
○ Tamarin

■ ActionScript interpreter (Adobe Flash)

○ V8

■ Google Chrome, Node.js, V8.net, …

○ Nashhorn

■ JDK since

○ ...

ECMAScript Runtimes

● Without JIT
○ Continuum - ECMAScript 2015 interpreter written in ECMAScript 3, can run in older

browsers (IE6, …)

○ Opera Engines:

■ Linear B - Opera 7.0 - 9.50

■ Futhark - Opera 9.50 - 10.10

○ ...

JavaScript

JavaScript

● Designed by Netscape on 1995 by Netscape Corporation.

● 1996 submitted to ECMA International.

● 1996 Reverse engineered and adopted by Microsoft in Internet Explorer as

JScript.

● 1997 published as ECMA Standard ECMAScript.

● During the IE dominance JScript was de-facto scripting language standard.

JavaScript (cont.)

● 2005 - J. J. Garrett published whitepaper on AJAX
○ Uses JavaScript

○ Allows webpage to download data on background without

● Ajax - started JavaScript renaissance.

● Current JavaScript ecosystem:
○ Many libraries and frameworks.

○ Increased usage out of the web browser (i.e. Node.js, ...)

○ ...

JavaScript to ECMAScript relation

● Both languages are closely related.

● ECMAScript standardized JavaScript syntax.
○ No additional libraries used in web browsers for example.

● JavaScript - one of the ECMAScript implementations.
○ Libraries

○ Frameworks

○ ...

JavaScript - Website client usage

● Used in 95% of websites.

● Scripts embedded in HTML documents.
○ May interact with HTML DOM.

○ AJAX communication.

○ …

● All major web browsers contains JavaScript engines.

JavaScript - Pros

● Speed
○ Interpreted language - compilation is not needed

○ Client-side program run - no client to server communication needed.

● Simplicity
○ Easy to learn.

○ SImple structure for users and developers simplifies dynamic web development.

○ Saves money for dynamic web development.

JavaScript - Pros

● Popularity
○ Modern web browsers support.

○ Supported and used by famous companies

■ Google

■ Amazon

■ PayPal

■ …

JavaScript - Pros

● Interoperability
○ Can be included in web page as well as inside the script of another programming

language.

● Server-load
○ Many actions are performed on client-side (data input validation).

○ Browser does not need to reload entire web page but only the changed part.

● RIA (Rich Internet Application)
○ Drag & Drop components

○ Sliders

○ …

○ See HTML5 for more for example.

JavaScript - Pros

● Extended functionality
○ Adding code snippets using 3rd party add-ons (Mozilla GreaseMonkey, …) to developer

code.

● Versatility
○ Capability of front-end (AngularJS, ReactJS) as well as back-end (Node.JS) development.

● Less overhead
○ Improves performance of web sites and web applications by reducing the code length.

JavaScript - Cons

● Client-side Security
○ Browser may download malicious javascript code or even malicious binary and run it.

● Browser support
○ Despite JavaScript standardisation different browsers may interpret JavaScript differently.

○ Older browser do not support new versions of JavaScript, etc.

● Lack of Debugging Facility
○ JavaScript debugging support in browsers is not efficient as debugging support in other

programming languages.

JavaScript - Cons

● Single Inheritance
○ JavaScript does not support multiple inheritance - some application may need it.

● Sluggish Bitwise Function
○ Numbers stored as 64bit floating-point numbers vs 32bit integer operators

○ Need of multiple conversions of numbers during operation

■ Operands to 32bit integer

■ Result to 64bit floating-point.

● Rendering stop
○ A single error code can stop rendering of entire JavaScript code. This looks to user like

there is no javascript at all.

○ Modern browsers are tolerant to these erorrs.

JavaScript - syntax

● JavaScript syntax is based on ECMAScript.

● The syntax is very close to syntax of languages like C or Java.

● Code example:
function validateforms() {
 if(document.forms["first"]["text"].value==""){
 document.forms["first"]["result"].value="Chybi vstup";
 return false;
 } else {
 document.forms["first"]["result"].value="ok";
 }
}

Node.js

Node.js

● Node.js is asynchronous event-driven JavaScript server-side runtime

environment.
○ Built on the top of Google V8 runtime under supervision of Openjs foundation.

● Designed to build scalable network applications.

● Similar in design to Ruby’s Event Machine and Python Twisted.
○ Moves the event model further

■ Event loop is runtime instead of library.

■ The event loop runtime is non-blocking.

● Designed without threads
○ Offers multiple cores that allows you run multiple processes simultaneously..

https://nodejs.org/en/
https://github.com/eventmachine/eventmachine
https://twistedmatrix.com/trac/

Node.js - Use-cases

● Unique I/O model allows building of I/O heavy and data-heavy application

fast and easy:
○ streaming web applications,

○ real-time collaboration tools,

○ complex single page applications,

○ real-time chat applications,

○ microservices architectures,

Node.js - cons

● Node.js is NOT suitable:
○ You build CPU intensive application due to its single thread nature,

○ You build relational database application,

○ every time using a callback end up with tons of nested callbacks,

○ without diving in depth of JavaScript if someone starts Node, he may face conceptual

problem,

Node.js Simple Server Example
(entity)

class Person{

 constructor(name, surname){ this._name=name; this._surname=surname; }

 set name(name){ this._name=name; }

 set surname(sname){ this._surname=sname; }

 get name(){ return this._name; }

 get surname(){ return this._surname; }

}

Node.js Simple Server Example
(params parsing)

var paramsToPerson = function(req){
 var q = url.parse(req.url).query;
 var name = qs.parse(q).name;
 var sname = qs.parse(q).surname;
 return new Person(name, sname);
 };

Node.js Simple Server Example (control)

http=require(HTTP);
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'application/json'});
 var person = paramsToPerson(req);
 res.end(JSON.stringify(person));
}).listen(8080);

Node.js Application Building and
Deployment

Node.js building and deployment

● Every application must be:
○ Created

○ Developed

○ Tested

○ Deployed

● Needed automation - automation differs in different languages
○ C/C++ - cmake, make, imake, ...

○ Java - ant, maven, gradle, ...

○ Node.js - npm CLI, ...

NPM - Node Package Manager

● Node.js software registry.

● Consists from:
○ Website - allows to discover packages, setup profiles, etc.

○ Command line tools - allows npm interaction.

○ Node.js package registry - large public database of JavaScript software and modules.

● npm.js - company hosting and maintaining NPM.

NPM - CLI tool

● npm - commonly used commands:
○ init - initialises new package (creates basic package.json file),

○ build - tries to build Node.js package,

○ Install - installs package and all its dependencies, prepares it to run,

○ start - starts the package application,

○ rebuild - rebuilds the package,

○ publish - publishes package to npm registry,

○ For more commands see documentation at npmjs.com.

https://docs.npmjs.com/cli-documentation/

NPM Module Creation and Configuration

● Using command npm init
○ Recommended to fill questionnaire about the project - initialises some values in

package.json file.

● Rest of configuration using the package.json file
○ Described on next slide

NPM package.json file content description

● package.json file - NPM module descriptor

● Format - JSON

● File structure:
○ Enclosed in curly braces ‘{‘ and ‘}’;
○ Every line contains pair attribute value terminated by comma (‘,’).

■ The attribute and value are separated by ‘:’.
○ Exact JSON description in some of the next lectures.

package.json Example

{
 "name": "test",
 module name
 "version": "1.0.0",
 module version
 "description": "Some project description", module description
 "main": "index.js",
 module main source file
 "scripts": {

 },
 "author": "Ludek Bartek", module author’s

