Open Source Development Course

Continuous Integration and Delivery

Vojtéch Trefny
vtrefnyOredhat.com

26. 3. 2020

¥ twitter.com/vojtechtrefny
©) github.com/vojtechtrefny
¢ gitlab.com/vtrefny

https://twitter.com/vojtechtrefny
https://github.com/vojtechtrefny
https://gitlab.com/vtrefny

Pipeline

Cl1/CD Pipeline

Steps that need to be performed to test and deliver new version of the software.

Defines what needs to be done: when, how and in what order.

e Steps can vary for every project.

Multiple pipelines or steps can run in parallel.

prepare- cloud-image-
Start environment koji-build compose nvr-verify package-tests End

1/28

Cl1/CD Pipeline

Preparation of the environment to run the Building the project from source.
tests: deploying containers, starting VMs...

Finding defects by analyzing the code Running project test suite or test suites.

without running it.

Checking for violations of the language or Building source archives, packages or

project style guides. container images.

2/28

Testing Environment

Testing Environment

1. Preparation of VMs/containers to

run the tests

We might want to run tests in different

Configuration Matrix x86_64 i686 arm64

1 30 HO HQ environments on multiple different

f 31 =2 =) distributions or architectures.

f_rawhid . .
S =0 " » 2. Installation of the test dependencies
centos 7 Bd _)

R =0 g;) - Test dependencies are usually not covered
debianfl =0 = by the project dependencies.

rhel_8 - » d 3. Getting the code

Clone the PR or get the latest code from
the master branch.

3/28

Static Analysis

Static Analysis

e Tools that can identify potential bugs by analyzing the code without running it.
e Can detect problems not covered by the test suite — corner cases, error paths etc.
Coverity (C/C++, Java, Python, Go...)?

Cppcheck (C/C++)?

Pylint (Python)3

RuboCop (Ruby)*

1https ://scan.coverity.com

thtp ://cppcheck.sourceforge.net/
3https ://www.pylint.org

4https ://docs.rubocop.org

4/28

https://scan.coverity.com
http://cppcheck.sourceforge.net/
https://www.pylint.org
https://docs.rubocop.org

Error: USE_AFTER FREE (CWE-825):
libblockdev-2.13/src/plugins/lvm-dbus.c:1163: freed_arg: "g_free"

frees "output".

libblockdev-2.13/src/plugins/lvm-dbus.c:1165: pass_freed_arg: Passing freed
pointer "output" as an argument to "g_set_error".

1163 g_free (output);

1164]| if (ret == 0) {

1165|-> g_set_error (error, BD_LVM_ERROR, BD_LVM_ERROR_PARSE,

1166]| "Failed to parse number from output: ’\%s’",
1167| output) ;

5/28

Code Style

Code style and style guides

e Coding conventions — naming, code lay-out, comment style. ..

e Language specific (PEP 8°), project specific (Linux kernel coding style®) or
library /toolkit specific (GTK coding style’).

e Automatic checks using specific tools (pycodestyle) or (partially) by the static

analysis tools.

5https://www.python.org/dev/peps/pep—OOOS/
6
https://www.kernel.org/doc/html/v5.3/process/coding-style.html

https://developer.gnome.org/programming-guidelines/stable/c-coding-style.html.en

6/28

https://www.python.org/dev/peps/pep-0008/
https://www.kernel.org/doc/html/v5.3/process/coding-style.html
https://developer.gnome.org/programming-guidelines/stable/c-coding-style.html.en

Code style and style guides

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Readability counts.

The Zen of Python

7/28

Linux kernel coding style

https://www.kernel.org/doc/html/v4.10/process/coding-style.html

Don't put multiple statements on a single line unless you have something to hide:

if (condition) do_this;
do_something_everytime;

The preferred form for allocating an array is the following:

p = kmalloc_array(n, sizeof(...), ...):

Do not unnecessarily use braces where a single statement will do.

if (condition)
action();

8/28

https://www.kernel.org/doc/html/v4.10/process/coding-style.html

Python and PEP8

https:
//gist.github.com/vojtechtrefny/435737417be003873a7f94aa7d53c4d2

] vtrefny : bash — Konsole <2> v
File Edit View Bookmarks Settings Help
[vtrefny@aida ~]$ pycodestyle-3 style.py

:11:6: E211 whitespace before ' ('

H 0: E501 line too long (85 > 79 characters)

: E303 too many blank lines (3)

: 2: E701 multiple statements on one line (colon)

:24:41: E703 statement ends with a semicolon

:30:54: E502 the backslash is redundant between brackets

HE] : E128 continuation line under-indented for visual indent

:3 : W293 blank line contains whitespace
.py:34:1: W391 blank line at end of file
[vtrefny@aida ~]$ [

9/28

https://gist.github.com/vojtechtrefny/435737417be003873a7f94aa7d53c4d2
https://gist.github.com/vojtechtrefny/435737417be003873a7f94aa7d53c4d2

Python and PEP8

} pep8speaks commented on 18 Feb @ -

Hello @vojtechtrefny! Thanks for updating this PR. We checked the lines you've touched for PEP 8
issues, and found:

« Inthe file copr builder/copr builder.py :

Line 31:54: E261 at least two spaces before inline comment

10/28

Documentation style

e Documentation might be checked in the same way code is.

e Similar style documents and tools for checking documentations exist (for example
PEP 2578and pydocstyle®for Python).

e In some cases wrong or missing documentation (docstrings in the code) can lead

to a broken build or missing features.

8
https://www.python.org/dev/peps/pep-0257/
9
http://www.pydocstyle.org

11/28

https://www.python.org/dev/peps/pep-0257/
http://www.pydocstyle.org

Build

Building the project, a preparation to run the test suite.

Depends on language — mostly no-op for interpreted languages, more complicated

for compiled ones.

Build in the Cl environment can detect issues with dependencies.

Builds on different architectures can help detect issues related to endianness or

data types sizes.

12/28

GNU Autotools

Helps creating portable source packages.

Two steps:

e configure (scans the build environment)
e make (compiles the source)

Complicated for developers, easy for users.

Takes care of dependency checking, dynamic linking, installation destinations etc.

13/28

GNU Autotools

configure.ac

M
Makefile.am

—>

aclocal

aclocal.mé I

T

autocorf

/ﬂ—
Ny—————

[

[

autom ake

—>

configure I

Makefilein

| saw a book entitled "Die GNU Autotools”and | thought "My feelings
exactly”. Turns out the book was in German.

10
https://twitter.com/timmartin2/status/23365017839599616
Image source: https://developer.gnome.org/anjuta-build-tutorial/stable/create-autotools.html.en

14 /28

https://twitter.com/timmartin2/status/23365017839599616
https://developer.gnome.org/anjuta-build-tutorial/stable/create-autotools.html.en

Tests

e Running tests that are part of the project.
e New tests should be part of every change to the codebase.

e New features require new unit and integration tests.
e Bug fixes should come with a regression test.

e For some project (like libraries) running test suites of their users might be an
option.

15/28

Coverage

e Code coverage (or Test coverage) represents how much of the code is covered by
the test suite.

e Usually percentual value that shows how many lines of the code were “visited" by
the test.

e Generally a check that all functions and branches are covered by the suite.

e Used as a measure of the test suite “quality” .

16 /28

Coverage

def

1

2 if b ==

3 raise ValueError
4 else:
5

6

7

return a / b

assert div(Z,

$ coverage3 report -m
Name Stmts Miss Cover Missing

Resulting coverage is 80 %, because 1 of 5 statements is not covered.

17/28

Coverage

e Automated coverage tests might be part of the CI.
e Decrease in coverage can be viewed as a reason to reject contribution to the

project.

coveralls commented on 17 Oct 2018 « edited ~ +©

coverage F90%

Coverage increased (+0.04%) to 89.725% when pulling aa7b2c5 on svmhdvn:svmhdvn/spellcheck
into f4ebdce on PyCQA:master.

18/28

Delivery and Deployment

Packaging and publishing

e Delivery — releasing new changes quickly and regularly (daily, weekly...).

e Deployment — delivery with automated push to production, without human

interaction.

e Usually after merging the changes, not for the PRs.
e Building packages, container images, ISO images. ..

e Built packages can be used for further testing (manually by the Quality Assurance
or in another Cl infrastructure) or directly pushed to production or included in
testing/nightly builds of the project.

19/28

Cl Tools

Demo

Probably most popular Cl service nowadays.

e Can be integrated in your projects on GitHub.

Free for opensource projects.

Configured using .travis.yml file in the

project

https://travis-ci.org

20/ 28

https://travis-ci.org

Travis CI

All checks have passed Hide all checks

1 successful check
v @ Travis Cl - Pull Request Successful in 44s — Build Passed Details

This branch has no conflicts with the base branch
Merging can be performed automatically.

L CTGERTNINCTTES SRl or view command line instructions.

21,28

Travis CI

vojtechtrefny / copr-builder

/ PullRequest #41 Add afirst simple test for copr_builde
Parsing of config files is covered

Commitef796cc
#41: Add a first s

ple test for copr_builder

B Vojtech Trefny

Python

build |passing:

More options
#25 passe Restart build

Ran for 44 sec

3daysago

22/28

e Automation system, not a “true” ClI/CD tool.

e Can automatically run given tasks on a node or
set of nodes.

e Tasks can be started on time basis or triggered
by an external event (like new commit or PR
on GitHub).

e https://jenkins.io/

23/28

https://jenkins.io/

Fedora CI

e Complex Cl system with task to deliver an
“Always Ready Operating System"”.

e Packages are tested after every change and
“gated” if the Cl pipeline fails.

e The goal is to prevent breaking the ™
distribution. Cl will stop the broken package
before it can affect the distribution.

24 /28

Fedora CI

prepare-
Start environment

koji-build

cloud-image
compose nvr-verify package-tests End
@) °

package-tests - 5m 195

Currently checking if package tests exist

Deleting old packages
Cloninghttps:/src.fedoraproject.org/rpms/vim/into the f30 branch
rpm -q standard-test-roles

Getting list of tags

Print Message

Print Message

CI Notifier

Print Message

Cl Notifier

Creating directory /workDir/workspace/fedora-f30-build-pipeline/package-tests
/tmp/package-test.sh

logs/

&

4m 33s

<1s

25 /28

Packit

e Tool for integrating upstream projects to
Fedora.

e RPM packages are automatically build on every
pull request.

e New releases can be automatically build and
pushed to Fedora.

26 /28

Packit

g packit-as-a-service bot commented 24 days ago @ -

Congratulations! One of the builds has completed. s,
You can install the built RPMs by following these steps:

+ sudo yum install -y dnf-plugins-core on RHEL 8
+ sudo dnf install -y dnf-plugins-core on Fedora
« dnf copr enable packit/storaged-project-blivet-gui-157

« And now you can install the packages.

Please note that the RPMs should be used only in a testing environment.

27/ 28

Questions

Thank you for your attention.

https://github.com/crocs-muni/open-source-development-course

28 /28

https://github.com/crocs-muni/open-source-development-course

	Pipeline
	Testing Environment
	Static Analysis
	Code Style
	Build
	Tests
	Delivery and Deployment
	CI Tools Demo
	Questions

