
Text classification and Naive Bayes (Chapter 13)
Definition 1 (Naive Bayes Classifier)
Naive Bayes (NB) Classifier assumes that the effect of the value of a predictor 𝑥 on a given
class 𝑐 is class conditional independent. Bayes theorem provides a way of calculating the
posterior probability 𝑃 (𝑐|𝑥) from class prior probability 𝑃 (𝑐), predictor prior probability
𝑃 (𝑥) and probability of the predictor given the class 𝑃 (𝑥|𝑐)

𝑃 (𝑐|𝑥) = 𝑃 (𝑥|𝑐)𝑃 (𝑐)
𝑃 (𝑥)

and for a vector of predictors 𝑋 = (𝑥1, . . . , 𝑥𝑛)

𝑃 (𝑐|𝑋) = 𝑃 (𝑥1|𝑐) . . . 𝑃 (𝑥𝑛|𝑐)𝑃 (𝑐)
𝑃 (𝑥1) . . . 𝑃 (𝑥𝑛) .

The class with the highest posterior probability is the outcome of prediction.

Exercise 13/1
What is naive about Naive Bayes classifier? Briefly outline its major idea.

Answers can vary. For official definition refer to the Manning book.

Exercise 13/2
Considering the table of observations, use the Naive Bayes classifier to recommend
whether to Play Golf given a day with Outlook = Rainy, Temperature = Mild, Humidity
= Normal and Windy = True. Do not deal with the zero-frequency problem.

Outlook Temperature Humidity Windy Play Golf
Rainy Hot High False No
Rainy Hot High True No

Overcast Hot High False Yes
Sunny Mild High False Yes
Sunny Cool Normal False Yes
Sunny Cool Normal True No

Overcast Cool Normal True Yes
Rainy Mild High False No
Rainy Cool Normal False Yes
Sunny Mild Normal False Yes
Rainy Mild Normal True Yes

Overcast Mild High True Yes
Overcast Hot Normal False Yes
Sunny Mild High True No

Table 1: Exercise.

First build the likelihood tables for each predictor
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Play Golf
Yes No

Outlook
Sunny 3/9 2/5 5/14
Overcast 4/9 0/5 4/14
Rainy 2/9 3/5 5/14

9/14 5/14

Play Golf
Yes No

Temperature
Hot 2/9 2/5 4/14
Mild 4/9 2/5 6/14
Cool 3/9 1/5 4/14

9/14 5/14

Play Golf
Yes No

Humidity High 3/9 4/5 7/14
Normal 6/9 1/5 7/14

9/14 5/14

Play Golf
Yes No

Windy True 3/9 2/5 5/14
False 6/9 3/5 9/14

9/14 5/14

We see that probability of Sunny given Yes is 3/9 = 0.33, probability of Sunny is
5/14 = 0.36 and probability of Yes is 9/14 = 0.64. Then we count the likelihoods of Yes
and No

𝑃 (𝑌 𝑒𝑠|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) ∝
= 𝑃 (𝑅𝑎𝑖𝑛𝑦|𝑌 𝑒𝑠) · 𝑃 (𝑀𝑖𝑙𝑑|𝑌 𝑒𝑠) · 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙|𝑌 𝑒𝑠) · 𝑃 (𝑇𝑟𝑢𝑒|𝑌 𝑒𝑠) · 𝑃 (𝑌 𝑒𝑠)

= 2
9 ·

4
9 ·

6
9 ·

3
9 ·

9
14 = 0.014109347

𝑃 (𝑁𝑜|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) ∝
= 𝑃 (𝑅𝑎𝑖𝑛𝑦|𝑁𝑜) · 𝑃 (𝑀𝑖𝑙𝑑|𝑁𝑜) · 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙|𝑁𝑜) · 𝑃 (𝑇𝑟𝑢𝑒|𝑁𝑜) · 𝑃 (𝑁𝑜)

= 3
5 ·

2
5 ·

1
5 ·

3
5 ·

5
14 = 0.010285714

(1)

and suggest Yes. We can normalize the likelihoods to obtain the % confidence:

𝑃 (𝑌 𝑒𝑠|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) = 0.014109347
0.014109347 + 0.010285714 = 57.84%

𝑃 (𝑁𝑜|𝑅𝑎𝑖𝑛𝑦, 𝑀𝑖𝑙𝑑, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑟𝑢𝑒) = 0.010285714
0.014109347 + 0.010285714 = 42.16%

Definition 2 (A Linear Classifier)
Our linear classifier finds the hyperplane that bisects and is perpendicular to the connecting
line of the closest points from the two classes. The separating (decision) hyperplane is
defined in terms of a normal (weight) vector w and a scalar intercept term 𝑏 as

𝑓(𝑥) = w · x + 𝑏

where · is the dot product of vectors. Finally, the classifier becomes

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛(𝑓(𝑥)).

Exercise 13/3
Draw a sketch explaining the concept of our linear classifier. Include the equation of the
separation hyperplane. Is our classifier equivalent to support vector machines (SVM)?
What are limitations of our classifier?

Answers can vary. For official definition refer to the Manning book.
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Exercise 13/4
Build a linear classifier for the training set {([1, 1],−1), ([2, 0],−1), ([2, 3], +1)}.

We first take the closest two points from the respective classes: [1, 1] and [2, 3]. We have
w = 𝑎 · ([1, 1]− [2, 3]) = [𝑎, 2𝑎]. Now we calculate 𝑎 and 𝑏

𝑎 + 2𝑎 + 𝑏 = −1

2𝑎 + 6𝑎 + 𝑏 = 1

for the points [1, 1] and [2, 3], respectively. The solution is

𝑎 = 2
5 𝑏 = −11

5

building the weight vector

w =
[︂

2
5 ,

4
5

]︂
and the final classifier becomes

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛

(︂
2
5𝑥1 + 4

5𝑥2 −
11
5

)︂
.

Exercise 13/5
Explain the concept of classification based on neural networks. Draw a sketch and
comment on all components.

Answers can vary. For official definition refer to the Manning book.

Exercise 13/6
What is the difference between supervised and unsupervised learning? Give examples.

Answers can vary. For official definition refer to the Manning book.
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Flat clustering (Chapter 16)

Algorithm 1 K-means({𝑥⃗1, . . . , 𝑥⃗𝑁}, 𝐾, stopping criterion)
1: (𝑠⃗1, . . . , 𝑠⃗𝐾)← SelectRandomSeeds({𝑥⃗1, . . . , 𝑥⃗𝑁}, 𝐾)
2: for 𝑘 ← 1 to 𝐾 do
3: 𝜇⃗𝑘 ← 𝑠⃗𝑘

4: end for
5: repeat
6: for 𝑘 ← 1 to 𝐾 do
7: 𝜔𝑘 ← {}
8: end for
9: for 𝑛← 1 to 𝑁 do

10: 𝑗 ← argmin𝑗′ |𝜇⃗𝑗′ − 𝑥⃗𝑛|
11: 𝜔𝑗 ← 𝜔𝑗 ∪ {𝑥⃗𝑛} ◁ reassigning vectors
12: end for
13: for 𝑘 ← 1 to 𝐾 do
14: 𝜇⃗𝑘 ← 1

|𝜔𝑘|
∑︀

𝑥⃗∈𝜔𝑘
𝑥⃗ ◁ recomputing centroids

15: end for
16: until a stopping criterion has been met
17: return {𝜇⃗1, . . . , 𝜇⃗𝐾}

Exercise 16/1
Use the 𝐾-means algorithm with Euclidean distance to cluster the following 𝑁 = 8
examples into 𝐾 = 3 clusters: 𝐴1 = (2, 10), 𝐴2 = (2, 5), 𝐴3 = (8, 4), 𝐴4 = (5, 8),
𝐴5 = (7, 5), 𝐴6 = (6, 4), 𝐴7 = (1, 2), 𝐴8 = (4, 9). Suppose that the initial seeds (centers
of each cluster) are 𝐴1, 𝐴4 and 𝐴7. Run the 𝐾-means algorithm for 3 epochs. After
each epoch, draw a 10× 10 space with all the 8 points and show the clusters with the
new centroids.

𝑑(𝐴, 𝐵) denotes the Euclidean distance between 𝐴 = (𝑎1, 𝑎2) and 𝐵 = (𝑏1, 𝑏2). It is
calculated as 𝑑(𝐴, 𝐵) =

√︀
(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2.

Take seeds 𝑠⃗1 = 𝐴1 = (2, 10), 𝑠⃗2 = 𝐴4 = (5, 8), 𝑠⃗3 = 𝐴7 = (1, 2).

By 1 we count the alignment for epoch 1: 𝐴1 ∈ 𝜔1, 𝐴2 ∈ 𝜔3, 𝐴3 ∈ 𝜔2, 𝐴4 ∈ 𝜔2,
𝐴5 ∈ 𝜔2, 𝐴6 ∈ 𝜔2, 𝐴7 ∈ 𝜔3, 𝐴8 ∈ 𝜔2; and we get the clusters: 𝜔1 = {𝐴1},
𝜔2 = {𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴8}, 𝜔3 = {𝐴2, 𝐴7}.

Centroids of the clusters: 𝜇⃗1 = (2, 10), 𝜇⃗2 = ((8 + 5 + 7 + 6 + 4)/5, (4 + 8 + 5 + 4 + 9)/5) =
(6, 6), 𝜇⃗3 = ((2 + 1)/2, (5 + 2)/2) = (1.5, 3.5).

After epoch 2 the clusters are 𝜔1 = {𝐴1, 𝐴8}, 𝜔2 = {𝐴3, 𝐴4, 𝐴5, 𝐴6}, 𝜔3 = {𝐴2, 𝐴7}
with centroids 𝜇⃗1 = (3, 9.5), 𝜇⃗2 = (6.5, 5.25) and 𝜇⃗3 = (1.5, 3.5). And finally after epoch
3, the clusters are 𝜔1 = {𝐴1, 𝐴4, 𝐴8}, 𝜔2 = {𝐴3, 𝐴5, 𝐴6}, 𝜔3 = {𝐴2, 𝐴7} with centroids
𝜇⃗1 = (3.66, 9), 𝜇⃗2 = (7, 4.33) and 𝜇⃗3 = (1.5, 3.5).
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d(A5, seed2)= 13  =  3.60   smaller 
d(A5, seed3)= 45  = 6.70 

 A5 ∈ cluster2 
 

d(A6, seed2)= 17  = 4.12  smaller 
d(A6, seed3)= 29  = 5.38 

 A6 ∈ cluster2 

 
A7: 
d(A7, seed1)= 65 >0 
d(A7, seed2)= 52 >0 
d(A7, seed3)=0 as A7 is seed3 

 A7 ∈ cluster3 

 
A8: 
d(A8, seed1)= 5  
d(A8, seed2)= 2   smaller 
d(A8, seed3)= 58  

 A8 ∈ cluster2 
end of epoch1 
 
new clusters: 1: {A1}, 2: {A3, A4, A5, A6, A8}, 3: {A2, A7} 
 
b) centers of the new clusters: 
C1= (2, 10), C2=  ((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6, 6), C3= ((2+1)/2, (5+2)/2) = (1.5, 3.5) 
 
c) 
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d) 
We would need two more epochs. After the 2nd epoch the results would be: 
1: {A1, A8}, 2: {A3, A4, A5, A6}, 3: {A2, A7}  
with centers C1=(3, 9.5), C2=(6.5, 5.25) and C3=(1.5, 3.5). 
After the 3rd epoch, the results would be: 
1: {A1, A4, A8}, 2: {A3, A5, A6}, 3: {A2, A7}  
with centers C1=(3.66, 9), C2=(7, 4.33) and C3=(1.5, 3.5). 
 

 
 
 
Exercise 2. Nearest Neighbor clustering 
 
Use the Nearest Neighbor clustering algorithm and Euclidean distance to cluster the examples from the 
previous exercise: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). 
Suppose that the threshold t is 4. 
 
Solution: 
A1 is placed in a cluster by itself, so we have K1={A1}.  
 
We then look at A2 if it should be added to K1 or be placed in a new cluster.  
d(A1,A2)= 25 = 5 > t  K2={A2} 
 
A3: we compare the distances from A3 to A1 and A2.  
A3 is closer to A2 and d(A3,A2)= 36 > t  K3={A3} 
 
A4: We compare the distances from A4 to A1, A2 and A3.  
A1 is the closest object and d(A4,A1)= 13  < t  K1={A1, A4} 
 
A5: We compare the distances from A5 to A1, A2, A3 and A4.  
A3 is the closest object and d(A5,A3)= 2 < t  K3={A3, A5} 
 
A6: We compare the distances from A6 to A1, A2, A3, A4 and A5.  
A3 is the closest object and d(A6,A3)= 2 < t  K3={A3, A5, A6} 
 
A7: We compare the distances from A7 to A1, A2, A3, A4, A5, and A6.  
A2 is the closest object and d(A7,A2)= 10 < t  K2={A2, A7) 
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Figure 1: Visualization of 𝐾-means clustering algorithm.

Exercise 16/2
What makes a good clustering? Give some clustering evaluation metrics.

Answers can vary. For official definition refer to the Manning book.
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