
LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO

ROADMAP TO SOFTWARE QUALITY

Barbora Bühnová
buhnova@fi.muni.cz

PV260 COURSE INTRODUCTION

Outline of the lecture

• Course introduction
• Course motivation and goals

• Course organization

• Our team

• Roadmap to quality assurance methods
• Define quality issues

• Prevent quality issues

• Detect quality issues

• Repair quality issues

• Keep track of quality issues

• Choose well, plan well

© B. Bühnová, PV260 Software Quality

Outline of the lecture

• Course introduction
• Course motivation and goals

• Course organization

• Our team

• Roadmap to quality assurance methods
• Define quality issues

• Prevent quality issues

• Detect quality issues

• Repair quality issues

• Keep track of quality issues

• Choose well, plan well

© B. Bühnová, PV260 Software Quality

Course motivation and goals

“People forget how fast you did a job – but they remember
how well you did it” – some guy named Howard Newton

• The aim of the course is to help the students to

• understand activities contributing to building high-quality software;

• develop critical thinking and be able to identify code flaws related to

reliability, performance, scalability, maintainability and testability;

• be able to refactor existing code to improve different quality attributes;

• have practical experience with software testing and related tools.

© B. Bühnová, PV260 Software Quality

Outline of lectures

Lect 1. [LaSArIS, B. Bühnová] Course organization. Roadmap to software quality engineering methods.

Lect 2. [LaSArIS, B. Bühnová] Clean Code & SOLID principles. Bad code smells and code refactoring.

Lect 3. [LaSArIS, B. Rossi] Software measurement and metrics, and their role in quality improvement.

Lect 4. [Solar Winds, Jiří Pokorný] Automated testing and testability. Continuous integration/delivery.

Lect 5. [LaSArIS, B. Rossi] Basic Principles of Testing. Requirements and test cases. Test plans and risk
analysis. Specific issues in testing OO Software.

Lect 6. [Siemens, J. Verner] Quality and testing in agile. Practical insights on QA in real product development.

Lect 7. [LaSArIS, B. Bühnová] Focus on quality attributes and conflicts between them.

Lect 8. [To be confirmed] Performance engineering and performance testing.

Lect 9. [YSoft, O. Krajíček] The role of software architecture - practitioner view.

Lect 10. [LaSArIS, B. Bühnová] Software architecture guidelines for software quality?

Lect 11. [Honeywell, J. Papcun, J. Svoboda] Static code analysis and code reviews.

Lect 12. [LaSArIS, D. Gešvindr] Challenges of quality management in cloud applications.

Lect 13. [LaSArIS, B. Rossi] Software quality management process.

Week 16. on 4. 6. 2020 [All] Colloquium event

© B. Bühnová, PV260 Software Quality

Course organization

• Lectures
• Shared by us and experts from companies

• May not be recorded

• Final colloquium event after the end of semester (June 4, 2020)

• Seminars
• Practical assignments on computers

• Teamwork, homework, projects

• 2 Java groups – taught by LaSArIS lab members

• 1 Java group – taught by NetSuite experts

• 1 C# group – taught by Y Soft experts

© B. Bühnová, PV260 Software Quality

Course organization

• Evaluation
• 45 points for seminar assignments

• All the assignments need to be at least submitted, otherwise,
the student cannot attend the final colloquium event and write the test.

• 10 seminar activity points
• 10 lecture activity points
• 35 points for final colloquium assessment, consisting of

• obligatory attendance at the final colloquium event and

• final written test

• Minimum of 70 points for passing the course

• Colloquium event
• On June 6, 2019, between 9:00-13:30
• Discussion groups led by industrial experts
• Student presentations of outcomes
• Written test (at the end of the day, or on a separate term)

© B. Bühnová, PV260 Software Quality

Our team

© B. Bühnová, PV260 Software Quality

• Ondřej Krajíček
• Radim Göth
• and others

• Barbora Bühnová
• Bruno Rossi
• Stanislav Chren
• David Gešvindr

• Pavel Hrdina
• Jiří Koudelka

Outline of the lecture

• Course introduction
• Course motivation and goals

• Course organization

• Our team

• Roadmap to quality assurance methods
• Define quality issues

• Prevent quality issues

• Detect quality issues

• Repair quality issues

• Keep track of quality issues

• Choose well, plan well

© B. Bühnová, PV260 Software Quality

Quality Assurance (QA) methods

© B. Bühnová, PV260 Software Quality

Usability testing
Security testing

Security tactics

Roadmap to QA methods

Prevent
quality issues

Detect
quality issues

Repair
quality issues

Keep track of
quality issues

Define
quality issues

© B. Bühnová, PV260 Software Quality

Define quality issues

• Software quality is commonly
defined as the capability of
a software product to conform
to requirements [ISO/IEC 9001].

• Requirements engineering

• Software metrics
• ’You cannot manage what you cannot measure’

• Quality attributes
• Of a product, process and resources

© B. Bühnová, PV260 Software Quality

Prevent
quality issues

Detect
quality issues

Repair
quality issues

Keep track of
quality issues

Define
quality issues

customer needs

What "quality" means to you?
… and your customer?

… and your manager?

© B. Bühnová, PV260 Software Quality

Cost
effectiveness

The Software Quality Iceberg

EXTERNAL QUALITY

INTERNAL QUALITY

Visible / Symptoms

Invisible / Root

usability

accuracy

cost

performance

reliability

program structure

complexity

coding practices

testability

reusability
maintainability

flexibility

understandability

security

te
st

in
g

in
sp

ec
ti

on

Inspiration from [5]

m
a
n

u
a
l

 o
r

 a
u

to
m

a
te

d
? m

ea
su

ra
ble or n

ot?

© B. Bühnová, PV260 Software Quality

The big five

• Along the course we will focus on:

• Maintainability – ease of change (without increased technical debt)

• Performance – response time and efficiency in resource utilization

• Reliability – probability of failure-free operation over a period of time

• Testability – degree to which the system facilitates testing

• Scalability – system’s ability to handle growing work load

• Quality attributes studied in related courses:

• Security – system’s ability to protect itself from attacks

• Usability – ease of system use and learnability

© B. Bühnová, PV260 Software Quality

Prevent quality issues

• Coding best practices
• Clean code, SOLID principles

• Design patterns

• Pair programming

• Code conventions
• Language specif. recommendations

• Quality assurance processes
• V-model of testing, Test Driven Development

• Standards for development process improvement
• CMMI and ITIL reference models

• ISO 9000, ISO/IEC 25010

© B. Bühnová, PV260 Software Quality

Prevent
quality issues

Detect
quality issues

Repair
quality issues

Keep track of
quality issues

Define
quality issues

pr
oc

es
se

s

 c
od

e-
le

ve
l

Detect quality issues

• Testing functional requirements
• Manual or automated

• Testing non-functional req.
• Performance, usability, security

testing

• Design inspections
• Manual inspections of design artifacts

• Code reviews
• Manual inspections of code

• Automated static code analysis

© B. Bühnová, PV260 Software Quality

Prevent
quality issues

Detect
quality issues

Repair
quality issues

Keep track of
quality issues

Define
quality issues

st
a
ti

c
a
n

a
ly

si
s

te

st
in

g

Roadmap to software testing

© B. Bühnová, PV260 Software Quality

Inspired from [1]

Test cases
Test resources

Test plan

Testing
Strategy

Unit
Component

Functional
Test

Backend
Middleware
Third party

System and
Integration Test

Functional
Non-functional

Regression

Release Test

Usability
Learnability

Requirements

Acceptance
(User) Test

Application
Infrastructure

Post-production
Tuning

Requirements

Acceptance
Criteria

Test management

Functional testing

Non-functional testing

Tuning

Specify Design Prototype Configure Validate Deploy Maintain

D
e

ve
lo

p
m

e
n

t
T

e
st

in
g

E
n

d
-t

o
-E

n
d

 V
ie

w

Implementation Cycle

Penetration
Red team

Security Test

Response time
Stress

Performance Test

Repair quality issues

• Functional issue
• Code repair

• Reliability issue
• Fault tolerance mechanisms

• Performance issue
• Concurrency, effective resource utilization,

identify and remove system bottlenecks

• Security issue
• Identify and remove system vulnerabilities (single points of failure)

• Maintainability issue
• Refactoring to clean code principles, to design patterns

© B. Bühnová, PV260 Software Quality

Prevent
quality issues

Detect
quality issues

Repair
quality issues

Keep track of
quality issues

Define
quality issues

ta
ct

ic
s

a
n

d
 p

a
tt

er
n

s

Keep track of quality issues

• Issue tracking
• Supports the management of

issues reported by customers

• Technical debt management
• Level of code quality degradation

• Work that needs to be done before
a particular job can be considered complete or proper

• Configuration management
• Version management and release management

• System integration

© B. Bühnová, PV260 Software Quality

Prevent
quality issues

Detect
quality issues

Repair
quality issues

Keep track of
quality issues

Define
quality issues

Roadmap to QA methods – the Big Picture

Prevent quality issues

- Coding best practices
- Code conventions
- QA processes
- Standards

Detect quality issues

(Non)Functional testing -
Design inspections -

Code reviews -
Static code analysis -

Repair quality issues

- Reliability tactics
- Performance tactics
- Security tactics
- Maintainability tactics

Keep track
of quality issues

Issue tracking -
Technical debt management -
Configuration management -

Define quality issues

- Requirements engineering
- Quality attributes

© B. Bühnová, PV260 Software Quality

Outline of the lecture

• Course introduction
• Course motivation and goals

• Course organization

• Our team

• Roadmap to quality assurance methods
• Define quality issues

• Prevent quality issues

• Detect quality issues

• Repair quality issues

• Keep track of quality issues

• Choose well, plan well

© B. Bühnová, PV260 Software Quality

Choose well, plan well

• Think well about your requirements
and the cost of the quality

© B. Bühnová, PV260 Software Quality

Choose well – Combination is the key

© B. Bühnová, PV260 Software Quality

From [2,3], see also RebelLabs reports [4]

Plan well –The Power of Analogy

• Airplane Servicing
• Requires regular servicing e.g. every 100,000 miles.
• Takes place even if everything seems to work all right,

because we cannot afford a failure.

• Technical Debt Management
• Introduced by Ward Cunningham
• Analogy of quality degradation with financial debt

– if not paid off, interests increase. One can get into trouble.

• Sometimes it is wise to “borrow money”
• When one expects to have more money in the future (start-up company)
• When one needs to act fast not to miss a market opportunity
• When one expects money devaluation (e.g. developers will become

more experienced, it will be easier to understand user needs)

© B. Bühnová, PV260 Software Quality

Can we quantify it?

Takeaways

• Quality assurance (QA) is much more than testing, including
many different methods to
• prevent, detect, repair and keep track of quality issues

• Combination of the methods is the key to successful QA
• But choose well and plan well, not all methods are best for your project!

• Make sure you understand the needs of your customer
• Balance both internal and external quality attributes for both

the present and the future

Barbora Bühnová, FI MU Brno
buhnova@fi.muni.cz
www.fi.muni.cz/~buhnova

contact me

thanks for listening

© B. Bühnová, PV260 Software Quality

mailto:buhnova@fi.muni.cz
http://www.fi.muni.cz/~buhnova

References

• [1] Testing You Perform When You Develop a Siebel Application. Available online at
http://docs.oracle.com/cd/E14004_01/books/DevDep/Overview5.html

• [2] Steve McConnell. Code Complete: A Practical Handbook of Software
Construction, Second Edition. Microsoft Press, June 2004.

• [3] Kevin Burke. Why code review beats testing: evidence from decades of
programming research. Available online athttps://kev.inburke.com/kevin/the-best-
ways-to-find-bugs-in-your-code/

• [4] RebelLabs. 2013 Developer Productivity Report. Available online at
http://zeroturnaround.com/rebellabs/developer-productivity-report-2013-how-
engineering-tools-practices-impact-software-quality-delivery/

• [5] Jonathan Bloom. Titanic Dilemma: The Seen Versus the Unseen. Available online
at http://blog.castsoftware.com/titanic-dilemma-the-seen-versus-the-unseen/

© B. Bühnová, PV260 Software Quality

http://docs.oracle.com/cd/E14004_01/books/DevDep/Overview5.html
https://kev.inburke.com/kevin/the-best-ways-to-find-bugs-in-your-code/
http://zeroturnaround.com/rebellabs/developer-productivity-report-2013-how-engineering-tools-practices-impact-software-quality-delivery/
http://blog.castsoftware.com/titanic-dilemma-the-seen-versus-the-unseen/

