
What is Software Architecture… and an overview.

PV260 Software Quality

1

Ondřej “Ondra” Krajíček
ondrej.krajicek@ysoft.com

@OndrejKrajicek

mailto:ondrej.krajicek@ysoft.com

Antoine de Saint Exupéry

“Perfection is not achieved when there is nothing to add, but
when there is nothing to remove.”

(attributed to) Albert Einstein

“Insanity is doing the same thing over and over and expecting
different results.”

IETF RFC 1925

“It has to work.”

Software Architecture is seldom about functional requirements.

Software Architecture is the important stuff
(whatever that is).

Ralph Johnson

Cost of Change Curve Copyright (c) 2006-2009 Scott W Ambler

SOFTWARE ARCHITECTURE IS THE
SERVANT OF HIGH-PRIORITY

STAKEHOLDER VALUES.

IS AS SIMPLE AS POSSIBLE, BUT NOT
SIMPLER AND IS DESIGNED TO BE

REPLACEABLE.

Tom Gilb (Architecture Manifesto)

SERVANT

HIGH-PRIORITY

STAKEHOLDER

VALUES

AS SIMPLE AS POSSIBLE

NOT SIMPLER

REPLACEABLE

Software Architecture is Strategy

Strategy is a plan how to deliver on your goals. Your goals are defined by high-priority stakeholders.

SOFTWARE ARCHITECTURE IS THE STRATEGY HOW TO
DELIVER HIGH-PRIORITY STAKEHOLDER VALUES.

It is still important to accept change because no battle plan survives the first contact with the enemy.

Software Architecture is Risk Mitigation

What happens when things go wrong? Is it important?

Software Architecture is Communication

What does it mean? How to deliver and protect stakeholder values?

Software Architect is a Teacher

Who does software architecture then?
Software Architecture is done by everyone.

60 Minutes Software Architecture Crash Course

Architectural Styles

• Tiered Architecture

• Hexagonal Architecture

• Onion Architecture

• Object Oriented Architecture

• Service Oriented Architecture

• Microservices

Which one is the best one?

• Consistency
• Cohesion
• Coupling
• Clarity

Cost of
Change

Principles over Patterns.

Consistency

Module, Data, Service, Interaction Dependencies.

Coupling

https://www.javatpoint.com/software-engineering-coupling-and-cohesion

Well-Designed or Leaking Abstractions.

Cohesion

https://www.javatpoint.com/software-engineering-coupling-and-cohesion

Everyone understands why, how and what to do. System deteriorates
slower and technical debt does not grow quickly.

Clarity

Replaceable Architecture

Wait, what?

Osaka Castle

Giza Pyramids

• Built to last: hundreds and thousands of years.

• Built to survive natural disasters, especially earthquakes (shinbashira).

• Both have very different architecture.

• You cannot replace one with the other.

• Why would you?

Replaceable as in Having rather low Cost of Change

How to decrease Cost of Change?

2-Tier Architecture

• Original Client / Server

• Business Logic is implemented on the client,
server or both.

• What are the issues?

3-Tier Architecture

• Decouple presentation from business logic.
Business logic is isolated from client and
server.

• Business layer often historically hosted in
application servers with obscure
technologies (j2ee, Microsoft ASP, PHP,
ColdFusion, etc.).

• How is it different from 2-Tier?

https://en.wikipedia.org/wiki/Multitier_architecture#/media/File:Overview_of_a_three-tier_application_vectorVersion.svg

Onion Architecture

• Built on the observation that most / all
interfaces are alike.

• Outer layers depend on inner layers.

• Inner layers must not depend on outer
layers.

• Enforces Inversion of Control.

• How is it different from N-Tier?

Hexagonal Architecture

• Ports and Adapters Architecture

• Sometimes Onion and Hexagonal are viewed
as the same.

• Hexagonal Architecture is more explicit and
structured.

• Recommended reading: 
https://herbertograca.com/2017/11/16/
explicit-architecture-01-ddd-hexagonal-
onion-clean-cqrs-how-i-put-it-all-together/

https://herbertograca.com/2017/11/16/explicit-architecture-01-ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/
https://herbertograca.com/2017/11/16/explicit-architecture-01-ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/
https://herbertograca.com/2017/11/16/explicit-architecture-01-ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/

The Clean Architecture

• Onion + Screaming Architecture.
• Independent of Frameworks.
• Testable: all parts and as a whole.
• Independent of Interfaces.
• Independent of the data store /

database / object persistence.
• Independent of any external

impact.

So what does the architecture of your application scream?

When you look at the top level directory structure, and the source files in the highest level package; do they
scream: Health Care System, or Accounting System, or Inventory Management System?

Do they scream global, distributed, consistent or available?

Or do they scream: Rails, or Spring/Hibernate, or ASP?

Recommended viewing: https://www.youtube.com/watch?v=ZsHMHukIlJY

https://www.youtube.com/watch?v=ZsHMHukIlJY

Microservices also known as the current silver bullet.
https://www.cgl.ucsf.edu/Outreach/pc204/NoSilverBullet.html

Organization structure determines
system architecture / design.

https://medium.com/@learnstuff.io/conways-law-in-software-
dev-3aa6324ead52

As the systems get larger, complexity grows quickly and systems
become unmanageable.

http://www.laputan.org/mud/mud.html#BigBallOfMud

https://medium.com/raa-labs/part-1-domain-driven-design-like-a-pro-f9e78d081f10

• Split system in a set of loosely coupled, cohesive services.
• Each service does only one thing and does it well.
• Each service is represented only by its API.
• Each service has its own data.

Microservices

https://medium.com/hashmapinc/the-what-why-and-how-of-a-microservices-architecture-4179579423a9

What are the challenges of Microservices?

Compensating for high decentralisation. Patterns are emerging.

API Gateway Pattern Thank you NETFLIX!

https://microservices.io/patterns/apigateway.html

The absolute minimum to remeber.

Architecture is a servant of high priority stakeholder values.
Is as simple as possible, but not simpler.

Is designed to be replaceable.

Software Architecture is a Strategy.
Software Architecture is Communication.

Software Architect is a Teacher.

Feel free to connect.

