
LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO

PV260 - SOFTWARE QUALITY

SOFTWARE QUALITY MANAGEMENT PROCESS

Bruno Rossi
brossi@mail.muni.cz

"Essentially, all models are wrong, "Essentially, all models are wrong,
but some are useful" but some are useful"

George BoxGeorge Box

3-63

● Kitchenham gave five perspectives of software quality:

1. Transcendental view
 → can be recognized but difficult to define exactly

2. User view
 → fitness for purpose

3. Manufacturing view
 → conformance to specification

4. Product view
 → from inherent product characteristics

5. Value-based view
 → depends on customer’s willingness to pay

Introduction

B. Kitchenham and S. L. Pfleeger, “Software quality: the elusive target,” IEEE Software, vol. 13, no.
1, pp. 12–21, Jan. 1996.

4-63

© 2012 Steve Easterbrook creative commons license.

Introduction

We deal with process
quality in this lecture

5-63

Introduction
● Quality is a concept that starts with the development

process, goes on with the software product and finally to
the user with the results from software usage

6-63

● “Software quality management (SQM) is the collection of all processes
that ensure that software products, services, and life cycle process
implementations meet organizational software quality objectives and
achieve stakeholder satisfaction” (SWEBOK 3.0)

● SQM defines processes, process owners, requirements for the processes,
measurements of the processes and their outputs, and feedback
channels throughout the whole software life cycle.

What is Software Quality Management (SQM)

7-63

The Impact of Quality

8-63

How much “Quality” is needed? If we could quantify it, should/could we
have 100% quality in our software products?

Thinking about some of the systems that are/have been market leaders,
how was the quality of the proposed solution?

The impact of Quality

It was shown that even by starting with the same level
of customer satisfaction what really matters is the
competition with the other companies

Babich, P. (1992) “Customer Satisfaction: How Good is Good Enough?” Quality Progress. https://docuri.com/download/customer-satisfaction_59c1d667f581710b2866ba80_pdf

A

B C

dissatisfied A

dissatisfied C

dissatisfied C

dissatisfied B

di
ss
at

isf
ie

d
A

di
ss

at
isf

ie
d

B
satisfied A

satisfied B satisfied C

This implies that you need to do better than your
competitors in terms of quality

https://docuri.com/download/customer-satisfaction_59c1d667f581710b2866ba80_pdf

9-63

● What makes software different

– Really big economies of scale

 → additional physical inputs for production result in a non-proportional
increase in output with a decrease in average costs

– Increasing returns

 → “tendency for that which is ahead to get further ahead, for that
which loses advantage to lose further advantage” (W.B. Arthur)

– Network Externalities

 → the value of goods to users increases as more people adopt them

– High initial costs

 → software is complex to design and to deliver to the market

– Switching costs

 → switching to other software might be costly (e.g. training to
re-do, change of infrastructure)

The impact of Quality

10-63

Network Externalities: for some types of goods, the value of a
good increases with the number other people adopting the same
good

● “These effects arise both because the ability to communicate and share data with
others will be greater, and because it is more likely that complementary hardware,
software, and wetware (i.e., brain cells) will be available, when there is a large
base of users of the software”, Katz & Shapiro

Network Externalities

Network Externalities

Path Dependence

Lock-in

11-63

● Path Dependence: in common knowledge means 'history matters'

● But there is more.. If we consider historical paths, not only the path
depends on previous events but also produces a self-reinforcing
mechanism that leads to the reinforcement of the path selected. In this
way, switching to another path will become at every step more costly

● In general, due to increasing returns, a phenomenon can assume
contagious effects

Path Dependence

12-63

● So are we destined to keep the current status in the future
(e.g. using Facebook, Google, etc..)?

● One nice answer comes from Christensen (2013) that identified
two types of technologies:
– Sustaining – an innovation that improves a product in either

expected or unexpected way, but does not lead to a paradigm
shift

– Disruptive – an innovation that can potentially create a new
market and constitutes a paradigm shift (e.g. facebook creating
the whole social networking idea, or touch screens for the whole
mobile phones industry)

● Disruptive innovations are a way to change from the status quo

 → can you name some companies that were market leaders before a
disruptive technology appeared?

Sustaining and Disruptive Innovations (1/3)

Christensen, C. (2013). The innovator's dilemma: when new technologies cause great firms to fail.
Harvard Business Review Press.

13-63

● Disruptive technologies: initially the quality might be lower
than current technologies, but will catch-up quickly

Sustaining and Disruptive Innovations (2/3)

Christensen, C. (2013). The innovator's dilemma: when new technologies cause great firms to fail. Harvard
Business Review Press. (img source: https://commons.wikimedia.org/wiki/File:Disruptivetechnology.png)

14-63

● Gartner's Hype Cycle (GHC) for Emerging Technologies →
maturity of technologies in a domain

Sustaining and Disruptive Innovations (3/3)

 ← 2013 GHC

Do you see any
technology that
maintained the
“hype”?

15-63

Q&A

16-63

a) Can you name one disruptive innovation either in
Software or in the IT world that impressed you particularly in
the last few years?

b) Thinking in terms of 5-10 years from now, what do you
think will be a disruptive technology in the software/IT
world?

General Questions

17-63

SQM Categories

18-63

● According to ISO/IEC 12207/15288:2007

What is a process?

Processes require a purpose and outcome. All processes
have at least one activity

Activities are constructs for grouping together related tasks

A task is a detailed arrangement for the implementation of
a process. It can be a requirement (“shall”), a
recommendation (“should”) or a permission (“may”)

Notes are used to explain better the intent or mechanism
of a process

19-63

SQM comprises four subcategories

A. Software quality planning
(SQP)

which quality standards are to be used,
defining specific quality goals, and

estimating the effort and schedule of
software quality activities

B. Software quality
assurance(SQA)

define and assess the adequacy of software
processes to provide evidence that

establishes confidence that the software
processes are appropriate for and produce

software products of suitable quality for
their intended purposes

D. Software process
improvement (SPI)

The activities in this category seek to
improve process effectiveness,

efficiency, and other characteristics
with the ultimate goal of improving

software quality

C. Software quality control
(SQC)

activities examine specific project artifacts
(documents and executables) to determine

whether they comply with standards
established for the project (including
requirements, constraints, designs,

contracts, and plans)

A → All Planning for SWQ B → Assess the adequacy of
software processes

C → Compliance to standards
established for the project for

products

D → Activities to improve
software processes

20-63

SQA vs SQC – What's the difference?

Source: http://softwaretestingfundamentals.com/sqa-vs-sqc/

21-63

● A quality plan defines how an organization will reach the quality
objectives

● Usually covers

– Quality objectives and goals

– Quality management scope

– Organisation & responsibilities

– Resource requirements

– Cost benefit analysis

– Activities and deliverables

– Schedule

– Risk analysis

A. Software Quality Planning

A. Software quality planning
(SQP)

which quality standards are to be used,
defining specific quality goals, and

estimating the effort and schedule of
software quality activities

B. Software quality
assurance(SQA)

define and assess the adequacy of software
processes to provide evidence that

establishes confidence that the software
processes are appropriate for and produce

software products of suitable quality for
their intended purposes

D. Software process
improvement (SPI)

The activities in this category seek to
improve process effectiveness,

efficiency, and other characteristics
with the ultimate goal of improving

software quality

C. Software quality control
(SQC)

activities examine specific project artifacts
(documents and executables) to determine

whether they comply with standards
established for the project (including
requirements, constraints, designs,

contracts, and plans)

22-63

● Quality at the organization and project Levels

A. Software Quality Planning

Source: http://www.chambers.com.au/glossary/quality_planning.php

Project /
Product

development

Project /
Product

development

Quality
management

Group

Process Group

SQMS
Development

Process
Improvement

Plan

Project Manager /
Quality

Representative

Project /
Product

development
Project

Quality Plan

Quality Management System

standards
procedures

process
description

QA objectives
& metrics

Goals
Resources
SQMS tailoring

SQMS = Software Quality Management System

C
o m

pa
ny

 L
e v

e l
P

ro
j e

c t
 L

ev
e l

23-63

● SQA means monitoring constantly the software engineering
process to ensure that the approaches/methods/processes applied
lead to quality within the project

B. Software Quality Assurance

A. Software quality planning
(SQP)

which quality standards are to be used,
defining specific quality goals, and

estimating the effort and schedule of
software quality activities

B. Software quality
assurance(SQA)

define and assess the adequacy of software
processes to provide evidence that

establishes confidence that the software
processes are appropriate for and produce

software products of suitable quality for
their intended purposes

D. Software process
improvement (SPI)

The activities in this category seek to
improve process effectiveness,

efficiency, and other characteristics
with the ultimate goal of improving

software quality

C. Software quality control
(SQC)

activities examine specific project artifacts
(documents and executables) to determine

whether they comply with standards
established for the project (including
requirements, constraints, designs,

contracts, and plans)

24-63

● IEEE Std 730-2014 – Outline for software quality planning:

B. Software Quality Assurance Planning

Heimann, D. I. (2014). An Introduction to the New IEEE 730 Standard on Software Quality Assurance, SQP Vol 16, N.3

1. Purpose & Scope

2. Definitions & acronyms

3. Reference documents

4. SQA Plan Overview:

4.1 Organization & independence
4.2 Software Product Risk
4.3 Tools
4.4 Standards, practices and conventions
4.5 effort, resource, schedules

5. Activities, Outcomes and tasks:

5.1 Product Assurance:
5.1.1 Evaluate plans for conformance
5.1.2 Evaluate product for conformance
5.1.3 Evaluate product for acceptability
5.1.4 Evaluate product life cycle support for
conformance
5.1.5 Measure products
5.2 Process assurance:
5.2.1 Evaluate life cycle support for conformance

5.2.2 Evaluate environments for conformance
5.2.3 Evaluate subcontractor processes for
conformance
5.2.4 Measure processes
5.2.5 Assess staff skills & knowledge

6. Additional Considerations

6.1 Contract review
6.2 Quality Measurement
6.3 Waiver and deviations
6.4 Task repetition
6.5 Risks in performing SQA
6.6 Communication strategy
6.7 Conformance process

4. SQA Records:

7.1 Analyze, identify, collect, file, maintain,
dispose
7.2 Availability of records

25-63

IEEE Std 730-2014 – how is Agile considered?

● Agile → the product backlog is the contract, the standards help in
defining the role of the backlog as contract

● The SQA product part in IEEE730 can be used to defined the “done”
criteria

● Non-conformances to standards are inserted in the backlog and
addressed in sprints in which are scheduled

● Acceptance is a continuous process in Agile

● IEEE730 contains an appendix with details about Agile adoption of the
standard

B. Software Quality Assurance Planning

Heimann, D. I. (2014). An Introduction to the New IEEE 730 Standard on Software Quality Assurance, SQP Vol 16, N.3

26-63

● IEEE Std 730 format and content of a → software quality assurance plan

● IEEE Std 1061 describes a methodology—spanning the life cycle—for →
establishing quality requirements and for identifying, implementing, and
validating the corresponding measures.

● IEEE Std 1465 (withdrawn standard) describes quality requirements →
specifically suitable for software "packages". It is expected to be replaced
by an IEEE adoption of ISO/IEC 25051

B. Summary of IEEE Stds related to SWQA

27-63

● SQC means to constantly monitor the software engineering
process/product to check for conformance to applied standards
(e.g. CMMI) or produced artifacts

● Some examples of methods

 → The Goal Question Metrics Approach (seen on the measurement lecture)

 → The Plan-Do-Check-Act method

C. Software Quality Control

A. Software quality planning
(SQP)

which quality standards are to be used,
defining specific quality goals, and

estimating the effort and schedule of
software quality activities

B. Software quality
assurance(SQA)

define and assess the adequacy of software
processes to provide evidence that

establishes confidence that the software
processes are appropriate for and produce

software products of suitable quality for
their intended purposes

D. Software process
improvement (SPI)

The activities in this category seek to
improve process effectiveness,

efficiency, and other characteristics
with the ultimate goal of improving

software quality

C. Software quality control
(SQC)

activities examine specific project artifacts
(documents and executables) to determine

whether they comply with standards
established for the project (including
requirements, constraints, designs,

contracts, and plans)

28-63

● Improve process effectiveness, efficiency and other characteristics
with the aim to improve software quality

● Very often software process improvement practices are
embedded within the process (e.g. capability models)

● Some methods:

 → Capability Maturity Model (CMM) and Capability Maturity
Model Integration (CMMI)

 → ISO/IEC 15504 (SPICE)

 → ISO 9001 Specification (seen during PA017 SEII)

 → Personal Software Process (PSP)
 and Team Software Process (TSP)

D. Software Process Improvement

A. Software quality planning
(SQP)

which quality standards are to be used,
defining specific quality goals, and

estimating the effort and schedule of
software quality activities

B. Software quality
assurance(SQA)

define and assess the adequacy of software
processes to provide evidence that

establishes confidence that the software
processes are appropriate for and produce

software products of suitable quality for
their intended purposes

D. Software process
improvement (SPI)

The activities in this category seek to
improve process effectiveness,

efficiency, and other characteristics
with the ultimate goal of improving

software quality

C. Software quality control
(SQC)

activities examine specific project artifacts
(documents and executables) to determine

whether they comply with standards
established for the project (including
requirements, constraints, designs,

contracts, and plans)

29-63

Some Historical
Models for Software
Quality Management

30-63

● What is the name of the simplest quality process
management practice in your opinion?

 → Actually, it involves no process

Simplest Quality Management Form

31-63

● Cowboy Coders write code according to their rules

● Some sentences you might have heard:

“If possible, the customer should only see the final versions of the
product. It is important to minimize the contact with the customer so
time is not wasted”

“The code is mine and none is allowed to touch it!”

“I do not need any analysis, design nor documentation”

“Even if it is broken, do not touch it! Try to hide it!”

“People who need comments in order to
understand my code are too dumb to be
working with me “

Cowboy Coding

Image: https://www.cs.utexas.edu/blog/cowboy-rides-away-now

 → See http://c2.com/cgi/wiki?CowboyCoder

http://c2.com/cgi/wiki?CowboyCoder

32-63

● The Personal Software Process (PSP) is a disciplined software development process
that works at the individual level

Personal Software Process (PSP)

PSP0
Defining &

using
processes

PSP1
Planning &
Tracking

PSP2
Quality

Management

TSP
Team

Development

Estabilish a measured
performance baseline

Practice size and effort
estimation

Practice defect
management and improve
design practices

Defined around 1995: Humphrey, Watts
S. A discipline for software engineering.
Addison-Wesley Longman Publishing
Co., Inc., 1995.

33-63

PSP0 – First Level

Process
scripts

PSP0 Process

Planning

Development

Postmortem

Design
Code

Compile
Test

Requirements

Time & Defect
Logs

Plan Summary

Finished Product

Scripts provide
the steps for
all processes

Templates
helpful when
following the
process

34-63

● Emphasizes making accurate and precise size measurements

● Incorporates measuring the size of the programs produced

● Accounts for various types of LOC in the programs produced

● Begins to look at process improvement

● The following elements are added

– Estimating and reporting software size

– Use of a coding standard

– Recording process problems and improvement ideas

PSP0.1 – Improvement

35-63

● All is based on forms, scripts and logs

PSP0.1 – Improvement

W. S. Humphrey, “A Discipline for Software Engineering”, 1995

Table C3 PSP0.1 Project Plan Summary Example

Student Student 11 Date 2/1/94
Program Object LOC Counter Program # 3A
Instructor Humphrey Language C

Program Size (LOC) Plan Actual To Date
Base(B) 87

(Measured)

 Deleted (D) 0
(Counted)

 Modified (M) 6
(Counted)

 Added (A) 113
(T-B+D-R)

 Reused (R) 0 0
(Counted)

Total New & Changed (N) 90 119 315
(A+M)

Total LOC (T) 200 396
(Measured)

Total New Reuse 0 0

Time in Phase (min.) Plan Actual To Date To Date %
 Planning 10 11 36 6.4
 Design 25 21 63 11.2
 Code 75 97 249 44.2
 Compile 20 4 35 6.2
 Test 45 39 105 18.7
 Postmortem 20 33 75 13.3
 Total 195 205 563 100.0

Defects Injected Actual To Date To Date %
 Planning 0 0 0
 Design 1 3 11.5
 Code 8 23 88.5
 Compile 0 0 0
 Test 0 0 0
 Total Development 9 26 100.0

Defects Removed Actual To Date To Date
%

 Planning 0 0 0
 Design 0 0 0
 Code 0 0 0
 Compile 2 13 50.0
 Test 7 13 50.0
 Total Development 9 26 100.0
 After Development 0 0

36-63

● PSP1 introduces the concept of
software effort estimation and
the usage of historical data

● Using the PROBE (PROxy-Based
Estimating) size estimating
method

● Using linear regression, PROBE
size estimation, regression
analysis is based on historical
estimated object LOC (the x
data) and actual new and
changed LOC (the y data)

PSP1 – Second Level

Estimate Objects (proxies)

Nr. of
methods

Start with the conceptual design

Object
type

Relative
size

Reuse
categories

Estimate new and changed LOCs

Estimate development time

Calculate prediction interval

Planning estimates

W. S. Humphrey, “A Discipline for Software Engineering”, 1995

37-63

● PSP2 introduces design and code reviews methods for
evaluating and improving the quality of your reviews

● There are three new process elements

– PSP2 project plan summary

– PSP2 design review checklist

– PSP2 code review checklist

PSP2 – Third Level

38-63

● The idea behind PSP is that it should lead to more team-aware
processes once developers have tried a self-disciplined approach

Personal Software Process (PSP)

PSP Skill-building

Personal Plans
Planning Methods
Earned Value
Process data
Quality Measures
Defined Processes

TSP Team-building TSP Team-working

Engineering
Disciplines

Team
Disciplines

Management
Disciplines

Committment
Aggressive plans
Quality ownership
Project goals
Plan ownership
Plan detail
Team roles
Team resources

Quality priority
Cost of quality
Follow the process
Review status
Review quality
Communication
Change management

Integrated
Product
Teams

→ see hackystat

https://hackystat.github.io/

39-63

● A measure of Software Quality developed at Motorola

● The focus of Six Sigma is on eliminating defects, that is everything that is
outside from the customers specifications

● No more than +/- six times the standard deviation from the process
mean → 3,4 Defects Per Million datapoints

● Data is a key to understand the underlying processes and take decisions

Six Sigma

Sigma Level Defects x 1M

2 308.537

3 66.807

4 6.210

5 233

6 3,4

Defined in the ‘80s in industry but only in
90’s adopted widely, later on adopted by
software engineering community.

σ=√∑ (xi−x)

n−1

40-63

Six Sigma - Process

Define Measure Analyze Improve Control

Who are the
customers and the

needs

How is the process
defined and how
are the defects

measured

What are the most
important causes of

the defects

How can the
causes of the

defects be
eliminated

What actions are
needed to sustain

improvement

In Six Sigma, a defect is defined as “Any product, service, or process
variation which prevents meeting the needs of the customer and/or
which adds cost, whether or not it is detected”

Key aspect: understand the relation between depend variables (Y,
defects) and independent variables (X, causes)

Y =f ()

Y=f (x1. x2, x3, ... , xn)

41-63

Six Sigma - Process

Define Measure Analyze Improve Control

●Define Project
scope
●Estailish formal
project

●Identify needed
data
●Obtain data set
●Evaluate data
quality
●Summarize &
baseline data

●Explore data
●Characterize
process & problem
●Update
improvement
project scope &
scale

●Identify possible
solutions
●Select solution
●Implement (pilot as
needed)
●Evaluate

●Define control
method
●Implement
●Document

42-63

Six Sigma - Tools

Define Measure Analyze Improve Control

● Benchmark
● Contract/charter
● Kano Model
● Voice of the

customer
● Voice of the

Business
● Quality

Function
Deployment
(QFD)

● GQ(I)M and
indicator
templates

● Data collection
methods

● Measurement
System
Evaluation

● Cause & Effect
Diagram/Matrix

● Failure models
& effects
analysis

● Statistical
inference

● Reliability
Analysis

● Root Cause
Analysis

● Hypothesis Test

● Design of
experiments

● Modeling
● ANOVA
● Tolerancing
● Robust Design
● System

Thinking
● Decision & Risk

Analysis
● Performance

Analysis Model

● Statistical
Controls:

● Control charts
● Time series

methods

● Non-Statistical
controls:

● Procedural
adherence

● Performance
Management

● Preventive
measures

Basic Tools (Histogram, scatter plots, run charts, pareto charts, cause & effect diagram, Control chart,
descriptive statistics), baseline process flow map, project management, management by fact, sampling
techniques, survey methods, defect metrics

43-63

Software Process Maturity Models

44-63

● As defined in ISO/IEC 15504-2 (SPICE)

Process Maturity Levels

→ The process is not implemented or fails to achieve
the purpose

→ The process is achieving the purpose

→ The process is now running in a managed way
(planned, monitored, adjusted) – work products are
established, controlled and maintained
→ The managed process is now implemented using a
defined process capable of achieving process
outcomes

→ The established process now operates within
defined limits to achieve its process outcomes

→ The predictable process is continuously improved
to meet relevant current and projected business goals

Capability
Level

Process Capability

0 Incomplete Process

1 Performed Process

2 Managed Process

3 Established Process

4 Predictable Process

5 Optimizing Process

45-63

● As defined in ISO/IEC 15504-2 (SPICE)

Process Maturity Levels & Attributes

46-63

SPICE - Overall

ENG.1

Engineering
Customer-

Relationship
Support

ManagementManagement Organisation Support

ENG.1
ENG.1

CUS.1
ENG.1

MAN.1
ENG.1

ORG.1
ENG.1

SUP.1

ENG.1
ENG.1.BP1

ENG.1
CUS.1.BP1

ENG.1
MAN.1.BP1

ENG.1
ORG.1.BP1

ENG.1
SUP.1.BP1

ENG.1
ENG.1.WP1

ENG.1
CUS.1.WP1

ENG.1
MAN.1.WP1

ENG.1
ORG.1.WP1

ENG.1
SUP.1.WP1

5 Categories

24 Processes

201 Base
Practices

109 Work
Products

47-63

Example Process Definition (1/2)

5 Process
Categories

(SUP=Support)

48-63

Example Process Definition (2/2)

Overall 24 processes
are specified

49-63

● SPICE is a two-dimensional level model

– Processes and categories on one side (Process Dimension)
 includes Base practices, work products, characteristics →
 → Does the process reach its goals?

– Capability of processes on the other side (Capability
Dimension) includes levels, process attributes, →
management practices → How well is a specific goal met?

Process Maturity Levels & Attributes

50-63

Process Maturity Levels & Attributes

Assessment Model

Process Dimension Capability Dimension

Process categories (5)
Processes (24)

Capability Levels (6)
Process Attributes (9)

Base Practices (201)
Work Products (109)

Management Practices (33)
Resources & Infrastructure
characteristics

Indicators of process
performance

Indicators of process
capability

51-63

Process Maturity Levels & Attributes
Assessment Model

Process Dimension Capability Dimension

Process categories (5)
Processes (24)

Capability Levels (6)
Process Attributes (9)

Base Practices (201)
Work Products (109)

Management Practices (33)
Resources & Infrastructure
characteristics

Indicators of process
performance

Indicators of process
capability

Assessment Scale
● up to 15% – N (Not performed/achieved)
● > 15% to 50% – P (Partial)
● > 50 to 85% - L (Large)
● > 85% - F (Full performance / achievement)

PA1.1 PA2.1 PA2.2 PA3.1 PA3.2 PA4.1 PA4.2 PA5.1 PA5.2
ENG.1

ENG.2

MAN.2

ORG.1

N
P
L
F

→ who performs the assessment?

Process Attributes
 1.1 Process performance
 2.1 Performance management
 2.2 Work product management
 3.1 Process definition
 3.2 Process deployment
 4.1 Process measurement
 4.2 Process control
 5.1 Process innovation
 5.2 Process optimization

52-63

Capability Maturity Model Integrated

Upgrade from CMM appearing around year 2000

CMMI

53-63

Staged assessment of the maturity of the → entire software process

Continuous assessment of the → capabilities of different Process
Areas (PA)

Sample Pas:

– Requirements Development (RD)

– Requirements Management (REQM)

– Project Monitoring and Control (PMC)

– Project Planning (PP)

– Process and Product Quality Assurance (PPQA)

– Quantitative Project Management (QPM)

– Risk Management (RSKM)

– Supplier Agreement Management (SAM)

– Technical Solution (TS)

– Validation (VAL)

– ...

CMMI

54-63

Ragaisis, S., Peldzius, S., & Simenas, J. (2010). Mapping CMMI-DEV Maturity Levels toISO/IEC 15504 Capability Profiles. Assessment, 23, 24.

Mapping CMMI to ISO/IEC 15504 (SPICE)

55-63

Ragaisis, S., Peldzius, S., & Simenas, J. (2010). Mapping CMMI-DEV Maturity Levels to ISO/IEC 15504 Capability Profiles. Assessment, 23, 24.

Mapping CMMI to ISO/IEC 15504 (SPICE)

…..

This was the
sample process
we saw some
slides ago

Legenda: up to 15 % – N (Not performed/achieved), > 15 % to 50 % – P (Partial), > 50 to 85
% – L (Large), and F (Full performance / achievement) > 85 % - “ML2”- “ML5” maturity
levels in CMM-i - “CL1”-“CL5” are capability levels in ISO/IEC 15504

56-63

● Defining the measurement construct

ISO/IEC 15939 - Example
ISO/IEC 15939:2007
defines the
measurement process
for software systems
engineering

 → was discussed in the
lecture about software
metrics & measurement

57-63

There are around 40 Agile Maturity models that sometimes adapt SPICE/CMMI
levels/processes – each one uses different naming for levels:

Agile Process Maturity

T. Schweigert, D. Vohwinkel, M. Korsaa, R. Nevalainen, and M. Biro, “Agile Maturity Model: A Synopsis as a First Step to Synthesis,” in Systems, Software and Services
Process Improvement, F. McCaffery, R. V. O’Connor, and R. Messnarz, Eds. Springer Berlin Heidelberg, 2013, pp. 214–227.

Level1 Level2 Level3 Level4 Level5

● Rhetorical stage
● Team level

maturity
● Neutral or Chaotic
● Emergent
● Engineering Best

Practices
● Introductory
● Collaborative
● Dormant
● No Agile
● Waterfall
● Non-Agile
● Core Agile

Development
● Adherence to Agile

Principles
● Getting Started
● Improvising

● Certified stage
● Department Level

Maturity
● Collaborative
● Continuous

Practices at
Component Level

● Learn
● Novice
● Evolutionary
● Speed
● Early Adoption
● Forming
● Minimum
● Discipline Agile

Delivery
● Repeteable

Process across the
organization

● Scrum at project
level

● Practicing

● Plausible stage
● Business Level

Maturity
● Operating

(consistent
exhibition of
competence)

● Cross component
continuous
integration

● Leverage
● Intermediate
● Effective
● Reactive
● Self Service
● Agile
● Consolidated
● Agility at scale
● Scalability –

SCRUM of
SCRUMS

● Respectable stage
● Project

Management Level
Maturity

● Adaptive
● Cross Journey

Continuous
integration

● Advanced
● Adaptive
● Responsive
● The Lake effect
● Performing
● Items on the right
● SCRUM at

Enterprise Level
● Governed

● Measured stage
● Management Level

Maturity
● Innovating
● On Demand Just in

Time Release
● Optimise
● Insane
● Ambient
● Scaling
● Coexistence with

non-agile
● Enterprise

transformation
● Matured

58-63

Some approaches suggest even to reuse SPICE Process definitions, example:

Agile Process Maturity

T. Schweigert, M. Ekssir-Monfared, and M. Ofner, “An Agile Management Process Group for TestSPICE®,” in Systems, Software and Services Process Improvement, F.
McCaffery, R. V. O’Connor, and R. Messnarz, Eds. Springer Berlin Heidelberg, 2013, pp. 228–236.

59-63

Source: http://www.agigante.it/different-levels-of-agile-in-a-company/

Agile Maturity Matrix
Level1 – ad hoc
Agile

Level2 – doing
agile

Level3 – being
agile

Level4 – thinking
agile

Level5 – culturally
agile

Agile is not yet used
or agile practices are
used sporadically

Teams start to exhibit
some agile habits

Lean portfolio
management

Communities of
practice support agile
habits

Lean and agile are
part of organizational
culture

Variable quality Consistency across
teams is still variable

Mature embodiment
of essential
characteristics and
behaviour of agile

Successful use of
agile at scale

Perfecting waste
reduction, smooth
flow of delivery

Predominantly manual
testing

Some knowledge
sharing activities
under way

Disciplined Agile
delivery processes
and practices with
continual
improvement and
repeatable results

Success even with
teams in multiple
geographies

Sustainable pace of
innovation

Very little cross-
project knowledge and
collaboration

Use of agile tools and
practices become
commonplace

Respect for people
and continuous
improvement

Measurement
systems in place keep
track of business
value delivered

Continuous
organizational
learning and
optimization of the
work process and the
work products

Success achieved
primarily through
heroic individual
efforts

Solution quality
improves

Appropriate agile
governance

Autonomation:
automation with a
human touch

Standard work is
defined

60-63

● One of the existing models is a simplified version of CMMI taking into
account the distributed nature of Open Source development

● Trustworthy elements (TWE) are micro-characteristics that allow to define
maturity levels

Open Source Maturity Model (OMM)

Source: http://qualipso.icmc.usp.br/OMM/

 PDOC – Product Documentation
 STD – Use of Established and Widespread Standards
 QTP – Quality of Test Plan
 LCS – Licenses
 ENV – Technical Environment
 DFCT – Number of Commits and Bug Reports
 MST – Maintainability and Stability
 CM – Configuration Management
 PP1 – Project Planning Part 1
 REQM – Requirements Management
 RDMP1 – Availability and Use of a (product) roadmap

 RDMP2 – Availability and Use of a (product) roadmap
 STK – Relationship between Stakeholders
 PP2 – Project Planning Part 2
 PMC – Project Monitoring and Control
 TST1 – Test Part 1
 DSN1 – Design Part 1
 PPQA – Process and Product Quality Assurance

 PI – Product Integration
 RSKM – Risk Management
 TST2 – Test Part 2
 DSN2 – Design 2
 RASM – Results of third party assessment
 REP – Reputation
 CONT – Contribution to FLOSS Product from SW Companies

61-63

● Each TWE is divided in goals (G) practices (TWE) checklists metrics→ → →
● Example: PDOC (Product Documentation) G1.Provide HQ documentation P1.Create Development → →

Documentation C1. is detailed architectural design documentation available? (yes/no) C2…...→ →
● The Goal Question Metric approach is used to define the elements of the current

OMM based on the TWEs
● All levels of the GQM are aggregated according to following rating calculation:

Open Source Maturity Model (OMM)

R (Pi)=
∑ M i

count (M)

R(Gi)=
∑ P i

count (P)

R(TWEi)=
∑ Gi

count (G)

No weighting of metrics, Maturity Level calculated
by using practices (not TWEs)

R(ML)=
∑ Pi

max∑ Pi
P=practice, G=goal, ML=Maturity Level, R=rating

62-63

For the part about increasing returns, path dependency, if you are interested :)
[1] Arthur, W. Brian (1989). Competing Technologies, Increasing Returns, and Lock-In by Historical Events, 97
Economic Journal 642-65.

[2] Farrell, Joseph and Garth Saloner (1985). Standardization, Compatibility, And Innovation, 16 Rand Journal 70-
83.

[3] Katz, M. L., & Shapiro,C. (1985). Network Externalities, Competition, and Compatibility. The American
Economic Review, 75(3), 424-440.

[4] Katz, M. L., & Shapiro, C. (1986). Technology Adoption in the Presence of Network Externalities. Journal of
Political Economy 822-841.

[5] Liebowitz, S. J. and Stephen E. Margolis (1990). The Fable of the Keys, Journal of Law and Economics, 33:1, 1-
26.

[6] Liebowitz, S. J. and Stephen E. Margolis (1994). Path Dependency, Lock-In, and History, working paper, 1994b.

[7] Liebowitz, S. J. and Stephen E. Margolis (1994). Network Externality: An Uncommon Tragedy, 8 Journal of
Economic Perspectives 133-50.

[8] Economides, N. (1996). The Economics of Networks, International Journal of Industrial Organization, vol. 14,
no. 6, pp. 673-699

[9] Paul A. David (2000), Path dependence, its critics and the quest for ‘historical economics, in P. Garrouste and
S. Ioannides (eds), Evolution and Path Dependence in Economic Ideas: Past and Present, Edward Elgar Publishing,
Cheltenham, England.

[10] Shapiro, C. e Varian, H.R. (1999). Information Rules: A Strategic Guide to the Network Economy, Harvard
Business School Press.

[11] Windrum, P., (2003). Unlocking a lock-in: towards a model of technological succession, in Applied
Evolutionary Economics: New Empirical Methods and Simulation Techniques, P.P. Saviotti (ed.), Cheltenham:
Edward Elgar.

References

63-63

References mentioned in the slides, plus:

● Bourque, P., & Fairley, R. E. (2014). Guide to the Software Engineering
Body of Knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society
Press.

References

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

