Test driven development

Radim Go6th

Outline

* Workshop is inspired by Test- : tion ot Gonios oo R
Driven Development book by pf«
Kent Beck [1] TEST-DRIVEN “nft

* Outline DEVELOPMENT

» TDD background & big picture DY RKAMPLI
e What is TDD and how it is

practiced RN ECK
* Unit testing

Get familiar with NUnit
Coding katas

Test pyramid - unit vs integration vs system
tests

& $$%

Taken from [2]

Srovnani metodik z pohledu zivotniho cyklu S

Rational Unified |
Process . : : | :
Extrémni F E
programovani ' = fizeni projekiu
Feature-Driven ——— procesy
Development : : i i — iprakaiky, aktivity, produlay
SCRUM E 1 T 1 1 = pokryto '
Test-Driven | : : i . == nepoknyto |
Development ! ! : : : : : "]
| } } } } i I } -
vytvofeni specifikace navrh kodovani testovani integraéni systemove akceptaéni provoz
konceptu poZadavku jednotek testovani testovani testovani

Taken from [3]

Extreme Programming

* Extreme programming (XP) is a software development methodology
which is intended to improve software quality and responsiveness to
changing customer requirements.
https://en.wikipedia.org/wiki/Extreme programming

https://en.wikipedia.org/wiki/Extreme_programming

Extreme programming

* Communication * Pair programming

e Simplicity * TDD

* Feedback * Collective code ownership
* Courage * Continuous integration

* Respect * Acceptance tests

10D

 Kent Beck — reinvented TDD, invented XP
» Software development process
* Pair programming

* Rules:
* Write failing test

* Write simplest implementation to pass the test
» Refactor your code
* Repeat

REFACTOR g

TDD some thoughts

* Write test first should make the application design better. If you need

to vandalize design of you application just to make it testable, you're
probably doing it wrong.

* Principles of TDD can be used on any level (unit, integration, system)

* However, in real world, it could be hard to implement system test
before the system itself.

 TDD was invented in a time when computers were slow and
integration and system tests runs for a days.

Coding katas

* |sa wayto
* Exercise TDD
Exercise SOLID design

Exercise refactoring
Exercise test design
Learn new language

Naming conventions

* Project naming
* <ProjectUnderTest>.Tests

* Class naming
e <ClassUnderTest>Tests

e Test method naming
 Given_When_Then
 <methodUnderTest> Given_Then
* Pragmatic approach ;)

Unit test structure

* Arrange
 Act
* Assert

* One Assert per test (ideal situation)

* More asserts per test

* Could be refactored (e.g. custom assert method)

* https://www.amazon.com/xUnit-Test-Patterns-Refactoring-
Code/dp/0131495054

https://www.amazon.com/xUnit-Test-Patterns-Refactoring-Code/dp/0131495054

Leap year

* Write a function that returns true or false depending on whether its input
integer is a leap year or not.

* A leap year is divisible by 4, but is not otherwise divisible by 100 unless it is
also divisible by 400.

e 2001 is a typical common year

* 1996 is a typical leap year

* 1900 is an atypical common year
e 2000 is an atypical leap year

What is Kent Beck saying about small steps?

“Remember, TDD is not about taking teeny-tiny steps, its’ about being able
to take teeny-tiny steps. Would | code day-to-day with steps this small? No.
But when things get the least bit weird, I'm glad | can.”

Fizz Buzz kata

* Fizz Buzz is a mathematical game which is played with a group of
people. Each person says a number in sequence, but when the
number is a multiple of 3, they have to say "Fizz", when it is a multiple
of 5 they have to say "Buzz", and if it is a multiple of both 3 and 5,
"FizzBuzz". If someone makes a mistake and it is noticed, they are out.

* A typical game might start like: 1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz,
11, Fizz, 13, 14, Fizz Buzz, etc.

Pangram kata

* Determine if a sentence is a pangram. A pangram (Greek: rtawv
YPOUMO, pan gramma, "every letter") is a sentence using every letter
of the alphabet at least once. The best known English pangram is:

The quick brown fox jumps over the lazy dog.

* The alphabet used consists of ASCII letters a to z, inclusive, and is case
insensitive. Input will not contain non-ASCIl symbols.

Test behavior, not implementation

* Implementation details should be hidden from the tests. If you need
to change tests often because of changes that could be considered as

implementation details, you are testing implementation, not
behavior.

* It is ok to use tests to validate some implementation (e.g. complex
LINQ expression) and delete it afterwards.

* Making methods public in order to test them is not a good idea.

* Making them internal as a shortcut is the same. It often shows poor
decomposition of a system and violation of Single Responsibility
Principle.

Ron Jeffries summary of TDD

The goal is clean code that works. [1]

Divide and conquer, baby. First, we’ll solve the “that works” part of the
problem. Then we’ll solve the “clean code” part. [1]

Events

* http://codingdojo.cz/
* http://globalday.coderetreat.org/

http://codingdojo.cz/
http://globalday.coderetreat.org/

Bibliography

1] Beck, K., Test-Driven Development: By example, 2003

2] Fowler, M., Test Pyramid, online
https://martinfowler.com/bliki/TestPyramid.html

3] Racek, J, Analyza a navrh systému, studijni materialy Fl MU, 2010

https://martinfowler.com/bliki/TestPyramid.html

