
Maven

PV260 Software Quality

Stanislav Chren

23. 2. 2017

What is Maven

Apache Maven is a software project management and
comprehension tool. Based on the concept of a project
object model (POM), Maven can manage a project’s
build, reporting and documentation from a central piece
of information.

Our Use case

I Building Java projects

I Dependency management

download from http://maven.apache.org/index.html

http://maven.apache.org/index.html

Overview

Typical Project Structure

my-app

|-- pom.xml

‘-- src

|-- main

| |-- java

| | ‘-- com

| | ‘-- mycompany

| | ‘-- App.java

| ‘-- resources

| ‘-- META-INF

| ‘-- application.properties

‘-- test

‘-- java

‘-- com

‘-- mycompany

‘-- AppTest.java

POM File

I Mandatory for each Maven project

I Specifies project and build configuration

<project>
<groupId>com.mycompany.app</groupId>
<artifactId>my-app</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>Maven Quick Start Archetype</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
....
</dependency>

</dependencies>
<build>

<plugins>
<plugin>
...
</plugin>

</plugins>
</build>

</project>

Dependencies

I Project dependencies are defined inside <dependency>

elements.
I Example

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>

</dependency>

I Dependency artifacts are searched in local, remote and central
repositories

I If the artifact is not present in the local repository, it is
downloaded from central or specified remote repositories.

I Maven also handles the transitive dependencies.

Dependency Scopes

I Dependency scope is used to limit the transitivity of a
dependency, and also to affect the classpath used for various
build tasks.

Scope Description

compile Default. Dependencies are available in all
classpaths of a project

provided Provided by the JDK or a container at run-
time.

runtime Not required for compilation, but is for ex-
ecution. Only the runtime and test class-
paths.

test Only the test compilation and execution
phases

system The JAR is provided explicitly without the
repository search.

Maven CMD Interface

I Run from CMD using mvn followed by the name of a build life
cycle, phase or goal, e.g. mvn clean

I When Maven builds a software project it follows a build life
cycle. The build life cycle is divided into build phases, and the
build phases are divided into build goals

Lifecycle Description

default handles everything related to compiling and
packaging.

clean handles everything related to removing tem-
porary files from the output directory, in-
cluding generated source files, compiled
classes, previous JAR files etc.

site handles everything related to generating
documentation.

Default Lifecycle Build Phases

I Usage: mvn phaseName or mvn phaseName:goal

Phase Description

validate Validates that the project is correct and
all necessary information is available. This
also makes sure the dependencies are down-
loaded

compile Compiles the source code of the project.
test Runs the tests against the compiled source

code using a suitable unit testing framework.
package Packs the compiled code in its distributable

format, such as a JAR.
install Install the package into the local repository.
deploy Copies the final package to the remote

repository.

Creating New Project

I The basic project structure is generated using the archetypes

I Maven contains archetypes for various types of projects.

I The project creation wizard is executed by: mvn

archetype:generate

I For a sample HelloWorld project, you can run:
mvn -B archetype:generate \

-DarchetypeGroupId=org.apache.maven.archetypes \
-DgroupId=com.mycompany.app \
-DartifactId=my-app

I More archetypes: https://maven.apache.org/guides/

introduction/introduction-to-archetypes.html

https://maven.apache.org/guides/introduction/introduction-to-archetypes.html
https://maven.apache.org/guides/introduction/introduction-to-archetypes.html

Plugins

I Plugins are used for customizing the Maven build
I Example - making the resulting jar file executable and bundled

with all dependencies:
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>

<archive>
<manifest>
<mainClass>fully.qualified.MainClass</mainClass>

</manifest>
</archive>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>
</configuration>

</plugin>

Project is then built by: mvn clean compile assembly:single

I More info about plugins:
https://maven.apache.org/plugins/

https://maven.apache.org/plugins/

Tutorials

I http://tutorials.jenkov.com/maven/maven-tutorial.html

I https:

//maven.apache.org/guides/getting-started/index.html

I http://www.tutorialspoint.com/maven/

http://tutorials.jenkov.com/maven/maven-tutorial.html
https://maven.apache.org/guides/getting-started/index.html
https://maven.apache.org/guides/getting-started/index.html
http://www.tutorialspoint.com/maven/

Task

1. Generate at least three different project types (one of them
should be the default/quickstart). Examine their structure

2. Add following dependencies to the quickstart project:

I Hibernate
I Mockito
I Slf4j

3. Give them appropriate scope. Hibernate should be available in
packaged jar, Mockito is only available for testing and Slf4j
will be supplied by the environment.

4. Try to execute various life cycles/phases

5. Add the plugin configuration so that the resulted jar is
bundled with it its dependencies and is executable via java

-jar <NAME>.jar

