
SOLID Principles

PV260 Software Quality

Stanislav Chren, Václav Hála

2. 3. 2017



SOLID Principles

• Problems the SOLID principles help to address 1

• Rigidity
making small changes ripples throughout the entire system

• Fragility
changes to one module causes other unrelated modules to
misbehave

• Immobility
a module’s internal components cannot be extracted and
reused in new environments

• Viscosity
building and testing are difficult to perform and take a long
time to execute

• Only recommendations and best practices, not hard rules

1Taken from http://zeroturnaround.com/rebellabs/object-oriented-design-
principles-and-the-5-ways-of-creating-solid-applications/





Single Responsibility Principle
SOLID

• A class should have exactly one responsibility

• Responsibility is the purpose of the class

• Responsibility is a reason to change

• Seems simple, very hard to get right





Open Closed Principle
SOLID

• Behavior of a class should be extendable without modifying
the class itself

• Modules should be open for extension, closed for modification

• Changing existing code could break other part of the system

• Adhering to the principle yields reusability and maintainability





Liskov Substitution Principle
SOLID

• Class should be substitutable for any of its subclasses

• The contract of the supertype must be satisfied,
implementation details are irrelevant

• The principle is broken if client has to check which
implementation is actually used





Interface Segregation Principle
SOLID

• Many client-specific interfaces are better than one
general-purpose interface

• Clients should not be forced to depend on interfaces they do
not use

• Adhering to the principle results in high cohesion and low
coupling

• The principle is broken if usually only a small subset of the
interface is used





Dependency Inversion Principle
SOLID

• High level modules should not depend upon low level
modules, both should depend upon abstractions

• Abstractions should not depend upon details, details should
depend upon abstractions

• Violating the principle leads to hard to change and fragile
software



Further Reading

• http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

• http://zeroturnaround.com/rebellabs/object-oriented-design-
principles-and-the-5-ways-of-creating-solid-applications/

• http://code.tutsplus.com/series/the-solid-principles–cms-634



Source of Images

• https://lostechies.com/derickbailey/2009/02/11/solid-
development-principles-in-motivational-pictures/


	SOLID Principles
	SRP
	OCP
	LSP
	ISP
	DIP
	Sources

