Testing, JUnit Extensions, TDD

PV260 Software Quality
Stanislav Chren, Vaclav Hala

30. 3. 2017

Developers’ Tests

e Unit tests
e Integration tests
e End-to-end tests

O workers
@® managers
8 client

- Tomek Kaczanowski, Practical Unit Testing with...

Unit Tests

Unit test. ..

focuses on single class

makes sure that YOUR code works

controls context

knows nothing about the users of the tested system
is unaware of layers, external systems and resources

runs very quickly, is executed frequently

- Tomek Kaczanowski, Practical Unit Testing with...

Unit Tests

Unit test DOES NOT. ..
e talk to the database

e communicate across the network

touch the file system
e misbehave when run in parallel with any other unit tests

e require special things done to your environment to run

- Michael Feathers, A Set Of Unit Testing Rules

Anatomy of a Unit Test

xUnit
AAA BDD
) e Setup

e Arrange e Given .

e Exercise
e Act e When)

o Verify
e Assert e Then

e Teardown

http://c2.com/cgi/wiki?ArrangeActAssert
http://martinfowler.com/bliki/GivenWhenThen.html
http://xunitpatterns.com/Four’,20Phase20Test .html

http://c2.com/cgi/wiki?ArrangeActAssert
http://martinfowler.com/bliki/GivenWhenThen.html
http://xunitpatterns.com/Four%20Phase%20Test.html

JUnit extensions

e JUnit is an extremely powerful tool and virtually anything can
be done using only the pure JUnit core functionality

e In some cases however we might benefit from using extensions
of the basic functionality, syntactic sugar ...

e These allow us to work faster, reduce the boilerplate code
which brings no value, and make the test suite easier to
maintain

e For most common needs both third party libraries and native
JUnit extensions (some only in experimental branch) exist

JUnit extensions

e Fluent API for assertions

e Hamcrest http://hamcrest.org/JavaHamcrest/
e Assert) http://joel-costigliola.github.io/assertj/
o Parametrized /Data-Driven tests

e JUnit Parametrized http://junit.sourceforge.net/
javadoc/org/junit/runners/Parameterized.html

e Zohhak runner http://piotrturski.github.io/zohhak/

e JUnitParams
https://github.com/Pragmatists/JUnitParams

http://hamcrest.org/JavaHamcrest/
http://joel-costigliola.github.io/assertj/
http://junit.sourceforge.net/javadoc/org/junit/runners/Parameterized.html
http://junit.sourceforge.net/javadoc/org/junit/runners/Parameterized.html
http://piotrturski.github.io/zohhak/
https://github.com/Pragmatists/JUnitParams

JUnit extensions - cont

e Property testing using randomized input
e JUnit Theories http://junit.org/apidocs/org/junit/
experimental/theories/Theories.html
e junit-quickcheck
https://github.com/pholser/junit-quickcheck
e And many others
e Unitils http://www.unitils.org/summary.html
e catch-exception
https://github.com/Codearte/catch-exception
e tempus-fugit http://tempusfugitlibrary.org/

http://junit.org/apidocs/org/junit/experimental/theories/Theories.html
http://junit.org/apidocs/org/junit/experimental/theories/Theories.html
https://github.com/pholser/junit-quickcheck
http://www.unitils.org/summary.html
https://github.com/Codearte/catch-exception
http://tempusfugitlibrary.org/

Assert]
http://joel-costigliola.github.io/assertj/

Rich DSL, specific for many types - Collections, Strings,
numbers, Exceptions, Time ...

Really helpful error messages

Soft Assertions - show all errors, not just the first
e Extractors and Tuples

e Many extensions exist to test Database, Swing, Guava...

see homepage for extensive showcase of features

AssertJ

example: AssertJTest class

catch-exception
https://github.com/Codearte/catch-exception

e Catch and verify exceptions in a single line of code

e The test is more concise and easier to read.

e The test cannot be corrupted by a missing assertion.

e A single test can verify more than one thrown exception.

e The test can verify the properties of the thrown exception
after the exception is caught.

e The test can specify by which method call the exception must
be thrown.

- Javadoc of CatchException class

catch-exception

e Java 8 syntax (version 2.0.0)
MyObject myObject = new MyObject();
catchException(() -> myObject.doStuff(1));
Exception caught = caughtException();
assertThat (caught) .is. ..

e pre-Java 8 syntax (version 1.4.4)
MyObject myObject = new MyObject();
catchException(myObject) .doStuff (1) ;
Exception caught = caughtException();
assertThat (caught) .is. ..

catch-exception

example: CatchExceptionTest class

Zohhak

https://code.google.com/p/zohhak/

Allows us to run one test on many sets of data, provided in
annotation next to the testcase

Q@TestWith({
111,2’3|| s
"-19,7,-12"

»

public void testAdd(int a, int b, int expected) {
Calculator calc = new Calculator();
int result = calc.add(a,b);
assertEquals(expected, result);

Zohhak - Data

e The Strings inside the @TestWith({...}) each represent one
test input

e Inside each of these input Strings individual arguments for the
test are separated by commas (',’)

e Types of the arguments are infered from the parameters of the
test method and the arguments are coerced to these types
before being passed to the test

e Coercion of basic primitive types comes out-of-th-box
e Custom coercion for any type can be written

Zohhak - Coercions

For more complex types we have to teach zohhak how to convert
from String (the String in data annotation) to our type

@Coercion
public Person toPerson(String input) {
String[] split = input.split(";");
Person person = new Person(split[0], split[1]);
return person;
}
We can then use Person in our tests

Q@TestWith ({
"John;Doe",
"Frank;Perceval"

1))

public void testWithPerson(Person person){

Zohhak

example: Vector2DTest class

JUnitParams
https://github.com/Pragmatists/JUnitParams

e Same purpose as Zohhak
e + Can read data from file - CSV, Excel

example: CSVFilelnputTest class

junit-quickcheck
http://pholser.github.io/junit-quickcheck/site/0.7 /index.html

We don't test concrete inputs but properties of code

Input is generated randomly

The test is a specification of what the code should do

If error is found QuickCheck tries to 'Shrink’ it to 'smallest’
possible value which causes the same error

Inspired by QuickCheck for Haskell
https://hackage.haskell.org/package/QuickCheck

https://hackage.haskell.org/package/QuickCheck

junit-quickcheck

ORunWith (JUnitQuickcheck.class)
public class SymmetricKeyCryptographyProperties {
@Property
public void decryptReversesEncrypt (
byte[] plaintext, Key key){
Crypto crypto = new Crypto(key);
byte[] ciphertext = crypto.encrypt(plaintext);
assertEquals(plaintext,
crypto.decrypt (ciphertext)));

junit-quickcheck
Task 1

Try to run QuickcheckTest, it should fail

The test is correct, implementation is broken

Find what is wrong with the current implementation

Implement StringSplitter so that the test passes

junit-quickcheck
Task 2

e Come up with at least 3 properties of a sorting algorithm
Work with the Sorter interface

Write quickcheck test for each of these properties

Implements the Sorter using algorithm of your choice

Behavior Verification

State Verification Behavior Verification
client
template S
inputs outputs
o — r'ranServer
Test = 2
3 SUT = DOCs.
Class 2 8 N
- - engine ™

outputs inputs)
",

Mocking in Unit Testing

e Unit testing is simple for classes with no dependencies

e How do we test an object which depends on many other things
(many of which might not even be implemented yet) ?

e We create stand-in objects which share interface with the
required dependency

e Inside, instead of some complex behavior, these are hard-wired
to work in the one particular test case

e We can create these substitutes either by hand or use a
mocking framework

Mockito
http://mockito.org/

We decided during the main conference that we
should use JUnit 4 and Mockito because we think they
are the future of TDD and mocking in Java.

(Dan North - author of BDD)

e Interaction verification

e Input stubbing (data, exceptions. . .)
e Test Spy wrappers

e Mock both classes and interfaces

e Lightweight API

Working Example

e Model for an app doing basic math on Roman numerals

e We only care about the inner logic, the Ul doesn’t concern us

Awesome Roman Numerals Calculator

vt || IX = VI

| cdee]
Output: I I I

Working Example - Structure

e We already have the design done, all interfaces are prepared

e Datalnput and DataOutput represent the textboxes

e Clicking the Calculate button calls the solve method

fromDecimal (decimalNumber):String

Lexer Datalnput DataQutput
tokenize(rawlnput)tokenStream getinput() setOutput()
N A
RomanTranslator | |
toDecimal{romanNumeral):int RomanCalc

EquationBuilder

buildEguationTree(tokenStream j:equationTree

|
B

solve(datalnput, dataOutput)

Working Example - Structure

Lexer tokenizes the raw input
Number tokens are translated by the RomanTranslator and

sent to EquationBuilder

Tree representation of the equation is assembled
The decimal result is translated to Roman numerals
Formated result is sent back to output

EgquationMode

evaluate()

Operation [<H— Plus
left
right < Minus
Number

value

Test Doubles Hierarchy

http://xunitpatterns.com/Test%20Double.html

e There are many types of stand-in objects used in testing

e Each plays a different role, the simplest type possible should
be used (That is dont use a Mock if all you need is a Dummy)

Test

Double

AN
N | | |
:FDU“"'""'Fl Test Test Maock Fake
| Object | | Stub Spy Object || Object

Dummy Object

RomanCalculatorTest#testExceptionFromInput

e We need to provide real object (that is not null), but at the
same time we know it will never be used during the test

e Even better, we pass null to the test which helps readability as
we are clearly signalling that the value is not used

e This is of course not possible with null-checks in constructors,
so we have to use dummies instead.

e To Assert or Not To Assert
http://misko.hevery.com/page/5/

http://misko.hevery.com/page/5/

Test Stub

RomanTranslatingTokenStream#testConverts ToDecimalTokens

e We want one of SUT's dependencies to provide specific input
to the SUT when queried

Fixturl poc
Setup e
| nsialion
Exercise
- - SUT
Verify {))
Teardown

Test Spy

RomanTranslatingTokenStream#testRecognizesRomanNumeral

e We want to know SUT's interacts with one of its dependencies
e The spy only records the interaction, it is checked manually

AN ' poc
L Test S
S t Creation - - lESLORY
etu /
p — -Installation . Indirect
Output —
Exercise Exercse -
Igditrectts
utpu
Verify) " -’
fy (e,
Teardown

Mock Object

RomanTranslatingTokenStream#testCorrectInputSingleOperator

e Similar task as Test Spy, but checks the validity of SUT's
interaction with the mock on the fly

Setup

Exercise

| installation

Verify

Teardown

Creation

Exercise —e| S UT

Fix

Indirect
Cutput

Mock
Object

Final Verification

Expectations
/

i,

-7

-O £

)

o

Verify

Fake Object

No Example

e Has the same functionality as its real counterpart, but
implements it in a more test friendly way
e e.g. an in-memory database instead of disk-based one

Creation

Setup Installaion
S
Exercise e
Veriny
8]
Teardown

Test Spy vs. Mock

Test Spy
Mockito

e Arrange — Act — Assert
e Whole test runs
e Nice

e Verification always in caller

Mock
EasyMock

Record — Exercise — Verify

Stop on first error
Strict

Might be suppressed by
environment

Test Doubles Exercise
Task 1

e implement all tests in CustomerAnalysisTest

e try to use Mockito in some cases and manual Test Doubles in
others

Test Coverage

In computer science, test coverage is a measure used
to describe the degree to which the source code of a
program is tested by a particular test suite.

e High coverage does not necasarilly mean that your project has
quality tests (there could be tests with no assertions, hardly
maintainable tests . ..)

e However, low coverage can point to parts of insufficiently
tested code which has a high chance of containing all kinds of
bugs and other problems

Types of Coverage

Consider this code:

public int doIt(boolean cl, boolean c2, boolean c3) {
int x = 0;
if (cl)
X++;
if (c2)
X
if (c3)
x+=3;
return x;

Types of Coverage

e Statement coverage
e Check that all statements in the code are executed
e For 100% coverage single test input required (true, true, true)

e Branch coverage
e Check that all possible results of conditions occur
e For 100% coverage two test inputs required (true, true, true),
(false, false, false) or any other combination with both true
and false for all conditionals
e Path coverage
e Every possible path through the code is executed
e For 100% coverage all possible combinations of inputs (and
values for member attributes if there were any) must be used,
thats 8 cases for this example

TDD -

Overview

Test Driven Development: By Example, Kent Beck

Test-driven development (TDD) is a software
development process that relies on the repetition of a very
short development cycle: first the developer writes an
(initially failing) automated test case that defines a
desired improvement or new function, then produces the
minimum amount of code to pass that test, and finally
refactors the new code to acceptable standards.

Quickly add a test.

Run all tests and see the new one fail.
Make a little change.

Run all tests and see them all succeed.
Refactor to remove duplication.
Repeat . ..

Red Green Refactor

REFACTOR

Tennis

Game Kata - Scoring

Each player starts with 0 points

The scoring then goes like this 0 — 15 — 30 — 40

If A has 40 and scores, and B doesn’t have 40, A wins

If both have 40 and A scores, A has Advantage

If A has Advantage and scores, they win

If A has Advantage, B has 40 and scores, both are at 40 again
Scores are written in the format 'A - B', e.g. '30 - 15’

When A has Advantage, the score is written as 'A - 40’

If scores are equal, e.g. both have 30, it is called '30 all’

If both players have 40 points, it is called 'deuce’

Tennis Game Kata - Task

e Try to not skip ahead and always have passing tests for
existing functionality before moving forward

e We want to create a TennisGame which has scoredA (),
scoredB() and showScore()

e The show method should return score in format defined above,
if there is a winner it gives 'winner: A/B’

e Also if there is a winner already and either scoredA() or
scoredB() is called, exception should be thrown

Java Highlighter - Task

Download base for the task at
https://github.com/stanozm/PV260-HighlighterTDD
Using the same technique as before, try to implement as much
as you can

At the end of seminar we evaluate who got the furthest

No cheating, code test-first!

https://github.com/stanozm/PV260-HighlighterTDD

