
Testing, JUnit Extensions, TDD

PV260 Software Quality

Stanislav Chren, Václav Hála

30. 3. 2017



Developers’ Tests
• Unit tests
• Integration tests
• End-to-end tests

- Tomek Kaczanowski, Practical Unit Testing with...



Unit Tests

Unit test. . .
• focuses on single class
• makes sure that YOUR code works
• controls context
• knows nothing about the users of the tested system
• is unaware of layers, external systems and resources
• runs very quickly, is executed frequently

- Tomek Kaczanowski, Practical Unit Testing with...



Unit Tests

Unit test DOES NOT. . .
• talk to the database
• communicate across the network
• touch the file system
• misbehave when run in parallel with any other unit tests
• require special things done to your environment to run

- Michael Feathers, A Set Of Unit Testing Rules



Anatomy of a Unit Test

AAA
• Arrange
• Act
• Assert

BDD
• Given
• When
• Then

xUnit
• Setup
• Exercise
• Verify
• Teardown

http://c2.com/cgi/wiki?ArrangeActAssert
http://martinfowler.com/bliki/GivenWhenThen.html
http://xunitpatterns.com/Four%20Phase%20Test.html

http://c2.com/cgi/wiki?ArrangeActAssert
http://martinfowler.com/bliki/GivenWhenThen.html
http://xunitpatterns.com/Four%20Phase%20Test.html


JUnit extensions

• JUnit is an extremely powerful tool and virtually anything can
be done using only the pure JUnit core functionality

• In some cases however we might benefit from using extensions
of the basic functionality, syntactic sugar . . .

• These allow us to work faster, reduce the boilerplate code
which brings no value, and make the test suite easier to
maintain

• For most common needs both third party libraries and native
JUnit extensions (some only in experimental branch) exist



JUnit extensions

• Fluent API for assertions
• Hamcrest http://hamcrest.org/JavaHamcrest/
• AssertJ http://joel-costigliola.github.io/assertj/

• Parametrized /Data-Driven tests
• JUnit Parametrized http://junit.sourceforge.net/
javadoc/org/junit/runners/Parameterized.html

• Zohhak runner http://piotrturski.github.io/zohhak/
• JUnitParams
https://github.com/Pragmatists/JUnitParams

http://hamcrest.org/JavaHamcrest/
http://joel-costigliola.github.io/assertj/
http://junit.sourceforge.net/javadoc/org/junit/runners/Parameterized.html
http://junit.sourceforge.net/javadoc/org/junit/runners/Parameterized.html
http://piotrturski.github.io/zohhak/
https://github.com/Pragmatists/JUnitParams


JUnit extensions - cont

• Property testing using randomized input
• JUnit Theories http://junit.org/apidocs/org/junit/
experimental/theories/Theories.html

• junit-quickcheck
https://github.com/pholser/junit-quickcheck

• And many others
• Unitils http://www.unitils.org/summary.html
• catch-exception
https://github.com/Codearte/catch-exception

• tempus-fugit http://tempusfugitlibrary.org/

http://junit.org/apidocs/org/junit/experimental/theories/Theories.html
http://junit.org/apidocs/org/junit/experimental/theories/Theories.html
https://github.com/pholser/junit-quickcheck
http://www.unitils.org/summary.html
https://github.com/Codearte/catch-exception
http://tempusfugitlibrary.org/


AssertJ
http://joel-costigliola.github.io/assertj/

• Rich DSL, specific for many types - Collections, Strings,
numbers, Exceptions, Time . . .

• Really helpful error messages
• Soft Assertions - show all errors, not just the first
• Extractors and Tuples
• Many extensions exist to test Database, Swing, Guava...

see homepage for extensive showcase of features



AssertJ

example: AssertJTest class



catch-exception
https://github.com/Codearte/catch-exception

• Catch and verify exceptions in a single line of code
• The test is more concise and easier to read.
• The test cannot be corrupted by a missing assertion.
• A single test can verify more than one thrown exception.
• The test can verify the properties of the thrown exception
after the exception is caught.

• The test can specify by which method call the exception must
be thrown.

- Javadoc of CatchException class



catch-exception

• Java 8 syntax (version 2.0.0)
MyObject myObject = new MyObject();
catchException(() -> myObject.doStuff(1));
Exception caught = caughtException();
assertThat(caught).is...

• pre-Java 8 syntax (version 1.4.4)
MyObject myObject = new MyObject();
catchException(myObject).doStuff(1);
Exception caught = caughtException();
assertThat(caught).is...



catch-exception

example: CatchExceptionTest class



Zohhak
https://code.google.com/p/zohhak/

Allows us to run one test on many sets of data, provided in
annotation next to the testcase

@TestWith({
"1,2,3",
"-19,7,-12"

})
public void testAdd(int a, int b, int expected) {

Calculator calc = new Calculator();
int result = calc.add(a,b);
assertEquals(expected, result);

}



Zohhak - Data

• The Strings inside the @TestWith({...}) each represent one
test input

• Inside each of these input Strings individual arguments for the
test are separated by commas (’,’)

• Types of the arguments are infered from the parameters of the
test method and the arguments are coerced to these types
before being passed to the test

• Coercion of basic primitive types comes out-of-th-box
• Custom coercion for any type can be written



Zohhak - Coercions

For more complex types we have to teach zohhak how to convert
from String (the String in data annotation) to our type

@Coercion
public Person toPerson(String input) {

String[] split = input.split(";");
Person person = new Person(split[0], split[1]);
return person;

}
We can then use Person in our tests

@TestWith({
"John;Doe",
"Frank;Perceval"

})
public void testWithPerson(Person person){



Zohhak

example: Vector2DTest class



JUnitParams
https://github.com/Pragmatists/JUnitParams

• Same purpose as Zohhak
• + Can read data from file - CSV, Excel

example: CSVFileInputTest class



junit-quickcheck
http://pholser.github.io/junit-quickcheck/site/0.7/index.html

• We don’t test concrete inputs but properties of code
• Input is generated randomly
• The test is a specification of what the code should do
• If error is found QuickCheck tries to ’Shrink’ it to ’smallest’
possible value which causes the same error

• Inspired by QuickCheck for Haskell
https://hackage.haskell.org/package/QuickCheck

https://hackage.haskell.org/package/QuickCheck


junit-quickcheck

@RunWith(JUnitQuickcheck.class)
public class SymmetricKeyCryptographyProperties {

@Property
public void decryptReversesEncrypt(

byte[] plaintext, Key key){
Crypto crypto = new Crypto(key);
byte[] ciphertext = crypto.encrypt(plaintext);
assertEquals(plaintext,

crypto.decrypt(ciphertext)));
}



junit-quickcheck
Task 1

• Try to run QuickcheckTest, it should fail
• The test is correct, implementation is broken
• Find what is wrong with the current implementation
• Implement StringSplitter so that the test passes



junit-quickcheck
Task 2

• Come up with at least 3 properties of a sorting algorithm
• Work with the Sorter interface
• Write quickcheck test for each of these properties
• Implements the Sorter using algorithm of your choice



Behavior Verification

State Verification Behavior Verification



Mocking in Unit Testing

• Unit testing is simple for classes with no dependencies
• How do we test an object which depends on many other things
(many of which might not even be implemented yet) ?

• We create stand-in objects which share interface with the
required dependency

• Inside, instead of some complex behavior, these are hard-wired
to work in the one particular test case

• We can create these substitutes either by hand or use a
mocking framework



Mockito
http://mockito.org/

We decided during the main conference that we
should use JUnit 4 and Mockito because we think they
are the future of TDD and mocking in Java.
(Dan North - author of BDD)

• Interaction verification
• Input stubbing (data, exceptions. . . )
• Test Spy wrappers
• Mock both classes and interfaces
• Lightweight API



Working Example

• Model for an app doing basic math on Roman numerals
• We only care about the inner logic, the UI doesn’t concern us



Working Example - Structure

• We already have the design done, all interfaces are prepared
• DataInput and DataOutput represent the textboxes
• Clicking the Calculate button calls the solve method



Working Example - Structure
• Lexer tokenizes the raw input
• Number tokens are translated by the RomanTranslator and
sent to EquationBuilder

• Tree representation of the equation is assembled
• The decimal result is translated to Roman numerals
• Formated result is sent back to output



Test Doubles Hierarchy
http://xunitpatterns.com/Test%20Double.html

• There are many types of stand-in objects used in testing
• Each plays a different role, the simplest type possible should
be used (That is dont use a Mock if all you need is a Dummy)



Dummy Object
RomanCalculatorTest#testExceptionFromInput

• We need to provide real object (that is not null), but at the
same time we know it will never be used during the test

• Even better, we pass null to the test which helps readability as
we are clearly signalling that the value is not used

• This is of course not possible with null-checks in constructors,
so we have to use dummies instead.

• To Assert or Not To Assert
http://misko.hevery.com/page/5/

http://misko.hevery.com/page/5/


Test Stub
RomanTranslatingTokenStream#testConvertsToDecimalTokens

• We want one of SUT’s dependencies to provide specific input
to the SUT when queried



Test Spy
RomanTranslatingTokenStream#testRecognizesRomanNumeral

• We want to know SUT’s interacts with one of its dependencies
• The spy only records the interaction, it is checked manually



Mock Object
RomanTranslatingTokenStream#testCorrectInputSingleOperator

• Similar task as Test Spy, but checks the validity of SUT’s
interaction with the mock on the fly



Fake Object
No Example

• Has the same functionality as its real counterpart, but
implements it in a more test friendly way

• e.g. an in-memory database instead of disk-based one



Test Spy vs. Mock

Test Spy
Mockito

• Arrange → Act → Assert
• Whole test runs
• Nice
• Verification always in caller

Mock
EasyMock

• Record → Exercise → Verify
• Stop on first error
• Strict
• Might be suppressed by
environment



Test Doubles Exercise
Task 1

• implement all tests in CustomerAnalysisTest
• try to use Mockito in some cases and manual Test Doubles in
others



Test Coverage

In computer science, test coverage is a measure used
to describe the degree to which the source code of a
program is tested by a particular test suite.

• High coverage does not necasarilly mean that your project has
quality tests (there could be tests with no assertions, hardly
maintainable tests . . . )

• However, low coverage can point to parts of insufficiently
tested code which has a high chance of containing all kinds of
bugs and other problems



Types of Coverage

Consider this code:
public int doIt(boolean c1, boolean c2, boolean c3) {

int x = 0;
if (c1)

x++;
if (c2)

x--;
if (c3)

x+=3;
return x;

}



Types of Coverage

• Statement coverage
• Check that all statements in the code are executed
• For 100% coverage single test input required (true, true, true)

• Branch coverage
• Check that all possible results of conditions occur
• For 100% coverage two test inputs required (true, true, true),

(false, false, false) or any other combination with both true
and false for all conditionals

• Path coverage
• Every possible path through the code is executed
• For 100% coverage all possible combinations of inputs (and

values for member attributes if there were any) must be used,
thats 8 cases for this example



TDD - Overview
Test Driven Development: By Example, Kent Beck

Test-driven development (TDD) is a software
development process that relies on the repetition of a very
short development cycle: first the developer writes an
(initially failing) automated test case that defines a
desired improvement or new function, then produces the
minimum amount of code to pass that test, and finally
refactors the new code to acceptable standards.

• Quickly add a test.
• Run all tests and see the new one fail.
• Make a little change.
• Run all tests and see them all succeed.
• Refactor to remove duplication.
• Repeat . . .



Red Green Refactor



Tennis Game Kata - Scoring

• Each player starts with 0 points
• The scoring then goes like this 0→ 15→ 30→ 40
• If A has 40 and scores, and B doesn’t have 40, A wins
• If both have 40 and A scores, A has Advantage
• If A has Advantage and scores, they win
• If A has Advantage, B has 40 and scores, both are at 40 again
• Scores are written in the format ’A - B’, e.g. ’30 - 15’
• When A has Advantage, the score is written as ’A - 40’
• If scores are equal, e.g. both have 30, it is called ’30 all’
• If both players have 40 points, it is called ’deuce’



Tennis Game Kata - Task

• Try to not skip ahead and always have passing tests for
existing functionality before moving forward

• We want to create a TennisGame which has scoredA(),
scoredB() and showScore()

• The show method should return score in format defined above,
if there is a winner it gives ’winner: A/B’

• Also if there is a winner already and either scoredA() or
scoredB() is called, exception should be thrown



Java Highlighter - Task

• Download base for the task at
https://github.com/stanozm/PV260-HighlighterTDD

• Using the same technique as before, try to implement as much
as you can

• At the end of seminar we evaluate who got the furthest
• No cheating, code test-first!

https://github.com/stanozm/PV260-HighlighterTDD

