
Overview Running checkstyle AST Writing a check

Static Code Analysis

PV260 Software Quality

Stanislav Chren, Vaclav Hala

5. 5. 2020



Overview Running checkstyle AST Writing a check

Overview

Static program analysis is the analysis of computer
software that is performed without actually executing pro-
grams. In most cases the analysis is performed on some
version of the source code, and in the other cases, some
form of the object code. The term is usually applied to
the analysis performed by an automated tool.

Things to keep in mind:

• The tools can usually not find all the problems in the system
(False Negatives)

• Not all of the detections are real problems (False Positives)

• There is no one tool which could be used for everything, more
tools are usually used in parallel (Overlaps will occur)

• We must know what we are looking for, using everything the
tool offers usually results in too much useless data



Overview Running checkstyle AST Writing a check

Source Code Analysis - Checkstyle
http://checkstyle.sourceforge.io/

Checkstyle can check many aspects of your source
code. It can find class design problems, method desig
problems. It also have ability to check code layout and
formatting issues.

PROS:

• Can be used to check
programming style

• Many premade checks
available

• New checks are easy to add

CONS:

• Type information is lost
making some checks
impossible

• Files are checked
sequentially, content of all
files can’t be seen at once

Available standard checks:
http://checkstyle.sourceforge.net/checks.html

http://checkstyle.sourceforge.net/checks.html


Overview Running checkstyle AST Writing a check

Checkstyle - Running via Command Line

• Download checkstyle
https://github.com/checkstyle/checkstyle/releases/ ,
select the checkstyle-VERSION-all.jar variant

• Go to the folder where you have placed the checkstyle.jar
• Run the command java -jar
checkstyle-VERSION-all.jar with the following options:

• -c (configuration file) path to .xml configuration for the audit
(there are few premade in the .jar file, for now let’s use the
sun checks.xml, extract it)

• -f (format) defaults to plain which we want, so no need to
set. XML output is available using ’-f xml’

• -o (output file) if not provided output goes directly to console.
This is impractical for longer audits, so use e.g. ’-o out.txt’

• lastly provide path to file you wish to analyze. If directory is
provided, its contents are analyzed recursively

All paths are relative to working directory when running the
command

https://github.com/checkstyle/checkstyle/releases/


Overview Running checkstyle AST Writing a check

Checkstyle - Configuring which checks to use

The whole configuration file knows two types of things

• Modules (backed by java classes) - each is either parent
maintaining other modules or performs one specific check

• Property (backed by setter methods on parent modules) - any
module can have user configurable properties which can be set
through the nested Property element

There are two basic types of standard check modules:

• Children of the Checker module - these work either with whole
files or with raw unparsed text inside these files

• Children of TreeWalker module - these work with parsed AST
(Abstract Syntax Tree) of .java files

It is important to put each check under the parent which supports
it. For every check its intended parent is at the bottom of its
details in the checks documentation.



Overview Running checkstyle AST Writing a check

Task 1

Create a check configuration which will look for the following:

• Boolean expressions with 4 or more operators

• Methods with cyclomatic complexity over 10

• Classes which override equals but not hashcode

• Files longer than 1000 lines

• Files which contain the //TODO or //FIXME comments

• Violations of the naming convention for constants



Overview Running checkstyle AST Writing a check

Checkstyle - Inspecting the AST

When writing own checks it helps to see the parsed AST tree to
which checkstyle converts the sources when running analysis.
Graphical tool for inspecting the tree is provided in the
checkstyle-VERSION-all.jar file. To use it:

• Go to the directory with the checkstyle-VERSION-all.jar

• From command line run ’java -cp

checkstyle-VERSION-all.jar

com.puppycrawl.tools.checkstyle.gui.Main’ (It is

important to use the -cp, if -jar were used the main class from

the .jar’s manifest would be used, which is the analysis starting

main, and the path to main class we wish to use would be

interpreted as a file to analyze. Checkstyle would then exit with

config file not specified error)

• In the window which pops up click ’Select Java File’ in the
lower left and select a file to parse



Overview Running checkstyle AST Writing a check

Checkstyle - AST Tree GUI Explained

Browse the tree by expanding (double click or click the latch left of
names) nodes with folder icon. In the AST browser window you
can find the following:

• Tree: parsed hierarchy of the whole file, naming format is
TYPE[LINExCOLUMN]

• Type: identifier of the node, these names are also used when
writing the checks

• Line, Column: Starting line and column of the node, ending of
the node can be found by looking at the start of the sibling
node(there are cases when this method would fail though)

• Text: If the node has some meaningful text associated with it
from the source (e.g. IDENT contains the name) it is written
here. If no such text exists type of the node is used

• Source code of the parsed file is in the bottom window



Overview Running checkstyle AST Writing a check

Checkstyle - How the TreeWalker Analysis Works

The basic idea of the analysis is following:

• First all the registered check are mapped from token Type to
checks (that is, each check lets the walker know in which
types of tokens it is interested in)

• For every file, the AST is obtained by parsing the file

• The walker goes through the tree top to bottom and in every
node sends event to all checks which are interested in the
particular node type

• It is responsibility of every check to keep any state/data it
needs to perform its task, at any time during the analysis if
the check decides it has a detection it reports it



Overview Running checkstyle AST Writing a check

Checkstyle - Writing a Check

• When writing checks, you need to have the checkstyle on your
classpath as dependency

• Each check for the TreeWalker must extend the class
AbstractCheck

• Every check must implement the getDefaultTokens(), this
method tells the walker what token types the check is
interested in

• To implement what happens on token visit, implement the
visitToken(token) method. The argument you receive is the
token just visited

• Action can also be taken when leaving the node (after all its
children have been processed), implement the
leaveToken(token) if you wish to receive this event

• To report your findings use one of the log() methods



Overview Running checkstyle AST Writing a check

Checkstyle - Workflow for Writing Checks

• Create some test code which contains the defects you wish to
check for

• View this code in the AST viewer GUI to see how the parsed
code will look like during the analysis

• Find patterns you can detect in the parsed AST

• Write some implementation of your check and run it against
the test code

• Repeat until all valid cases pass and bad inputs fail

Unit testing of checks is possible but setting up the environment
for these tests is rather time consuming so we will not do it here



Overview Running checkstyle AST Writing a check

Checkstyle - Using Your New Check

To be able to use your new check do the following:

• Create a .jar file containing the new check
• Add the jar to checkstyle classpath:

• For command line usage: java -cp

yourjar.jar;checkstyle-VERSION-all.jar

com.puppycrawl.tools.checkstyle.Main rest of the
command is same as normal, so -c config and so on

• (in unix OS, replace ”;” with ”:” in the command above)

• Now you can use names (full names including the packages)
of your checks in the xml config file



Overview Running checkstyle AST Writing a check

Task 2

2a Write a custom check which will be able to detect a for cycle
with negative increment

2b Write a check which will detect a for cycle that never executes
because its condition always starts as false
(e.g. for(int i=0; i>1; i++))


	Overview
	Running checkstyle
	AST
	Writing a check

