
IA010: Principles of Programming Languages

Types

Achim Blumensath
blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Static and dynamic typing
Static typing: types of expressions are computed at compile-time
Dynamic typing: runtime values are tagged with type information

Static and dynamic typing
Static typing: types of expressions are computed at compile-time
Dynamic typing: runtime values are tagged with type information

Dynamic typing
• is slow
• only catches type errors in executed code
•more permissive and (sometimes) convenient
⇒mostly useful (if at all) in scripting languages

Static and dynamic typing
Static typing
• stricter, catches more errors
• can prove that the program is free of type errors
• no runtime overhead
• can be inconvenient: might need additional code/annotations
• not all properties can be checked statically (array bounds)
• error messages from the type checker can be hard to understand
• type annotations help document the code
• types can be used to control the behaviour of code (overloading)
• indispensable for serious software development:
• proves the absence of certain errors
• helps with interface design
• helps with refactoring

• advantages apply mostly to symbolic computations, less so to
numeric ones

Type annotations
New syntax

⟨expr⟩ ∶∶= . . . ∣ let ⟨id⟩ : ⟨type⟩ = ⟨expr⟩ ; ⟨expr⟩
∣ let ⟨id⟩ (⟨id⟩ : ⟨type⟩) : ⟨type⟩ { ⟨expr⟩ }; ⟨expr⟩
∣ fun(⟨id⟩ : ⟨type⟩) : ⟨type⟩ { ⟨expr⟩ }

Basic types
int

a -> b
type foo = | A(a,b,...) | ... | Z(c,d,...);

let fac(n: int) : int {

if n == 0 then 1 else n * fac(n-1)

};

let compose(f: int -> int, g: int -> int): int -> int {

fun (x: int) { f(g(x)) }

};

Common types
Basic types
• integers (signed/unsigned, various precisions, including arbitrary
precision)

• floating point numbers, decimal numbers (0000.00), arbitrary
precision rational numbers

• integer ranges (1..100)
• enumerations (enum colours { Red, Green, Blue, Yellow })
• booleans
• characters
• strings
• the empty type, the unit type

Common types
Composite types
• arrays
• pointers, references
• functions, procedures
• records, tuples
• unions, variants
• lists, maps, dictionaries

Arrays
Definition
homogeneous collection indexed by an ordinal type

Possible variations
• index type: integers, ranges, enumeration types
• dimension: 1-dimensional, many-dimensional

Remarks
• Fortran is famous for its extensive array support
• bounds checkingmust be done dynamically

Array slices
(not necessarily contiguous) subsets of an array

One-dimensional

Two-dimensional

Product and sum types
Product types
inhomogeneous collection of elements of a fixed size: tuples, records

type triple = int * int * int;

type vector = [x : float, y : float, z : float];

Product and sum types
Product types
inhomogeneous collection of elements of a fixed size: tuples, records

type triple = int * int * int;

type vector = [x : float, y : float, z : float];

Sum types
alternative between several types: tagged unions, variant types,
algebraic types

type int_list = | Nil | Cons(int, int_list);

type expr = | Num(int) | Plus(expr, expr) | Times(expr, expr);

type nat = | Zero | Suc(nat)

Unit and void
Unit type
type with a single value

type unit = | Nothing;

• Can be used for functions that do not take arguments or do not
return a value.

Unit and void
Unit type
type with a single value

type unit = | Nothing;

• Can be used for functions that do not take arguments or do not
return a value.

Void type
type with no value

type void = ;

•When used as argument type of a function, you cannot call it.
•When used as return type, the function does not terminate.

Recursive types
types who are used in their own definition

type expr = | Num(int) | Plus(expr, expr) | Times(expr, expr);

• usually the recursion is via a pointer
• some languages allow arbitrary recursive definitions
type t = t -> t

Example: recursion operator
type b = b -> a;

let rec(f : a -> a) : a =

(fun (x : b) : a { f(x(x)) })

(fun (x : b) : a { f(x(x)) });

Type equivalence
Name equivalence
Two types are equivalent if they have the same name.

Structural equivalence
Two types are equivalent if they have the same definition.

type vector = [x : int, y : int];

type pair = [x : int, y : int];

type pair2 = [y : int, x : int];

Type conversions
Cast explicit conversion
Coercion implicit conversion
• convenient
• can make code hard to understand

Variations
• If the memory representation is the same, we can just change the
type.

•Otherwise, we have to convert the value.
•We need a runtime check, if not every value can be converted to
the new type.

• Some languages support non-converting type casts.

Polymorphism
Some code works without changes for several types.

Polymorphism
Some code works without changes for several types.

What is the type of
fun (x) { x }

Polymorphism
Some code works without changes for several types.

What is the type of
fun (x) { x }

int -> int

Polymorphism
Some code works without changes for several types.

What is the type of
fun (x) { x }

int -> int

float -> float

Polymorphism
Some code works without changes for several types.

What is the type of
fun (x) { x }

int -> int

float -> float

string -> string

(int -> unit) -> (int -> unit)

...

Forms of polymorphism
• Ad-hoc polymorphism (also called overloading)
• Parametric polymorphism (in ML-like languages)
• Subtyping polymorphism (in object-oriented languages)

Ad-hoc polymorphism
• several versions of a function
• selection depending on argument types
+ : int -> int -> int

+ : float -> float -> float

+ : string -> string -> string

• Advantages:
• flexible

• Disadvantages:
• one has to write a separate function for every type
• program can become harder to understand

Forms of polymorphism
• Ad-hoc polymorphism (also called overloading)
• Parametric polymorphism (in ML-like languages)
• Subtyping polymorphism (in object-oriented languages)

Ad-hoc polymorphism
• several versions of a function
• selection depending on argument types
+ : int -> int -> int

+ : float -> float -> float

+ : string -> string -> string

• Advantages:
• flexible

• Disadvantages:
• one has to write a separate function for every type
• program can become harder to understand

Forms of polymorphism
• Ad-hoc polymorphism (also called overloading)
• Parametric polymorphism (in ML-like languages)
• Subtyping polymorphism (in object-oriented languages)

Parametric polymorphism
• types can contain type variables

map : (a -> b) -> list(a) -> list(b)

• Advantages:
• simple, clean, easy to understand, few drawbacks

• Disadvantages:
• less flexible than ad-hoc polymorphism

Forms of polymorphism
• Ad-hoc polymorphism (also called overloading)
• Parametric polymorphism (in ML-like languages)
• Subtyping polymorphism (in object-oriented languages)

Subtyping polymorphism
• a is a subtype of b if every value of type a can be used where type b
is expected. (a is a specialisation of b, b is more general.)

• basis of object-oriented programming
•makes the type system much more complicated

Type inspection
• branching on values of type variables
• at compile-time or runtime
• add power of overloading to parametric polymorphism

let serialise(value) {

case type_of(value)

| int => int_to_string(value)

| bool => bool_to_string(value)

| string => sanitise_string(value)

| cons => "cons(" ++ serialise(fst(value)) ++ ","

++ serialise(snd(value)) ++ ")"

| ...

};

Type inference
Problem
Writing type annotations is tedious, especially if the types are complex
and long.

Solution
The compiler derives the types automatically without annotation.

•Developed for ML by Damas, Hindley, and Milner.
• For languages with more complex type systems, this is only
partially possible.

Idea
Given an expression, look at all subexpressions and create a system of
type equations.

let twice(x) { 2 * x };

.

Type inference
Problem
Writing type annotations is tedious, especially if the types are complex
and long.

Solution
The compiler derives the types automatically without annotation.

•Developed for ML by Damas, Hindley, and Milner.
• For languages with more complex type systems, this is only
partially possible.

Idea
Given an expression, look at all subexpressions and create a system of
type equations.

let twice(x) { 2 * x };

let compose(f, g) { fun (x) { f(g(x)) } };

.

Type inference
Problem
Writing type annotations is tedious, especially if the types are complex
and long.

Solution
The compiler derives the types automatically without annotation.

•Developed for ML by Damas, Hindley, and Milner.
• For languages with more complex type systems, this is only
partially possible.

Idea
Given an expression, look at all subexpressions and create a system of
type equations.

let twice(x) { 2 * x };

let compose(f, g) { fun (x) { f(g(x)) } };

let sum(lst) = fold(fun (acc,x) { acc + x }, 0, lst);

Unification
solving a type equation s = t

x = t ↝ x ∶= t
s = x ↝ x ∶= s

s → s′ = t → t′ ↝ s = t ∧ s′ = t′

c(s1, . . . , sn) = c(t1, . . . , tn) ↝ s1 = t1 ∧ ⋅ ⋅ ⋅ ∧ sn = tn
s = t ↝ failure

Advantages of type inference
• convenient, less friction
• finds themost general type
• automatically introduces polymorphism

Disadvantages
• Type annotations serve as documentation.
• Error messages from the type checker are more complicated.
(It hides where the type error occurred.)

Advanced topics
• linear types
• dependent types
• gradual typing
• using types for software verification

