[A010: Principles of Programming Languages
Types

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno


mailto:blumens@fi.muni.cz

Static and dynamic typing

Static typing: types of expressions are computed at compile-time

Dynamic typing: runtime values are tagged with type information



Static and dynamic typing

Static typing: types of expressions are computed at compile-time

Dynamic typing: runtime values are tagged with type information

Dynamic typing
o is slow
« only catches type errors in executed code
« more permissive and (sometimes) convenient
= mostly useful (if at all) in scripting languages



Static and dynamic typing

Static typing
« stricter, catches more errors
« can prove that the program is free of type errors
« no runtime overhead
« can be inconvenient: might need additional code/annotations
« not all properties can be checked statically (array bounds)
« error messages from the type checker can be hard to understand
« type annotations help document the code
« types can be used to control the behaviour of code (overloading)
« indispensable for serious software development:
« proves the absence of certain errors
« helps with interface design
« helps with refactoring
« advantages apply mostly to symbolic computations, less so to
numeric ones



Type annotations

New syntax
(expr) ==... | let (id) : (type) = (expr) ; (expr)
| let (id) ( (id) : (type) ) : (type) { (expr) }; (expr)
| fun( (id) : (type) ) : (type) { (expr) }
Basic types
int
a->b
type foo = | ACa,b,...) | ... | Z(c,d,...);

let fac(n: int) : int {
if n == 0 then 1 else n x fac(n-1)
1

let compose(f: int -> int, g: int -> int): int -> int {
fun (x: int) { f(g(x)) }
I3



Common types

Basic types

« integers (signed/unsigned, various precisions, including arbitrary
precision)

« floating point numbers, decimal numbers (0000.00), arbitrary
precision rational numbers

« integer ranges (1..100)

e enumerations (enum colours { Red, Green, Blue, Yellow })

« booleans

o characters

* strings

o the empty type, the unit type



Common types
Composite types

o arrays
« pointers, references

« functions, procedures
« records, tuples

e unions, variants

o lists, maps, dictionaries



Arrays

Definition
homogeneous collection indexed by an ordinal type

Possible variations
« index type: integers, ranges, enumeration types
o dimension: 1-dimensional, many-dimensional

Remarks
» FORTRAN is famous for its extensive array support
« bounds checking must be done dynamically



Array slices

(not necessarily contiguous) subsets of an array

One-dimensional

Two-dimensional

O O O
O O O
O O O

O O
O O
O O




Product and sum types
Product types

inhomogeneous collection of elements of a fixed size: tuples, records

int * int * int;
[ x : float, y : float, z : float J;

type triple
type vector



Product and sum types
Product types

inhomogeneous collection of elements of a fixed size: tuples, records

type triple = int * int * int;
type vector = [ x : float, y : float, z : float I;

Sum types
alternative between several types: tagged unions, variant types,

algebraic types

type int_list = | Nil | Cons(int, int_list);
type expr = | Num(int) | Plus(expr, expr) | Times(expr, expr);
type nat = | Zero | Suc(nat)



Unit and void
Unit type
type with a single value
type unit = | Nothing;

« Can be used for functions that do not take arguments or do not
return a value.



Unit and void
Unit type
type with a single value
type unit = | Nothing;

« Can be used for functions that do not take arguments or do not
return a value.

Void type
type with no value
type void = ;

» When used as argument type of a function, you cannot call it.
» When used as return type, the function does not terminate.



Recursive types

types who are used in their own definition
type expr = | Num(int) | Plus(expr, expr) | Times(expr, expr);
« usually the recursion is via a pointer
« some languages allow arbitrary recursive definitions
type t =t > t
Example: recursion operator

type b = b -> a;

let rec(f : a ->a) : a =
(fun (x : b) : a { F(x(x)) )
(fun (x : b) : a { F(x(x)) 3);



Type equivalence

Name equivalence

Two types are equivalent if they have the same name.

Structural equivalence
Two types are equivalent if they have the same definition.

type vector = [ x : int, y : int J;
type pair = [ x : int, y : int J;
type pair2 [y :int, x : int J;



Type conversions

Cast explicit conversion

Coercion implicit conversion
e convenient
« can make code hard to understand

Variations
« If the memory representation is the same, we can just change the
type.
» Otherwise, we have to convert the value.
» We need a runtime check, if not every value can be converted to
the new type.
« Some languages support non-converting type casts.



Polymorphism

Some code works without changes for several types.



Polymorphism
Some code works without changes for several types.

What is the type of
fun (x) { x }



Polymorphism
Some code works without changes for several types.

What is the type of
fun (x) { x }

int -> int



Polymorphism
Some code works without changes for several types.
What is the type of
fun (x) { x }

int -> int
float -> float



Polymorphism
Some code works without changes for several types.
What is the type of
fun (x) { x }
int -> int
float —> float

string -> string
(int -> unit) -> (int -> unit)



Forms of polymorphism
o Ad-hoc polymorphism (also called overloading)
o Parametric polymorphism (in ML-like languages)

« Subtyping polymorphism (in object-oriented languages)



Forms of polymorphism
o Ad-hoc polymorphism (also called overloading)

o Parametric polymorphism (in ML-like languages)

« Subtyping polymorphism (in object-oriented languages)

Ad-hoc polymorphism
« several versions of a function
« selection depending on argument types
+ : int -> int -> int
+ : float -> float -> float
+ : string -> string -> string

o Advantages:
« flexible

» Disadvantages:
« one has to write a separate function for every type
« program can become harder to understand



Forms of polymorphism
o Ad-hoc polymorphism (also called overloading)

o Parametric polymorphism (in ML-like languages)

« Subtyping polymorphism (in object-oriented languages)

Parametric polymorphism
« types can contain type variables

map : (a => b) -> list(a) -> list(b)
o Advantages:
« simple, clean, easy to understand, few drawbacks

 Disadvantages:
« less flexible than ad-hoc polymorphism



Forms of polymorphism
o Ad-hoc polymorphism (also called overloading)

o Parametric polymorphism (in ML-like languages)

« Subtyping polymorphism (in object-oriented languages)

Subtyping polymorphism
« a is a subtype of b if every value of type a can be used where type b
is expected. (a is a specialisation of b, b is more general.)
« basis of object-oriented programming
« makes the type system much more complicated



Type inspection

« branching on values of type variables
o at compile-time or runtime
« add power of overloading to parametric polymorphism

let serialise(value) {

};

case type_of(value)

| int => int_to_string(value)

| bool => bool_to_string(value)

| string => sanitise_string(value)

| cons => "cons(" ++ serialise(fst(value)) ++ " "
++ serialise(snd(value)) ++ ")"



Type inference

Problem
Writing type annotations is tedious, especially if the types are complex
and long.
Solution
The compiler derives the types automatically without annotation.
« Developed for ML by Damas, Hindley, and Milner.

« For languages with more complex type systems, this is only
partially possible.

Idea
Given an expression, look at all subexpressions and create a system of
type equations.

let twice(x) { 2 * x };



Type inference

Problem
Writing type annotations is tedious, especially if the types are complex
and long.
Solution
The compiler derives the types automatically without annotation.
« Developed for ML by Damas, Hindley, and Milner.

« For languages with more complex type systems, this is only
partially possible.

Idea
Given an expression, look at all subexpressions and create a system of
type equations.

let twice(x) { 2 * x };

let compose(f, g) { fun (x) { f(g(x)) } };



Type inference

Problem
Writing type annotations is tedious, especially if the types are complex
and long.
Solution
The compiler derives the types automatically without annotation.
« Developed for ML by Damas, Hindley, and Milner.

« For languages with more complex type systems, this is only
partially possible.

Idea
Given an expression, look at all subexpressions and create a system of
type equations.

let twice(x) { 2 * x };
let compose(f, g) { fun (x) { f(g(x)) } };

let sum(lst) = fold(fun (acc,x) { acc + x }, 0, lst);



Unification
solving a type equation s = ¢

x=1
s=x
so>s'=t->t
c(s1yvnessn) =c(try . ty)
s=t

¢ 44

4



Advantages of type inference

o convenient, less friction
« finds the most general type
« automatically introduces polymorphism

Disadvantages

« Type annotations serve as documentation.
o Error messages from the type checker are more complicated.
(It hides where the type error occurred.)



Advanced topics

« linear types

« dependent types

« gradual typing

« using types for software verification



