
IA158 - Scheduler

Jan Koniarik

March 12, 2021

Agenda

Project information

Scheduler requirements

API introduction

Example task

Jan Koniarik · IA158 - Scheduler · March 12, 2021 2 / 26

Project information

Project

Your goal is to write a scheduler in C.
It has to schedule our three sets of tasks:

Custom A set of three predefined tasks, you have to add
one task of your own. 1

Generated One is randomly generated for each of you.
Sporadic Third is made of two normal tasks and one

sporadic task.
Your scheduler has to meet all the requirements, and you have
three attempts at submission.
You have to work alone.

1Please be creative

Jan Koniarik · IA158 - Scheduler · March 12, 2021 3 / 26

Scheduler requirements

Scheduler requirements
Assumptions:

Jobs are non-preemptible
Tasks are periodic, and one is sporadic
One processor
No resources/priorities/precedence
Synchronized

Requirements:
Schedule our sets of tasks
The schedule has to be valid
Overrun detection (not prevention)

It should be clear to potential users that overrun happened but
do not stop the execution.

The schedule is not hardcoded
You have to use our clock API to get actual time.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 4 / 26

Scheduler requirements

Skeleton

There will be a simple C skeleton in the school information system
with CMake as a build system.
Each set of tasks is schedulable without a problem with algorithms
based on the lecture. (But beware of your custom task!) Your solution
has to schedule all three sets of tasks correctly, in case there is an
error - the project will not be accepted, and you fail.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 5 / 26

Scheduler requirements

Preemptability

But the non-preemptable scheduling is NP-hard.

We designed our tasks in a way that is solvable with an algorithm
that expects preemptable jobs. As for your task, it is your burden to
design it correctly. 2

2But if you know how to implement task switching, you can do it.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 6 / 26

Scheduler requirements

Implementation

We will check your implementation of the scheduler - write it in
a way that we can understand it.

Code quality (readability) is a necessity for a good scheduler, as
the code has to be easy to understand and debug.

You can not use dynamic memory.
During a normal semester, the task is to solve this on an
embedded device.
On embedded, we want to avoid dynamic memory when it is not
necessary.
You either know the number of tasks/jobs, or you have upper
limits - there is no need for dynamic memory.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 7 / 26

API introduction

API introduction

Jan Koniarik · IA158 - Scheduler · March 12, 2021 8 / 26

API introduction

Interface

File task.h contains a definition of the structure holding the
tasks, job pointers, and sporadic tasks.
_tasks.c/h files provide a description of each set of tasks.

gen_tasks.c is available to you at
https://www.fi.muni.cz/~xkoniar/ia158/<uco>
/gen_tasks.c

clock.h/c contains API to work with time.
scheduler.h/c contains API and structure for the scheduler that
you have to implement.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 9 / 26

https://www.fi.muni.cz/~xkoniar/ia158/<uco>/gen_tasks.c
https://www.fi.muni.cz/~xkoniar/ia158/<uco>/gen_tasks.c

API introduction

Tasks

We will explain how this works on the first task set and the sporadic
task. We expect that you can handle the rest by yourself.
The three provided tasks have these properties. All values are in
milliseconds: 3

led period: 250, deadline: 50, max. exec. time: 1
uart period: 251, deadline: 251, max. exec. time: 40
fib period: 1499, deadline: 249, max. exec. time: 40

The led task will be implemented as an example in this presentation.

3We will not change the values for tests. Hardcoded solutions for
these numbers will be denied.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 10 / 26

Example task

Example task

Jan Koniarik · IA158 - Scheduler · March 12, 2021 11 / 26

Example task

Assignment
1. Download project skeleton IA158_skeleton.zip from IS
2. Check that you can compile it (find how to use CMake properly,
you can do that)

3. Open main.c file

Jan Koniarik · IA158 - Scheduler · March 12, 2021 12 / 26

https://is.muni.cz/auth/go/td5x2t?lang=en

Example task

Step 1: Write job function

The led task blinks the LED present on the board that you would use.
For the desktop version, we will use print as a replacement.

#include " task . h"

uint32_t i = 0;

void led_job (void *) {
pr intf (" Status of green led : %i " , i) ;
i = (i + 1) % 2;

}

Using a global variable is ugly, but we will live with that for now.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 13 / 26

Example task

Step 2: Write an instantiation of task structure

We want the job of blinking LED to be executed at the 250ms period.
This gives us 4 blinks per second. The maximum execution time is
estimated at 1 ms. 4

struct task LED_TASK_SIMPLE = { . period = 250 ,
. max_execution_time = 1 ,
. relative_deadline = 50 ,
. job = &led_job ,
. data = nullptr } ;

4All time units are in milliseconds

Jan Koniarik · IA158 - Scheduler · March 12, 2021 14 / 26

Example task

Step 3: Write simple scheduler

As an example, we can show a simple execution of one task - a
simple while loop. In the example, we use busy waiting to ensure the
period the task has specified.

void schedule_single_task (struct task * task_ptr) {
while (true) {

uint32_t end_time = clock_time () + task_ptr−>period ;
task_ptr−>job (task_ptr−>data) ;
clock_delay_ms (end_time − clock_time ()) ;

}
}

Jan Koniarik · IA158 - Scheduler · March 12, 2021 15 / 26

Example task

Assignment
Implement all three steps in previous slides.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 16 / 26

Example task

More complex task

We just made a really simple task with the scheduler capable of
executing only that one task.
This task only prints something based on the global variable.
Usage of the global variable is not optimal - what if we would
want to have multiple tasks with this job function?

That can be necessary for a lot of non-trivial tasks!

We will fix that in the following modification!

Jan Koniarik · IA158 - Scheduler · March 12, 2021 17 / 26

Example task

Step 4: Data structure

The idea is to use different data for tasks with the same job function.
For each task, remember a pointer for data and pass it to the function
each time it is called. Given that we are working with C, we have to
use void*.

struct led_task_data {
uint8_t i ;

} ;
struct led_task_data LED_DATA = { . i = 0 } ;
struct task LED_TASK = { . period = 250 ,

. max_execution_time = 20 ,

. relative_deadline = 50 ,

. job = &led_job2 ,

. data = (void *)&LED_DATA } ;

Jan Koniarik · IA158 - Scheduler · March 12, 2021 18 / 26

Example task

Step 5: Modify function

Now, we can use that data structure in the function itself:

void led_job (void * void_data) {
struct led_task_data *data = void_data ;
pr intf (" Status of green led : %i " , data−>i) ;
data−>i = (data−>i + 1) % 2;

}

Jan Koniarik · IA158 - Scheduler · March 12, 2021 19 / 26

Example task

Assignment
Implement the fourth and fifth steps.
Make a new instance of led task, with different data instances
and same function.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 20 / 26

Example task

Scheduler interface

The scheduler itself will have to use our API and data structure. See
file scheduler.h. We use one global instance of struct scheduler to
represent the data of the scheduler. The definition is empty, but you
should use it wisely for the scheduler. Sporadic tasks call the
function ‘scheduler_on_sporadic‘ to add a sporadic event into the
scheduler structure. See sporadic tasks for details.
The function ‘scheduler‘ is the core function of should do the
scheduling. We expect that the function will never return. See ‘main‘
to understand how it is used.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 21 / 26

Example task

Sporadic task

The third set of tasks contains a sporadic event. This occurs from
within the other tasks at random moments. Remember to correctly
deny the event in case you are not able to schedule the task.
Read the source code carefully. It gives hints that should help you
find a proper solution for sporadic scheduling. It should be simple.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 22 / 26

Example task

API Summary

Summary of the API:
The basic unit is struct task contains:

timing constraints - period, relative deadline, and execution time
job function and job data

API uses void pointer to pass data - you have to convert the
pointer types manually
Key function is ‘schedule‘ that executes the scheduling

Jan Koniarik · IA158 - Scheduler · March 12, 2021 23 / 26

Example task

Project

Implement the scheduler for the task sets.
There will be examination dates in the IS for project submission
- you have to sign up.

Once the reservation for the exam date ends (and you can no
longer cancel it), I will open the homework vault.
The homework vault will be open until the examination date -
you have to submit your project in that time period
In case you fail to submit the project, you lose one of the
attempts for submission.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 24 / 26

Example task

Communication

Prefered communication channels:
email 433337@mail.muni.cz

discussion group in IS
https://is.muni.cz/auth/discussion/
predmetove/fi/jaro2021/IA158/

Or contact me in any other way you see fit. I will try to answer all of
your questions, but I do not guarantee a fast response, and it may
take me some time. Please be patient.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 25 / 26

https://is.muni.cz/auth/discussion/predmetove/fi/jaro2021/IA158/
https://is.muni.cz/auth/discussion/predmetove/fi/jaro2021/IA158/

Example task

Experiment

As a little social experiment, please do send me an email once you
finish processing this document. I promise that I won’t judge you for
when that happens.

Jan Koniarik · IA158 - Scheduler · March 12, 2021 26 / 26

	Project information
	Scheduler requirements
	API introduction
	Example task

